UNDERSTANDING and EXPRESSING
SCALABLE CONCURRENCY

Aaron Turon

April 19, 2013

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

to the

Faculty of the College
of Computer and Information Science
Northeastern University
Boston, Massachusetts

COLOPHON

This document was typeset using KIEX, with a mixture of classicthesis'
developed by André Miede and tufte-latex,> which is based on Edward
Tufte’s Beautiful Evidence. The bibliography was processed by Biblatex.

Robert Slimbach’s Minion Pro acts as both the text and display type-
face. Sans-serif text is typeset in Slimbach and Carol Twomblys Myriad
Pro; monospaced text uses Jim Lyles’s Bitstream Vera Mono (“Bera Mono”).
Donald Knuth’s Computer Modern is used throughout, but 'm not saying
where.

Understanding and expressing scalable concurrency
© April 19, 2013, Aaron Turon

*http://code.google.com/p/
classicthesis/

> https://code.google.com/p/
tufte-latex/
3http://www.ctan.org/pkg/biblatex

http://code.google.com/p/classicthesis/
http://code.google.com/p/classicthesis/
https://code.google.com/p/tufte-latex/
https://code.google.com/p/tufte-latex/
http://www.ctan.org/pkg/biblatex

NORTHEASTERN UNIVERSITY
GRADUATE SCHOOL OF COMPUTER SCIENCE
Ph.D. THESIS APPROVAL FORM

: apd _
THESISTITLE: Oyl sty ding i txprr’mn'BthlaLh L\ﬂm'mrrfma

AUTHOR: A p . TWom
Ph.D. Thesis Approved to complete all degree requirements for the Ph.D. Degree in Computer Science.

WZZW/&AM«/ 2]z2/r2

Thesis AdvisorDate

O/QA~ A)\r\xwxo/ 20\ 3/ 2/ 2.

sis Reader Date ,
Veep ?; > (5 /3
Thesis Reader Date
W\ 2127 Im
Thesis Reader Date

GRA%OOLAP%% SVER WY
Y o - Qfasls

Director, Graduate School Date

COPY RECEIVED IN G UATE SCHOOL OFFICE

T2 /—j ?//Zu/?/b‘b

Reci pzen}\s Szgnatf\r: Date

Distribution: Once completed, this form should be scanned and attached to the front of the electronic
dissertation document (page 1). An electronic version of the document can then be uploaded to the
Northeastern University-UMI website.

Abstract

The Holy Grail of parallel programming is to provide good speedup while
hiding or avoiding the pitfalls of concurrency. But some level in the tower
of abstraction must face facts: parallel processors execute code concurrently,
and the interplay between concurrent code, synchronization, and the mem-
ory subsystem is a major determiner of performance. Effective parallel pro-
gramming must ultimately be supported by scalable concurrent algorithms—
algorithms that tolerate (or even embrace) concurrency for the sake of scaling
with available parallelism. This dissertation makes several contributions to
the understanding and expression of such algorithms:

o It shows how to understand scalable algorithms in terms of local protocols
governing each part of their hidden state. These protocols are visual arti-
facts that can be used to informally explain an algorithm at the whiteboard.
But they also play a formal role in a new logic for verifying concurrent
algorithms, enabling correctness proofs that are local in space, time, and
thread execution. Correctness is stated in terms of refinement: clients of an
algorithm can reason as if they were using the much simpler specification
code it refines.

e It shows how to express synchronization in a declarative but scalable
way, based on a new library providing join patterns. By declarative, we
mean that the programmer needs only to write down the constraints of
a synchronization problem, and the library will automatically derive a
correct solution. By scalable, we mean that the derived solutions deliver
robust performance with increasing processor count and problem com-
plexity. The library’s performance on common synchronization problems
is competitive with specialized algorithms from the literature.

e It shows how to express scalable algorithms through reagents, a new
monadic abstraction. With reagents, concurrent algorithms no longer
need to be constructed from “whole cloth,” i.e., by using system-level prim-
itives directly. Instead, they are built using a mixture of shared-state and
message-passing combinators. Concurrency experts benefit, because they
can write libraries at a higher level, with more reuse, without sacrificing
scalability. Their clients benefit, because composition empowers them to
extend and tailor a library without knowing the details of its underlying
algorithms.

Research is what I'm doing when I don’t know what I'm doing.

—Wernher von Braun

Acknowledgments

In the 2007 PhD orientation at Northeastern, students were shown a curious
graph. The x-axis read Time and spanned o to 5 years. The y-axis read
Happiness and, although the units were unlabelled, the trajectory was clear: a
fairly steady high for the first couple of years, followed by a precipitous drop
and a slow climb that, in the end, never quite recovered. I remember thinking,
Five years to dig deep into the field that I love? There’s no way that chart applies
to me. Little did I know.

No one can make it from naive enthusiasm to finished dissertation without
alot of support, both technical and emotional. I was fortunate to be supported
by a committee with diverse perspectives, taste, and wisdom—and to have
each member enter the scene at just the right time (in the order below):

e Mitchell Wand, my advisor, was originally assigned as my “faculty mentor”
and immediately dispensed some advice: read papers until you find one
that makes you say I could do better than that* As the formative early
reading gave way to research, Mitch had just one stipulation: I had to
present a clear and compelling case for why and how we would do better.
His combination of high standards and patience meant I got a lot of
practice trying to make such cases.

o Claudio Russo was officially my internship supervisor at MSR Cambridge—
but, with characteristic humility, he treated me as an equal collaborator.
The summer we spent hacking together was one of the most enjoyable
and rewarding periods of grad school, and I remain inspired by Claudio’s
restless curiosity and deep integrity, and grateful for his friendship.

e Doug Lea measures research impact in billions of computers,’ yet he is one
of the kindest and most approachable researchers or hackers you'll meet.
As they say,5 programs must be written for people to read, and only inci-
dentally for machines to execute—and Doug’s concurrency library is an
excellent textbook, one that deeply informs the work in this dissertation.

e Olin Shivers knows how to write, and I returned to his writing over and
over again for inspiration while producing my own. I also learned a great
deal about the human side of research by being within earshot of Olin.

e Amal Ahmed arrived at Northeastern just before my thesis proposal was
due, and enthusiastically agreed to help me “do better than” my previous
work on concurrency verification. Her generosity with her time, her
passion and raw mental horsepower helped make my final year my best
one; her energy and attitude will serve as a North Star for years to come.

The Northeastern PRL has a persistently functional culture—from torture
chambers, PL Jr., happy hour, and Elevator Pitch Idol, to a near total lack

+Incidentally, this slogan applies to one’s
own papers as well.

>His java.util.concurrent ships with
Java, which runs on 1.1 billion desktop
computers—and that's not even counting
mobile phones or embedded devices.
¢ Abelson and Sussman, The Structure and
Interpretation of Computer Programs

of ego and unflinching commitment to helping each other improve. While
some of this culture is the handiwork of faculty, most of it is passed down
through generations of remarkable students and post docs. I am indebted for
the friendship, insight, and caring of an incredible number of them:

Dan Brown, who can explain anything to anyone;

Harsh Raju Chamarthi, a true student of the masters;

Steve Chang, who knows when to be lazy;

Jed Davis, who inhabits all levels of abstraction;

Christos Dimoulas, who always remembers the big picture;
Carl Eastlund, humor amplifier;

Tony Garnock-Jones, metacircular visionary;

Dave Herman, who puts up with the Internet;

Tan Johnson, man of steel;

Jamie Perconti, who sees the Matrix in color;

Jonathan Schuster, whose research will someday be divulged,
Justin Slepak, master of the precision strike;

Vincent St-Amour, the contrarian who cares;

Paul Stansifer, purveyor of puns, collector of cleverness, and boxer of bats;
Stevie Strickland, who reminds us to have fun;

Asumu Takikawa, quietly succeeding from day one;

Sam Tobin-Hochstadt, who knows everything;

Jesse Tov, who puts us all to shame;

Dimitris Vardoulakis, who keeps making it happen;

David Van Horn, enigmatic and admired.

I will miss you all.

There are a number of others who stepped in at one crucial juncture or
another. Anne Rogers and John Reppy are the reason I got into research in
the first place. Pete Manolios’s seminar and our early work together laid a
firm foundation for the rest of my time at Northeastern. Derek Dreyer has
been a recurring presence, and now a collaborator, mentor, and reason to
move across an ocean; his impact in one year makes me wonder if I'll even
recognize myself in two more. Lars Birkedal and Jacob Thamsborg graciously
offered to collaborate rather than compete, and I am still reaping the benefits.

The 2010 summer in Cambridge, UK was a turning point for me, in no
small part due to the encouragement and enthusiasm of Philippa Gardner and
Peter O’Hearn. Thanks also to Mike Dodds, Matthew Parkinson, and Viktor
Vafeiadis, who warmly welcomed me into their branch of the separation logic
family. MSR funded not just the internship that summer, but much of my time
in grad school as well, for which I am very grateful.

But none of this could have happened without my family. For as long as I
can remember, my parents have encouraged me to pursue my interests and
provided me with a safe place in which to do so. Thank you, Mom and Dad.

And Jessica, my partner and my home: I am glad that I have the rest of my
life to repay my debt to you, because it will take at least that long.

Aaron Turon
Saarbriicken
April 2013

Contents

I1

PROLOGUE

OVERVIEW

11 Theproblem

12 Mythesis o o
1.2.1 Understanding scalable concurrency
1.2.2 Expressing scalable concurrency

1.3 Organization

14 Previously published material

CONCURRENCY MEETS PARALLELISM

2.1 Concurrency is not parallelism
2.1.1 Scalable concurrency
2.1.2 What scalable concurrencyisnot

2.2 Top down: the problems of concurrency
2.2.1 Expressive interaction
2.2.2 The problem of sharing
2.2.3 The problem of timing
2.2.4 The role of abstraction

2.3 Bottom up: the problems of scalability
2.3.1 Cachecoherence
2.3.2 The foundation of interaction: consensus . .

2.4 The rudiments of scalable concurrency: performance .
2.4.1 Fine-grained locking
2.4.2 Optimistic concurrency
2.4.3 Linked data structures
2.4.4 Backoftf
2.4.5 Helping and elimination
2.4.6 Synchronization and dual data structures . .

2.5 The rudiments of scalable concurrency: correctness

2.5.1 Safety: linearizability
2.5.2 Liveness: nonblocking progress properties

UNDERSTANDING SCALABLE CONCURRENCY

A CALCULUS FOR SCALABLE CONCURRENCY

3.1

3.2
3.3
3.4

Thecalculus.
3.11 Syntax o
3.1.2 Typing
3.1.3 Operational semantics
The memory consistencymodel
Contextual refinement.
Observable atomicity
3.4.1 The problem with atomic blocks

®° N i bW W

10
1
1
12
14
14
15
18
21
23
25
26
29
31
31
32
34
36
36
37
39
40
41

43
45
45
47
48
48
50
52
53
54

xi

Xii CONTENTS

4 LOCAL PROTOCOLS

4.1

4.2

4.3
4.4
4.5

3.4.2 Refinement versus linearizability
Overview
4.1.1 The state transition system approach
4.1.2 Scaling to scalable concurrency
4.1.3 A note on drawing transition systems

Spatial locality via local life stories

4.2.1 A closer look at linking: Michael and Scott’s

QUEUE . . v vt
4.2.2 Thestoryofanode
Role-playing viatokens
Thread locality via specifications-as-resources
Temporal locality via speculation

5 A LOGIC FOR LOCAL PROTOCOLS

5.1
5.2

53

5.4

5.5

5.6

Overview e
Assertions e
5.2.1 Characterizing the implementation heap

5.2.2 Characterizing implementation code
5.2.3 Characterizing (protocols on) shared resources
5.2.4 Characterizing refinement and spec resources
5.2.5 The remaining miscellany
Semantic structures
5.3.1 Resources
5.3.2 Islands and possible worlds
5.3.3 Environments
5.3.4 Protocol conformance
5.3.5 World satisfaction.
Semantics e
5.4.1 Resources, protocols, and connectives
5.4.2 Reflnement.
5.4.3 Hoare triples and threadpool simulation . . .
Basic reasoning principles
5.5.1 Hypothetical reasoning and basic logical rules
5.5.2 Reasoning about programs: an overview . . .
5.5.3 Reasoning about refinement
5.5.4 Concurrent Hoarelogic
5.5.5 Atomic Hoarelogic
5.5.6 Reasoning about specification code
5.5.7 Reasoning about recursion
5.5.8 Derived rules for pure expressions
Metatheory
5.6.1 Soundness for refinement
5.6.2 Lemmas for threadpool simulation

6 EXAMPLE PROOFS

6.1

Proofoutlines.

55
59

59
60

62
63
64

64
65
69
70
73
77
77
79
79
79

79
80

81
81
81
82
83
83
85
86
86
87
88
89
90
90
92
92
95
96
97
97
98
98
929
101
101

III

6.2

6.3

6.4
6.5

6.6

Warmup: concurrent counters

6.2.1
6.2.2

Theprotocol
Theproof.

Warmup: late versus early choice.

Elimination: red flags versus blue flags

Michael and Scottsqueue

6.5.1 Theprotocol
6.5.2 Spatial locality
6.5.3 Theproofienq
6.5.4 Theproofideq
Conditional CAS
6.6.1 Theprotocol
6.6.2 Theproof.....................

RELATED WORK: UNDERSTANDING CONCURRENCY

7.1

7.2

73

7.4
75

7.6

High-level language

7.1.1 Representation independence and data abstrac-
tion
7.1.2 Localstate
7.1.3 Shared-state concurrency
Direct refinement proofs
7.2.1 Linearizability
7.2.2 Denotational techniques
7.2.3 RGSim
Localprotocols
7.3.1 The hindsight approach
7.3.2 Concurrent abstract predicates
7.3.3 Views and other fictions of separation
Role-playing
Cooperation
7.5.1 RGSep
7.5.2 RGSim
7.5.3 Reduction techniques
Nondeterminism
7.6.1 The linear time/branching time spectrum . .
7.6.2 Forward, backward, and hybrid simulation .

EXPRESSING SCALABLE CONCURRENCY

JOIN PATTERNS

8.1
8.2
8.3

OVverview o i i e

The join calculus and Russos API

Solving synchronization problems with joins

IMPLEMENTING JOIN PATTERNS

9.1

Overview i
9.1.1 Theproblem
9.1.2 Ourapproach

102
103
103
107
108
112
112
114
116
117
120
120
122
127
127

127
128
129
130
130
131
131
131
131
132
133
134
134
134
135
135
137
137
138

139
141
141
143
144
149
149
149
150

CONTENTS

xiii

Xiv CONTENTS

10

11

9.2 Representation,
9.3 The core algorithm: resolving a message
9.4 Sending a message: firing, blocking and rendezvous
9.5 Keyoptimizations
9.5.1 Lazy message creation
9.5.2 Specialized channel representation
9.5.3 Message stealing.
9.6 Pragmaticsand extensions
9.7 COrrectness v v v v v vttt e
9.8 Performance
9.8.1 Methodology
9.8.2 Benchmarks
9.8.3 Analysis,
REAGENTS
100 Overview
10.1.1 Isolation versus interaction
10..2 Disjunction versus conjunction
10.1.3 Activity versus passivity
10.2 The high-level combinators
1021 Atomic updatesonRefs
10.2.2 Synchronization: interaction within a reaction
10.2.3 Disjunction of reagents: choice
10.2.4 Conjunction of reagents: sequencing and pair-
ing ...
10.2.5 Catalysts: passive reagents
10.2.6 Post-commitactions
10.3 Translating join patterns
10.4 Atomicity guarantees
10.5 Low-level and computational combinators
10,51 Computedreagents
10.5.2 Shared state: readandcas
1053 Tentativereagents
10.6 The Michael-Scottqueue

IMPLEMENTING REAGENTS

11.1
11.2
11.3
11.4
11.5

11.6

Overview i i i e

Offers

The entry point: reacting

The exit point: committing

The combinators

11.5.1
11.5.2
11.5.3
11.5.4
11.5.5

Catalysis

Sharedstate
Messagepassing L.
Disjunction: choice
Conjunction: pairing and sequencing

Computational reagents

151
153
156
159

160

160
161
165
165
167
167
170
172
175
175
176
177
177
178
178
180
181

183
184
186
186
187
188
188
188
189
189
193
193
195
195
197
198
198
199
202
202
203
204

1.7 Performance

11.7.1
11.7.2

Methodology and benchmarks
Analysis

12 RELATED WORK: EXPRESSING CONCURRENCY

121 Composable concurrency

12.1.1
12.1.2
12.1.3
12.1.4

Concurrent ML
Software transactional memory
Transactions that communicate
Composing scalable concurrent data structures

122 Join calculus implementations

12.2.1
12.2.2
12.2.3

Lock-based implementations
STM-based implementations
Languages versus libraries

12.3 Scalable synchronization

12.3.1
12.3.2

IV EPILOGUE

13 CONCLUSION

Coordination in java.util.concurrent
Dual data structures

131 Lookingback

13.2 Lookingahead

13.2.1
13.2.2
13.2.3

REFERENCES

Understanding scalable concurrency
Expressing scalable concurrency
Crossing the streams

V TECHNICAL APPENDIX

A REFERENCE: THE F/,, CALCULUS

B REFERENCE: THE LOGIC OF LOCAL PROTOCOLS

C METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

c1 Basic properties of the logic of local protocols

c.2 Soundness of Hoare-style reasoning

C.2.1
C.2.2

Constructions with Threadpool Triples
Soundness of key inference rules

c.3 Soundness of refinement reasoning

Cc.3.1
Cc.3.2

Congruence
May-refinement

D REFERENCE: THE JOINS LIBRARY API

REFERENCE: THE REAGENTS LIBRARY API

204
204
206
209
209
209
210
211
212
213
213
214
215
216
216
216

219
221
221
222
222
223
224

225

243
245
249
255
255
256
256
262
266
266
276
277
281

CONTENTS

XV

List of Figures

Figure 3.1 F. syntaX. 46
Figure 3.2 Fhstyping. i 49
Figure 3.3 FE, primitive reductions 49
Figure 4.1 A simplified variant of Michael and Scott (1998)’s
lock-freequeue L. 64
Figure 4.2 A coarse-grained queue 66
Figure 4.3 A protocol for each node of the Michael-Scott
queue—one per possible memory location. . 66
Figure 4.4 Interpreting the lifted, global protocol 68
Figure 4.5 Red flags versus blueflags 71
Figure 5.1 Syntax of assertions 78
Figure 5.2 Resources and their composition 81
Figure 5.3 Islandsandworlds 82
Figure 5.4 Protocol conformance 84
Figure 5.5 The semantics of resource and protocol assertions,
and the connectives 86
Figure 5.6 The semantics of value refinement 87
Figure 5.7 The semantics of expression refinement 88
Figure 5.8 Threadpool simulation 89
Figure 5.9 The basic logicallaws 91
Figure 5.10 Introduction rules for value refinement 93
Figure 5.11 Concurrent Hoarelogic 94
Figure 5.12 Atomic Hoarelogic 96
Figure 5.13 Key, low-level lemmas for soundness 99
Figure 6.1 A proof outline forincBody, 105
Figure 6.2 Proof outline for refinement of earlyChoice by
lateChoice 107
Figure 6.3 Red flags versus blueflags 108
Figure 6.4 Proof outline forredFlag 109
Figure 6.5 Thequeues 112
Figure 6.6 The protocol for MSQ 113
Figure 6.7 Proofforeng 115
Figure 6.8 Proof outlinefordeq. 117
Figure 6.9 Conditional increment, a simplification of CCAS 119
Figure 6.10 Proof outline forcinc 124
Figure 8.1 Dining Philosophers, declaratively. 142
Figure 9.1 Per-message protocol 151

XVi

Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6

Figure 9.7
Figure 9.8
Figure 9.9

Figure 9.10
Figure 9.11

Figure 101
Figure 10.2
Figure 10.3
Figure 10.4

Figure 111
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 12.1

Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5
Figure A.6
Figure A.7
Figure A.8

Figure B.1
Figure B.2

Interfaces to the key data structures
Resolvingamessage
Racing to claim a chord involvingmsg
Sendingamessage
Claiming a “PENDING” asynchronous message on a
void channel represented using counters . . .
Per-message protocol, revised to support steal-
ing
Sending an asynchronous message, as revised to
supportstealing
Sending a synchronous message while coping with
stealing o L
Speedup on simulated fine-grained workloads
Pure synchronization performance

The high-level reagent API (in Scala)
Treiber’s stack, using reagents
The low-level and computational combinators
The Michael-Scott queue, using reagents . . .

The ! method, defined in Reagent[A,B]
ThecAsclass
TheSwapclass.
Arrow-style lifting into product types
Theliftclass.
The Computedclass
Benchmark results for stacks
Benchmark results for queues

Comparison with Haskell-STM implementations
on 48-core machine. Note log scale.

Syntax of values and expressions
Syntaxoftypes
Typingrules.
Executionsyntax
Operational semantics
Pure reductions
Contextual refinement
Derivedforms

Syntax of assertions
Semantic structures and operations on them .

152
155
156
158

161

162

163

164
168
169

178
179
188
190

196
199
201
203
203
204
205
206

214

245
246
246
247
247
248
248
248

249
250

CONTENTS

xvii

Part I

PROLOGUE

1.1

Overview

CONCURRENCY AND PARALLELISM ARE DISTINCT, and dealing with one with-
out the other is preferable whenever it is possible. But sometimes concurrent
programs must take advantage of parallel hardware. Sometimes achieving
parallelism requires explicit concurrent programming. And, nearly always,
the implementation of libraries (or languages) for parallelism demands careful
cache-conscious concurrent programming—the very kind of programming
these libraries enable application programmers to avoid.

The intersection of concurrency and parallelism is “scalable concurrency;’
in which concurrent algorithms are designed to scale gracefully with available
parallelism—in some cases by increasing throughput, and in others by merely
avoiding parallel slowdown.

A good example is the ubiquitous hashtable. To use a sequential hashtable
in a concurrent setting, it suffices to introduce a single lock, and to surround
every operation with an acquisition and release of that lock. Global locking
provides exclusive access for the duration of each operation, forcing concur-
rent operations to take place in some nonoverlapping sequence. Itis a tidy way
to manage concurrency, but a disaster for parallelism. A scalable concurrent
hashtable, by contrast, will allow operations from multiple processes to pro-
ceed in parallel (and hence concurrently), so long as those operations work
on distinct keys of the table, or otherwise do not semantically interfere. There
are a variety of strategies for scalability, ranging from fine-grained locking to
lock-free algorithms, but they all have one thing in common: they increase
concurrency purely for the sake of parallelism. In the end, a scalable hashtable
should externally behave just like one protected by a lock, but internally it
should encourage as much concurrency as it can get away with.

In addition to fully embracing concurrency, scalability requires attention
to the architectural details of parallelism—especially the memory subsystem.
Injecting concurrency sometimes entails additional, fine-grained coordina-
tion, which in turn requires cross-core (or worse, cross-socket) memory
traffic. Just a few trips on the memory bus can dwarf the gains gotten from
parallel processing.

THE PROBLEM

Asking application programmers to grapple with scalability without suc-
cumbing to concurrency bugs is a tall order, so the proliferation of spe-

“If we believe in data structures, we must
believe in independent (hence simultaneous)
processing. For why else would we collect
items within a structure? Why do we tolerate
languages that give us the one without the
other?”

—Alan J. Perlis, “Epigrams on
programming,” #68

http://dx.doi.org/10.1145/947955.1083808
http://dx.doi.org/10.1145/947955.1083808

1.2

4 OVERVIEW

cialized libraries of concurrency primitives is unsurprising. For example,
java.util.concurrent' (JUC) contains a rich collection of carefully engineered
classes, including various kinds of locks, barriers, semaphores, count-down
latches, condition variables, exchangers and futures, together with nonblock-
ing collections like queues, skiplists, and hashtables. Several of these classes
led to research publications.” A Java programmer faced with a concurrency
problem covered by the library is therefore in great shape. (Intel’s Threading
Building Blocks (TBB)3 provides similar benefits to C++ programmers.)

But to paraphrase Perlis,* a library with ten concurrency primitives is
probably missing some.

Indeed, because libraries like JUC and TBB are such an enormous un-
dertaking, they are inherently conservative. They implement only those
data structures and primitives that are well understood and likely to fulfill
common needs. Unfortunately, a client whose needs are not well-matched
to the library is back to square one: it is generally not possible to extend or
combine the primitives of a library into new primitives with similar scalability
and atomicity properties.

For example, while JUC provides queues, sets and maps, it does not
provide stacks or bags, and it would be very difficult to build scalable versions
of the latter on top of the former. JUC’s queues come in both blocking and non-
blocking varieties, while its sets and maps are nonblocking only—and there is
no way for users to extend or tailor the library to provide additional blocking
support. Although the queues provide atomic (thread-safe) dequeuing and
sets provide atomic insertion, it is not possible to combine these into a single
atomic operation that moves an element from a queue into a set.

MY THESIS

The goal of this dissertation is to improve the above state of affairs along
two axes. First, by deepening our understanding of sophisticated scalable
algorithms, isolating their essence and thus reducing the barrier to building
new ones. Second, by developing new ways of expressing scalable algorithms
that are abstract, declarative, and user-extensible.

To that end, the dissertation demonstrates two claims:

A. Scalable algorithms can be understood through linked protocols govern-
ing each part of their state, which enables verification that is local in space,
time, and thread execution.

B. Scalable algorithms can be expressed through a mixture of shared-state
and message-passing combinators, which enables extension by clients
without imposing prohibitive overhead.

We elaborate on each claim in turn.

'Doug Lea, http://gee.cs.oswego.edu/dl/
concurrency-interest/

* Lea (2000); William N. Scherer, III et al.
(2006); William N. Scherer, III et al. (2005);
Lea (2005)
3http://threadingbuildingblocks.org/

* Epigram #11

“Sometimes a scream is better than a thesis.”

—Ralph Waldo Emerson

http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://threadingbuildingblocks.org/

1.2.1

Understanding scalable concurrency

Scalable concurrent algorithms abandon global locks in a quest for greater
parallelism, a choice that fundamentally alters algorithm design: it is no
longer possible to acquire and manipulate a consistent global view of data.
Instead, algorithms must work locally, observing and modifying small parts
of a data structure while maintaining consistency at all times. In other words,
concurrent interaction happens at a very fine grain in both time and space.

Our approach is to understand scalable algorithms on their own terms:
we think of each piece of the data structure (e.g., each node of a linked list)
as being subject to a protocol that tells its “life story”—how it came to be
allocated, how its contents evolve over time, and how it eventually “dies”
by being disconnected (or deleted) from the data structure. These protocols
work at the same granularity of interaction as the algorithms do.

Just as separate parts of a data structure are linked together through
pointers, local protocols can be linked together by placing constraints on
their neighboring protocols. In the limit, local protocols and constraints can
capture ostensibly global properties like reachability, even in the presence of
fine-grained concurrent interaction. It thus becomes possible to explain algo-
rithms that traverse a data structure while it concurrently changes underfoot:
as the traversal proceeds concretely from one node to the next, it proceeds
abstractly from one local protocol to another, each time using the knowledge
it has obtained in one protocol to yield constraints on the next.

Using protocols, the correctness of an algorithm can be shown by consid-
ering a single, generic execution of its code, where:

e Concurrent threads are modeled abstractly through the protocol (thread
locality);

o The execution is understood one step at a time, without the need to refer
directly to past or future events (temporal locality);

e Each step is understood in terms of the protocol governing the portion of
the state it interacts with (spatial locality).

Retaining these forms of locality is particularly difficult for algorithms involv-
ing cooperation® or multiple, semantically-connected races; we develop novel
semantic techniques for doing so in Chapter 4.

The dissertation includes both formal and practical validation of protocols.

FORMAL VALIDATION comes in the form of a semantic model,’ based on
protocols, that is sound for contextual refinement, showing that no client can
tell they are working with the scalable version of an algorithm instead of
one based on coarse-grained locks.” Thus, clients can safely reason about a
scalable library as if all access to it were sequentialized, while at the same time
reaping the efficiency benefits of scalability. The model is the first to support
direct assertions and proofs of refinement for scalable concurrency.® It is also

MY THESIS 5

“If the data structure can’t be explained on a

beer coaster, it’s too complex.”

—Felix von Leitner, “Source Code
Optimization”

>For example, algorithms wherein one
thread can complete an operation on behalf
of another; see §2.4.5.

¢ Or, viewed differently, a logic.

7 Modulo performance gains, of course.

8 A few prior logics have been shown sound
for the related property of linearizability; see
§3.3 and Chapter 7 for further discussion.

http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

1.2.2

6 OVERVIEW

the first model to consider such algorithms in the context of a high-level
language, i.e., one with higher-order functions, abstract and recursive types,
and general (higher-order) mutable references. Of course, JUC is written in
just such a high-level language—Java—and indeed depends on the abstraction
facilities of Java to ensure that the private state of its data structures is hidden
from clients.

PRACTICAL VALIDATION comes in the form of several worked examples
exhibiting several dimensions of complexity found in scalable concurrent
algorithms.

Expressing scalable concurrency

The most basic unit of abstraction in most languages—the function®—does
not support the full range of composition needed in a concurrent setting. For
example, the functions exported by JUC and TBB execute “atomically” in
the sense described above, but clients cannot combine them to build larger
atomic functions.

A common workaround with coarse-grained locking is to partially break
the abstraction by exposing the internal, global lock—a technique that allows
clients to combine critical sections but introduces the danger of deadlock.
With scalable concurrency, such a tradeoft is not even possible: fine-grained
locks can only be exported by giving up on abstraction altogether (and
exposing all implementation details), and with lock-free data structures there
is no lock to export!

Another technique for composing atomicity is software transactional
memory (STM).'° But this technique, too, is a non-starter for scalable concur-
rency: STM works by ensuring that all reads and writes in an atomic block are
performed atomically, but the whole point of scalable algorithms is to cleverly
avoid or minimize such checks."

And anyway, atomicity is just the beginning: some situations call for the
choice between two operations, such as receiving a message along either of
two channels; others demand layering a blocking interface over a nonblock-
ing abstraction; still others require incorporating timeouts or cancellation.

This dissertation presents two extensible, yet scalable concurrency libraries.

THE FIRST LIBRARY is based on Fournet and Gonthier (1996)’s join patterns,
which specify that messages should be received along some set of channels
simultaneously and atomically. It has long been known that join patterns
provide an elegant way to solve synchronization problems: one merely de-
scribes the problem declaratively, in terms of channels and joins, and the
implementation of join patterns does the rest. But existing implementations
of join patterns have all used either locks or STM, and so none are suitable
for scalable synchronization. We develop a new, lockless implementation
that achieves scalability on par with custom-built synchronization primi-

“I'regard it as the highest goal of programming
language design to enable good ideas to be
elegantly expressed.”

—C.A.R. Hoare

° Or equivalently, object with methods.

** Shavit and Touitou (1995), “Software
transactional memory”

" There are some relaxations of STM that
would allow avoiding atomicity checks, but
they must be explicitly programmed to do
s0; see Chapter 12.

http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987

tives by processing messages in parallel (and thereby avoiding centralized
contention). The implementation (1) stores messages in lock-free data struc-
tures'* for parallelism, (2) treats messages as resources that threads can race
to take possession of, (3) avoids enqueuing messages when possible, and (4)
allows message stealing (“barging”). The result: clients of the scalable joins
library can express arbitrary new synchronization problems, declaratively,
and the library will automatically derive a correct and scalable solution.

THE SECOND LIBRARY is based on reagents, a new monadic abstraction
designed for expressing scalable concurrent algorithms in a higher-level,
composable style. Reagents blend together synchronous communication
through message passing and atomic updates to shared state. Unlike STM,
only explicitly marked updates are guaranteed to be atomic; other reads and
writes are considered “invisible” to the reagent. Through this mechanism, an
expert can faithfully express a scalable concurrent algorithm as a reagent, with
the guarantee that no overhead will be introduced. But what is the benefit?

Because the reagent implementation explicitly marks the key atomic up-
date(s) for an algorithm, it becomes possible to join two reagents into a larger
one that executes both of their algorithms as a single atomic step—much as
with join patterns. The invisible reads and writes of the algorithms remain
invisible; only their key atomic updates are joined.'

In addition to joins, reagents can be composed through atomic sequencing
and choice. Using these operators, clients can extend and tailor concurrency
primitives without knowledge of the underlying algorithms. For example, if
a reagent provides only a nonblocking version of an operation like dequeue,
a user can easily tailor it to a version that blocks if the queue is empty; this
extension will work regardless of how dequeue is defined, and will continue to
work even if the dequeue implementation is changed. Composability is also
useful to algorithm designers, since many sophisticated algorithms can be
expressed as compositions of simpler ones.'

In principle, then, reagents offer a strictly better situation than with current
libraries: when used to express the algorithms provided by current libraries,
reagents provide a higher level of abstraction yet impose negligible overhead;
nothing is lost. But unlike with current libraries, the algorithms can then be
extended, tailored, and combined by their users. Extra costs are only paid
when the new compositions are used.

We demonstrate the expressiveness of each library by using it to build a range
of example concurrency primitives, and scalability by subjecting these exam-
ples to a series of benchmarks comparing them to hand-written counterparts,
as found in the scalable concurrency literature.

MY THESIS 7

> See §2.5.2.

¥ Upcoming hardware provides direct sup-
port for such “tiny transactions” By permit-
ting invisible operations, reagents are better
positioned to take advantage of this hard-
ware support than STM is.

* See §10.2.3, §10.2.4.

1.3

8 OVERVIEW

ORGANIZATION

Chapter 2 provides the technical background and philosophical perspective
that informs the rest of the dissertation. It defines concurrency and paral-
lelism (§2.1), and then examines both concepts from several angles. It begins
with an abstract and high-level account of concurrent programming that
completely ignores parallelism ($2.2), teasing out two fundamental concerns
that must be faced in any concurrent program: sharing and timing. After
that, it jumps to the bottom layer of abstraction, and considers the architec-
tural details affecting parallel programming ($2.3). These two perspectives
come together in the final two sections, which explore common techniques
for both building scalable concurrent algorithms (§2.4) and assessing their
correctness (§2.5).

The rest of the dissertation is broken into two largely independent parts:

UNDERSTANDING SCALABLE CONCURRENCY

Chapter 3 formalizes a calculus, Fls,, which is a variant of the polymorphic
lambda calculus extended with mutable references, cas and fork—the
essential features needed to model scalable concurrent algorithms written
in a high-level language. The chapter defines and discusses a memory
consistency model (§3.2), refinement (§3.3), and atomicity ($3.4), in par-
ticular contrasting linearizability and refinement (§3.4.2). Some auxiliary
technical details appear in Appendix A.

Chapter 4 introduces local protocols and develops, through examples, the
key ideas we use to handle scalable algorithms: role playing via to-
kens ($4.3), spatial locality via local life stories (§4.2), thread locality via
specification resources (§4.4), and temporal locality via speculation ($4.5).

Chapter 5 defines the syntax (§5.2) and semantics (§5.3 and §5.4) of alogic for
refinement based on local protocols. The logic ties together a Kripke logical
relation (traditionally used for showing refinement of one program by
another) with Hoare triples (traditionally used for reasoning about a single
program). The chapter sketches some proof theory for the logic ($5.5)
and outlines a proof of soundness for refinement ($5.6). The full logic is
summarized in Appendix B, and detailed proofs are given in Appendix C.

Chapter 6 exercises the logic of local protocols on a series of realistic ex-
amples employing several sophisticated techniques for scalability: elimi-
nation backoft (§6.4), lock-free traversal (§6.5), and helping (§6.6).

Chapter 7 discusses work related to local protocols and our semantic model.

EXPRESSING SCALABLE CONCURRENCY

Chapter 8 introduces join patterns and Russo (2007)’s joins API for Ct.
It shows how join patterns can solve a wide range of synchronization

“TL;DR”

—The Internet

ORGANIZATION 9

problems, including many of the problems solved by JUC’s primitives." 5 Our versions lack some features of the
The full API is given in Appendix D. real library, such as timeouts and cancella-
& PP tion, but these should be straightforward to

Chapter 9 walks through the implementation of scalable join patterns, in- add (89.6).

cluding excerpts of the core ct library code ($9.3 and §9.4) and optimiza-
tions (§9.5). It validates our scalability claims experimentally on seven
different coordination problems ($9.8). For each coordination problem
we evaluate a joins-based implementation running in both Russo’s lock-
based library and our new scalable library, and compare these results to
the performance of direct, custom-built solutions. In all cases, the new
library scales significantly better than Russos, and competitively with—
sometimes better than—the custom-built solutions, though it suffers from

higher constant-time overheads in some cases.

Chapter 10 presents the design of reagents, both in terms of philosophical
rationale ($10.1) and as motivated by a series of examples ($10.2, §10.5). The
chapter shows in particular how to write all of the algorithms described
in Chapter 2 concisely and at a higher-than-usual level of abstraction. It
also demonstrates how the join calculus can be faithfully embedded into
the reagent combinators ($10.3). The full API is given in Appendix E.

Chapter 11 walks through the implementation of reagents (in Scala) in sig-
nificant detail, which reveals the extent to which reagents turn patterns
of scalable concurrency into a general algorithmic framework. It includes
benchmarking results comparing multiple reagent-based collections to
their hand-written counterparts, as well as to lock-based and STM-based
implementations. Reagents perform universally better than the lock- and
STM-based implementations, and are competitive with hand-written lock-

free implementations.

Chapter 12 discusses work related to scalable join patterns and reagents.

Finally, the dissertation concludes with Chapter 13, which summarizes the
contributions and raises several additional research questions.

1.4

10 OVERVIEW

PREVIOUSLY PUBLISHED MATERIAL

This dissertation draws heavily on the earlier work and writing in the follow-
ing papers, written jointly with several collaborators:

e Turon and Wand (2011). A separation logic for refining concurrent objects.
In proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL)

e Turon, Thamsborg, Ahmed, Birkedal, and Dreyer (2013). Logical rela-
tions for fine-grained concurrency. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL)

e Turon and Russo (2011). Scalable Join Patterns. In proceedings of the
ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA)

e Turon (2012). Reagents. In proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI)

http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/2048066.2048111
http://dx.doi.org/10.1145/2254064.2254084

2.1

Concurrency meets parallelism

Synopsis This chapter provides the technical background and philosophi-
cal perspective that informs the rest of the dissertation. It defines concurrency
and parallelism (§2.1), and then examines both concepts from several angles.
It begins with an abstract and high-level account of concurrent programming
that completely ignores parallelism ($2.2), teasing out two fundamental con-
cerns that must be faced in any concurrent program: sharing and timing.
After that, it jumps to the bottom layer of abstraction, and considers the archi-
tectural details affecting parallel programming ($2.3). These two perspectives
come together in the final two sections, which explore common techniques
for both building scalable concurrent algorithms (§2.4) and assessing their
correctness (§2.5).

CONCURRENCY IS NOT PARALLELISM

Scalable concurrency sits at the intersection of concurrency and parallelism,
so it is best understood by first clarifying their relationship. The two concepts
are distinct, and neither subsumes the other:’

Concurrency is the overlapped execution of processes.

Parallelism is the simultaneous execution of computations.

“Process™ here is meant broadly as a source of activity within a system,
encompassing multiple threads of control in a single program, separate
programs as managed by an operating system, and even external devices
and human users. These processes are independent in that they do not exert
direct control over each other, but instead interact through a shared medium,
e.g, shared memory or channels. Processes are concurrent when their ac-
tivities (“executions”) overlap in time, and can hence influence each other.
Overlapped execution does not entail simultaneous execution. Concurrency
can, for example, be implemented by preemptive scheduling onto a single
processor, which interleaves the executions of the processes into a single
sequence of actions.

Parallelism, by contrast, requires simultaneous execution by definition—
but of “computations” rather than processes. Computations are, loosely, what
processes do. Thus, even in the straightline assembly code

rl <- add(r2, r3)
rd <- mul(r2, r5)

“The moral of the story was that, essentially
for the sake of efficiency, concurrency should
become somewhat visible. It became so, and
then, all hell broke loose.”

—Edsger W. Dijkstra, “EWD 1303: My
recollections of operating system design”

' This definition and the following discus-
sion draws inspiration from several sources,
old and new: Brinch Hansen (1973); Reppy
(1992); Pike (2012); Harper (2011).

> We will use the word “thread” as a (pre-
ferred) synonym throughout.

Interleaving the execution of threads onto a
single processor is sometimes called multi-
programming or multitasking.

11

http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html

2.1.1

12 CONCURRENCY MEETS PARALLELISM

there is an opportunity for instruction-level parallelism, one that is aggres-
sively realized by superscalar processors with redundant arithmetic logic
units (ALUs). This pervasive source of parallelism within a process is wholly
independent from concurrency between processes—at least from the pro-
grammer’s perspective. Of course, if one computation depends on the result
of another, they cannot be run in parallel, so the potential for parallelism is
limited by the longest chain of sequential dependencies, which is called the
depth (or critical path length) of the computation.?

Concurrency is a system-structuring mechanism. An interactive system
that deals with disparate asynchronous events is naturally structured by
division into concurrent threads with disparate responsibilities. Doing so
creates a better fit between problem and solution, and can also decrease the
average latency of the system by preventing long-running computations from
obstructing quicker ones.

Parallelism is a resource. A given machine provides a certain capacity for
parallelism, i.e., a bound on the number of computations it can perform
simultaneously. The goal is to maximize throughput by intelligently using this
resource. For interactive systems, parallelism can decrease latency as well.

Parallelism always involves concurrency, but this fact may be profitably
hidden behind an abstraction. For example, even the assembly language
used in the snippet above is an abstraction of an underlying machine whose
execution is both parallel and concurrent. The ALUs, control units, and other
components of the machine are fixed, independent processes whose job it is
to actually implement the machine’s language. This is an example of implicit
parallelism, in which an apparently sequential program is executed in parallel
by communicating concurrent processes.

Conversely, concurrency can involve parallelism: the threads of an ex-
plicitly concurrent program may be executed in parallel.# The threads may
originate naturally from the structure of the problem, as a reflection of
independent problems, resources, or external processes. Alternatively, they
may arise through explicit parallelism, where concurrent processes are used
to directly control parallel resources.

Scalable concurrency

Whichever way concurrency and parallelism are mixed, a fundamental
question arises: how can concurrent threads coordinate in a way that takes
advantage of—or at least does not needlessly tie up—parallel hardware? In
other words, how can we build concurrency constructs that scale with the
number of parallel processing units?

To see the relevance and importance of this question, consider one of the
most widely-used data structures in programming practice: the hashtable. If
concurrent threads share access to a single hashtable, its implementation must
guarantee that the threads do not interfere by, say, inadvertently overwriting
each other’s changes to an entry. From the point of view of concurrency alone,

L 2 s 2 > 2
Integer/ Integer/ FP Integer!
MMX ALU, MMX MUL MMX ALU,
Branch ALU b 2x AGU

SSE SSE SSE
ADD ADD MUL/DIV
Move Move Move

I128 I128 1128

Excerpt, Intel Nehalem per-core
microarchitecture; note the redundant
ALUs. http://en.wikipedia.org/wiki/
Nehalem_(microarchitecture)

? Blelloch (1996), “Programming parallel
algorithms”

A machine supporting programmable, par-
allel execution is called a multiprocessor.

“The point is that concurrency is not relevant
to parallelism, even if the engineers who build
our parallel computing platforms must deal
with concurrency. Another way to say the
same thing is that parallelism is a useful ab-
straction, and abstractions should never be
confused with their implementations.”

—Robert Harper, “Parallelism is not
concurrency”

4The validity of a parallel execution strat-
egy is actually quite subtle, since the shared
memory model of parallel processors with
independent caches is much weaker than
the straightforward (but naive) model one
imagines for concurrent programming. Re-
cent language standards take this into ac-
count by weakening their model of concur-
rent shared memory (Manson et al. 2005;
Batty et al. 2011; Boehm and Adve 2008).

http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://dx.doi.org/10.1145/227234.227246
http://dx.doi.org/10.1145/227234.227246
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/

CONCURRENCY IS NOT PARALLELISM 13

it suffices to protect the hashtable with a single global lock, thereby providing
each thread temporary but exclusive access for the duration of a read or write
to the table. But such a solution fails to scale on even moderately parallel
machines. The problem is not just the time spent waiting for the lock to be
released, but that (for a “popular” hashtable) it takes a cache miss just to
determine whether the lock is available.’

The Linux kernel uses a global hashtable called the dcache (directory
entry cache) to drastically speed up pathname lookup. Prior to version 2.6
of the kernel,® concurrent access to this hashtable was mediated by a single
global lock. Switching to a more scalable concurrent hashtable without global
locking provided a 12% increase in overall system throughput on a machine
with 16 CPUs, as measured by the SPECwEB99 benchmark.” Thus a single
lock in a single data structure turned out to be a massive scalability bottleneck
for an entire OS kernel.

Hashtables exhibit “natural parallelism”: concurrent threads are likely to
access disjoint parts of the table, in which case their operations commute—
and there is no intrinsic reason for them to coordinate such actions.® Never-
theless, because some hashtable operations do not commute, expensive syn-
chronization is unavoidable in general.® A scalable hashtable must balance
between these scenarios, avoiding synchronization where possible, but with-
out sacrificing too much absolute performance in comparison to an efficient
sequential implementation. Achieving the right balance is often a matter of
choosing the right battles; since hashtable lookup is far more common than
update, the biggest scalability gains come from enabling parallel reads with
zero coordination. We examine the relevant algorithmic techniques in §2.4.

A scalable hashtable is useful not just for concurrent systems; it can also be
a boon for explicit parallel programming. A simple but vivid example is the
problem of duplicate removal: given a vector of items, return the items in any
order, but without any duplicates.'® Since the input is unstructured, any way
of dividing it amongst parallel threads appears to require global coordination
to discover duplicate items. The key to avoiding a multiprocessor game of
“Go Fish” is to focus on producing the output rather than dividing the input.
If threads share a scalable hashtable that allows parallel insertion of distinct
elements, they can construct the correct output with (on average) very little
coordination, by simply each inserting a segment of the input into the table,
one element at a time.

Scalable concurrent data structures are also crucial for implicit parallel
programming. The data structures are not used directly by the application
(which is written sequentially), but are instead used by the runtime system
to manage the work produced by the application, dynamically balancing it
between the available processors. Work balancing can easily become a bottle-
neck, erasing the gains from parallelism, so implementations generally use
scalable concurrent dequeues to implement strategies like “work stealing”"

IN SHORT, scalable concurrency is indispensable for a wide array of con-
current and parallel programming problems.

> We examine this point in much greater
detail in §2.3.

¢ According to www.kernel.org, Linux 2.6.0
was released in December 2003.

7 McKenney et al. (2004), “Scaling dcache
with RCU”

® Herlihy and Shavit (2008), “The Art of
Multiprocessor Programming”

° Attiya et al. (2011), “Laws of order”

*° Blelloch et al. (2012), “Internally
deterministic parallel algorithms can
be fast”

" Blumofe et al. (1996), “Cilk: An efficient
multithreaded runtime system”

www.kernel.org
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1006/jpdc.1996.0107

2.1.2

2.2

14 CONCURRENCY MEETS PARALLELISM

What scalable concurrency is not

Lest we oversell scalability, however, it is important to keep a basic principle
in mind:

The fastest way to communicate is to not communicate at all.

Many concurrent and/or parallel systems can be structured to avoid commu-
nication, or to communicate in only highly structured ways. Doing so is al-
most always a win, both in terms of performance and in terms of correctness.
So scalable concurrency should only be applied to handle situations where
communication or coordination is difficult or impossible to avoid.

Of course, as scalable algorithms evolve, so do the tradeoffs. For example,
the duplicate removal algorithm described above is a fast and “obviously
correct” implementation, but is made possible only by taking for granted the
availability of a sophisticated scalable data structure: the hashtable. Building a
parallel implementation of duplicate removal from scratch (while minimizing
communication) would take significant ingenuity. As usual, one should use
the right tool for the job.

We will not address the question of where and when to use scalable con-
currency in application- or systems-level programming. As we have argued
above, it is clear that it has some role to play in many different kinds of
programming, and our goal is to better understand and express scalable
concurrent algorithms when they arise.

TOP DOWN: THE PROBLEMS OF CONCURRENCY

Concurrency has long resisted treatment by a definitive computational or
linguistic formalism; there is no agreed-upon analog to Turing machines or
the lambda calculus for concurrent programming. One reason for this state
of affairs is the typical division of concurrent programming into two warring
paradigms, shared state and message passing, for governing thread interaction:

o IN THE SHARED STATE MODEL, threads interact by inspecting and altering
shared, external resources.

o IN THE MESSAGE PASSING MODEL, threads interact by exchanging messages
at explicitly-controlled times.

We are ultimately going to argue that this division is a false dichotomy—both
semantically (in this chapter) and practically (in Chapter 10).

The most knock-down semantic argument is a simple one: almost any
incarnation of one of the paradigms can easily encode'* almost any incar-
nation of the other. The most sophisticated encodings produce idiomatic
programs in either paradigm, and therefore transport common pitfalls from
one paradigm into the other.”® These encodings demonstrate that, at least for
particular incarnations, the two paradigms are co-expressive. Thus from a

PARADIGM MYTHS, a partial list:

e Mutual exclusion is irrelevant to mes-
sage passing.

o Proper use of monitors prevents races.

o Message passing avoids races.

e Message passing avoids deadlock.

e Message passing is “shared nothing”

> These encodings can be given locally, so
that each set of primitives is merely “syntac-
tic sugar” for a particular use of the other’s.
Hence each paradigm is macro expressible in
terms of the other (Felleisen 1991).

3 Lauer and Needham (1979), “On the
duality of operating system structures”

http://dx.doi.org/10.1145/850657.850658
http://dx.doi.org/10.1145/850657.850658

2.2.1

TOP DOWN: THE PROBLEMS OF CONCURRENCY 15

semantic standpoint there is little reason to distinguish them, a point which
has been borne out by semantic models that seamlessly support both.'
There is a deeper semantic reason that the dichotomy is a false one:

Shared state and nondeterminism are unavoidable
in an expressive concurrent programming model.

That is, any “expressive” model of concurrency is inherently shared-state. In
the next section (§2.2.1), we will give an informal argument for this claim
by introducing a notion of expressive interaction in concurrent programming.
Most shared-state or message-passing constructs are expressive in this sense.

The FUNDAMENTAL PROBLEM OF CONCURRENCY, in our view, follows from the
inherently shared-state, nondeterministic nature of expressive interaction:

Concurrent programming is the management of sharing and timing.

There is no silver bullet for managing sharing and timing: as we discuss below,
races for access to shared resources are often part of the specification for
concurrent software, so a programming approach that makes races or sharing
impossible is a non-starter for at least some kinds of problems.”

Some argue that the advantage of (synchronous) message passing is that
its primitives weld together the management of sharing (a shared message
queue) with timing (synchronized access to it), or view such a welding
as a defining characteristic of message-passing programming.'® But as we
discussed above, shared-state primitives can be encoded even in synchronous
message-passing systems, which means that it is possible to build up unsyn-
chronized access to shared state in such systems. Conversely, many shared-
state models do in fact weld synchronization to access, e.g., software transac-
tional memory and Brinch Hansen-style monitors.

In our view, concurrent programming presents a range of sharing and
timing problems, each best solved by different “primitives”—and so to enable
effective programming, a language should provide facilities to build new
concurrency abstractions with varying approaches to sharing and timing.
(There is nothing special about a message queue: it is one abstraction among
many.) We examine traditional abstraction mechanisms in §2.2.4. Chapter 10
gives a deeper analysis, together with a synthesis of these ideas in the form of
a new, more powerful mechanism for creating concurrency abstractions.

In the next section (§2.2.1), we define expressive interaction, introduce the
problems of sharing and timing, and argue that they are intrinsic to concur-
rent programming. We then discuss sharing (§2.2.2) and timing (§2.2.3) more
deeply, before explaining how abstraction is a key mechanism for mitigating—
but not eliminating—sharing and timing problems (§2.2.4).

Expressive interaction

Our definition of concurrency stipulates only that thread execution is over-
lapped, not how (or whether) this overlapping is observed. The style of thread

4 Brookes (2002), “Traces, Pomsets,
Fairness and Full Abstraction for
Communicating Processes”

“The trouble is that essentially all the inter-
esting applications of concurrency involve
the deliberate and controlled mutation of
shared state, such as screen real estate, the
file system, or the internal data structures of
the program. The right solution, therefore, is
to provide mechanisms which allow (though
alas they cannot enforce) the safe mutation of
shared state”

—Peyton Jones et al., “Concurrent Haskell”
(Emphasis theirs.)

“Building software will always be hard. There
is inherently no silver bullet.”

—Brooks, Jr. “No Silver Bullet: Essence and
Accidents of Software Engineering”

' Van Roy and Haridi (2004), “Concepts,
Techniques, and Models of Computer
Programming”

' Reppy (1992), “Higher-order
concurrency”

http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1145/237721.237794
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz

16 CONCURRENCY MEETS PARALLELISM

interaction is a defining characteristic of a model of concurrency—and there
are many such models."”

For concreteness, we will examine expressivity using archetypical, modern
primitives in the shared-state and message-passing styles, but the discussion
applies to a wide variety of formulations (including, e.g., Erlang-style mail-

boxes):

SHARED STATE MESSAGE PASSING
newRef : V. a — ref(a) newChan : V. unit — chan(«)
get: Va.ref(a) > «a recv : Va. chan(a) - a
set: Va. ref(a) x a — unit send : Va. chan(a) x a — unit

We take dynamically-allocated references (in the style of ML) as the basic unit
of mutable state.'® Cells are created with initial contents; calling get yields the
last value that was set, or the initial contents if no set has occurred. References
are unforgeable first-class values, so two threads can communicate through a
reference if and only if both have access to it as a value.

On the message-passing side, we will consider synchronous channels in
which a thread sending or receiving a value on a channel must wait until
another thread performs the opposite action. The channels are point-to-
point: many threads may attempt to send or receive on the same channel
concurrently, but each sender is paired with exactly one receiver.” As with
references, communication through a channel requires the involved threads
to have access to it as a value.

AN INTERACTION MODEL IS EXPRESSIVE if it allows client-server communica-
tion, i.e., if inter-thread influence can be arranged as follows:*°

Q/-> /
_, P,

The thread Q plays the role of the server or resource. The other threads can
make requests of Q and receive responses (influence is bidirectional). But,
crucially, Q will service these requests as they appear, without stipulating
which of the client threads makes the next request (influence is timing-
dependent). Thus, the behavior of the cluster of threads may depend on the
relative timing of the clients.

7 Though, as we argued above, most are
equivalent from a semantic standpoint.

®In typical object-oriented languages, the
basic unit of state is instead an object, which
may posses many fields, each of which be-
haves like an independent reference cell.

' Most message-passing models allow some
form of nondeterministic merging, either
directly through channels or else through an
explicit “choice” or “merge” construct.

> This definition captures the distinction
Van Roy and Haridi (2004) makes between
declarative and more expressive, nondeter-
ministic forms of concurrency.

TOP DOWN: THE PROBLEMS OF CONCURRENCY 17

It is quite easy to create such a pattern of interaction with either shared-
state or message-passing primitives. We simply introduce references (resp.
channels) for each edge of influence, and use reads/writes (resp. sends/re-
ceives) to communicate:

Any expressive model of interaction immediately enables shared access and
timing dependence between threads. We can see this fact at an abstract level
by decomposing expressive interaction into two simpler patterns:

THE FIRST PATTERN EXHIBITS SHARING. What is being shared
here is not a passive medium (e.g., reference or channel), but
rather bidirectional communication with a single thread. If
that shared thread is truly influenced by communication, its

Q/"/P1 ~
\\ :

P, An object is said to “have state” if its behavior is influenced by
its history.

behavior changes over time—and it is therefore stateful:

—Harold Abelson and Gerald Jay Sussman, “Structure and
Interpretation of Computer Programs”

In other words, the existence of shared state follows from expressive inter-
action between threads. This insight dates from the dawn of concurrency
theory: Milner showed how a wide range of passive communication media
could be understood instead as active threads.*" The key is that, whether
active or passive, access to these objects or threads is shared amongst multiple
other threads. The timing of this shared access, however, may be determined
in advance, e.g, Q may wait for messages from the P; threads in some
specified order, or concurrency may be cooperative (so that threads yield
access to each other only at explicitly-marked times).

THE SECOND PATTERN EXHIBITS TIMING-DEPENDENCE

p, through arbitration. That is, the P; threads may send mes-

sages to Q at any time, but when multiple threads attempt

Q ¢ to send a message concurrently, some arbitrary order of
messages is chosen.

Py, Arbitration makes computation unpredictable, but it is

necessary precisely because timing is so unpredictable: it

allows a thread to respond immediately when events occur, even if the relative

timing of their occurrence is not known in advance. For example, an explicitly

parallel program that tries to balance work between several threads may

not know in advance how long each bit of work will take. To maximize

“Once the memory is no longer at the behest
of a single master, then the master-to-slave
(or: function-to-value) view of the program-
to-memory relationship becomes a bit of a fic-
tion. ... It is better to develop a general model
of interactive systems in which the program-
to-memory interaction is just a special case
of interaction among peers. . . . To remove
the active/passive distinction, we shall elevate
[shared memory] to the status of a process;
then we regard program variables x, y, ...

as the names of channels of interaction be-
tween program and memory. ”

—Robin Milner, “Elements of interaction:
Turing award lecture”

2 R Milner (1982), “A Calculus of
Communicating Systems”

“An Arbiter is like a traffic officer at an in-
tersection who decides which car may pass
through next. Given only one request, an
Arbiter promptly permits the corresponding
action, delaying any second request until the
first action is completed. When an Arbiter
gets two requests at once, it must decide which
request to grant first. . . . The Arbiter guar-
antees that there are never two actions under
way at once, just as the traffic officer prevents
accidents by ensuring that there are never
two cars passing through the intersection on
a collision course.”

—Sutherland and Ebergen, “Computers
without Clocks”

http://dx.doi.org/10.1145/151233.151240
http://dx.doi.org/10.1145/151233.151240
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://dx.doi.org/10.1038/scientificamerican0802-62
http://dx.doi.org/10.1038/scientificamerican0802-62

2.2.2

18 CONCURRENCY MEETS PARALLELISM

throughput, the assignment of work to threads must be dynamic; it must
emerge from the timing properties of the system. Sometimes systems are
also specified in a way that forces them to be timing-dependent. For example,
operating system services are inherently race-prone: one program should
be able to request—and potentially receive—service without any regard for
other programs. Thus, the potential for races in thread influence is not just
inevitable; it is sometimes desirable or even required! Indeed, every example
of scalable concurrency we gave in §2.1.1 is built on that potential.

The danger, of course, is that such races can lead to systems whose overall
observable behavior is likewise unpredictable—in particular, systems that
sometimes produce wrong answers that are hard to reproduce. One should
always use the smallest programming tool for the job,** and there is a
good argument that timing dependence is the wrong default, that much
concurrent programming (and certainly much parallel programming) can be
done without it.?3

Shared state alone does not introduce timing problems or nondetermin-
ism; only models that offer some means of arbitration offer the possibilities
and pitfalls of timing dependence. For example, Kahn networks provide bidi-
rectional communication between threads, which are connected via channels
in a potentially cyclic manner.* The channels, however, are strictly one-to-
one: there is exactly one sending and one receiving thread associated with
each. There is, moreover, no way for a thread to selectively receive, e.g., by
“peeking” on a channel to see whether a message is ready or by offering to
receive on several channels at once. Once a thread has chosen to listen for
a message on a particular channel (and hence from a single other thread),
it is committed. The result is that Kahn networks are deterministic; their
behavior is timing-independent. Other models like IVars,® and the very
general LVars,?® make similar tradeofTs.

Nevertheless, expressive models of concurrency have a role to play,
whether in handling the “last mile” of concurrent programming that cannot
be addressed easily or efficiently with weaker models, or in implementing
those weaker models in the first place. In any case, expressiveness is essential
to scalable concurrency as we know it today.

We next consider the problems of sharing and timing more deeply.

The problem of sharing

If state is behavior being influenced by history, shared state is history—hence
behavior—being influenced by someone else. The division of a program into
parties need not fall along thread lines, or even coincide with static regions
of code. It is possible to think of separate invocations of the same function,
for example, as all sharing (and communicating via) state. Thus shared state
is not endemic to concurrency; it can be found wherever control can “leave”
and “come back,” with a stateful object changing in between.

“Concurrency is all about managing the un-
manageable: events arrive for reasons beyond
our control, and we must respond to them.
A user clicks a mouse, the window manager
must respond, even though the display is de-
manding attention. Such situations are inher-
ently nondeterministic, but we also employ
pro forma nondeterminism in a deterministic
setting by pretending that components signal
events in an arbitrary order, and that we
must respond to them as they arise. Nondeter-
ministic composition is a powerful program
structuring idea.”

—Robert Harper, “Parallelism is not
concurrency”

** An epigram due to Olin Shivers.

>3 Van Roy and Haridi (2004), “Concepts,
Techniques, and Models of Computer
Programming”

>+ Kahn (1974), “The semantics of a simple
language for parallel programming”

> Arvind et al. (1989), “I-structures: data
structures for parallel computing”

*¢ Kuper and Newton (2012), “A Lattice-
Based Approach to Deterministic
Parallelism with Shared State”

“Sharing is caring”

—Unknown

http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://dx.doi.org/10.1145/69558.69562
http://dx.doi.org/10.1145/69558.69562

TOP DOWN: THE PROBLEMS OF CONCURRENCY 19

In a pure, expression-oriented language, data and control flow are tightly
coupled: a subexpression is given control during evaluation, and returns
control once an answer (some data) has been produced. Sharing, by contrast,
allows data to flow in more subtle ways: a subexpression can communicate by
altering a shared resource, instantly broadcasting changes to all other sharers,
even those that do not receive the return value of the subexpression.

THE PROBLEM WITH SHARING is its destructive effect on local reasoning.
The tradeoffs are best understood through example, so assume that r is an
integer reference and f is a unit to unit function, and consider the following
expression:*’

r=0; f(); getr

What values might this expression return? The answer is it depends—and
what it depends on is precisely whether f has shared access to r and, if so, in
what ways f and r interact. Without knowledge about f, we can only say that
the expression returns an integer, a guarantee provided by the type system
governing all access to r. When an object is shared arbitrarily, we cannot
reason locally about its state: we must know something about other code that
accesses it.

A simple way to restrict interaction between f and r is to keep r private.
For example, if the expression allocates r locally,

let r =new37inr := 0; f(); getr

then we can conclude that the result will be 0, because f cannot possibly have
or gain access to 7.8 When we know an object is not shared, we can reason
about it completely locally.

In the absence of concurrency, we can also exercise significant local control
over the timing of interactions with shared objects, and thereby mitigate the
effects of sharing. For example, by changing the sequence of events,

fQ; r = 0; getr

we can again deduce that the expression always returns 0 with no knowledge
about f. Whatever f does to r, the effect is wiped out by the subsequent
local assignment—and there is no opportunity between that assignment
and the following dereference for f to have any further impact. Sharing is
only observable when control is relinquished,* and in a sequential language
control must be given up explicitly. By controlling the timing of shared access,
we control the times at which purely local reasoning applies.

The previous example is unsatisfying, though: our ability to deduce the
result value depends on obliterating the contents of r. To permit meaningful
sharing, yet retain a degree of local reasoning, we can employ abstraction.

7 All of the examples in this section are
written in the calculus Ff, that we introduce
in Chapter 3; it is a variant of System F
with equi-recursive types (u), general mu-
table references, and compare-and-set (cas,
explained in §2.3.2).

** Meyer and Sieber (1988), “Towards fully
abstract semantics for local variables”

* If external parties are not allowed to run,
they cannot interact with shared objects.

http://dx.doi.org/10.1145/73560.73577
http://dx.doi.org/10.1145/73560.73577

20 CONCURRENCY MEETS PARALLELISM

Rather than sharing a stateful object directly, we instead share a set of
operators that can access it:

oddCnt = let r = new 37
inc = A().r := getr+2
read = A(). &L= rz_ 37
test = A().isOdd(get r)

in (inc, read, test)

This example inverts the setup of the previous ones: rather than explicitly
invoking an unknown function, the exported object is passive until one of
its methods is invoked. In other words, f has been replaced by an unknown
context (client) into which the abstraction is placed.

Abstraction has a profound effect on local reasoning. It is fundamentally
a way of restricting resource access to the code that “implements” the
abstraction, which is usually?® known when the abstraction is introduced.
This “abstraction barrier” enables a modicum of local reasoning even in the
presence of arbitrary sharing. In oddCnt, for example, we can deduce that no
matter what the client does, the value of r will always be odd, and so test will
always return true. The oddness of r is invariant because it is established when
the abstraction is created, and preserved by every method of the abstraction—
and because 7 itself never “escapes” to the client. Yet r is still shared, in the
sense that abstraction-mediated access to it can be freely spread to arbitrary
locations in the client code.

Abstraction affects client-side reasoning as well. Because the client cannot
access an abstraction’s internal representation directly, its behavior remains
fixed even if that representation changes.3' For example, no client can tell the
difference between oddCnt and

cant = let r = new0
inc = A().r == getr+1
read = A().getr
test = A().true

in (inc, read, test)

because any sequence of method invocations on the two objects will yield the
same results. The benefit is that clients can reason about their code using a
simple, slow version of an abstraction, but actually link their code against a
complex, fast one—a point we will discuss in greater detail in §2.2.4.

Despite the fact that the explicit call to an unknown function has disap-
peared, the oddCnt and cnt examples still retain significant control over timing
in a sequential language. The reason is simple: when a client invokes one
of their methods, it hands over control until the method returns. Without
concurrency, only one such method can be invoked at a time.

Control over timing makes it possible to temporarily break invariants
without harm. For example, replacing inc in oddCnt with a two-step version

inc = A().7r == getr+L r := getr+1

% More complex forms of access restric-
tion are possible. For example, classes are
an abstraction mechanism, but otherwise-
hidden class members may be available to
subclasses that are introduced afterwards.

3! Reynolds (1983), Mitchell (1986)

TOP DOWN: THE PROBLEMS OF CONCURRENCY 21

would not change the fact that test always returns true. The test method can
only be invoked after inc has finished, so it cannot observe the intermediate
state in which r is even.

2.2.3 The problem of timing

“The central issue lurking beneath the com-
plexity of state, sameness, and change is that
. we are forced to admit time into our

With concurrency, timing is not so easy to control. : R
computational models.

Take the following all-too-real scenario:3> — Abelson and Sussman, “Structure and

. . . .33 . . . Interpretation of Computer Programs”
You sit down with your favorite text editor>” to perform a tedious task: inserting

a pair of braces at the beginning and end of each of a few dozen lines. To speed up 3 Thanks to J. Ian Johnson for this bug.
the process, you record a keyboard macro that processes one line, and leaves the 3 Emacs.

cursor at the next line. You happily invoke the macro in quick succession, until

you notice that braces are piling up, seemingly at random, at the beginning and

ends of lines. What happened?

Interactive programs are always part of a concurrent system in which the user
is a process. They are often written in a message-passing (or event-driven)
style. In this case, it appears that keyboard macros are replayed by a process
sending messages concurrently with the messages sent by the keyboard itself.
The result is a nondeterministic interleaving of macro actions and fresh key-
board commands—including, it would seem, additional macro invocations,
launching additional macro-replay threads. Once multiple macro replays

begin interleaving with each other, the braces start piling up in odd ways.34 3 When the system is quiescent, however,
the total number of inserted open braces will

Timing is a delicate problem. The obvious way to “fix” the keyboard
8 p v way X Y match that of the close braces.

macros above is to change the message pipeline to allow “compound” mes-
sages, whose payloads are a sequence of commands to run without interrup-
tion. That change would avert the brace disaster above, only to replace it by
another:

You intend to add braces only to a certain collection of consecutive lines, and
s0 you type the “invoke macro” chord what seems like a comparable number of
times—inevitably, too many times. Seeing that braces are now being added to
lines you did not intend, you quickly type the “emergency stop” chord, but to no
avail: the system is irrevocably committed to some number of uninterruptable
macro executions. You watch, glumly, wondering whether you will at least be
able to type the “undo” chord the right number of times.

THE “EASIEST” WAY TO SOLVE TIMING PROBLEMS IS BY WAITING. We cannot
reliably make one thread run faster than another, but we can make a thread
run arbitrarily slowly, much to the fury of its clients. Waiting is often called
synchronization, because it involves multiple threads coordinating their ex-
ecutions. After all, there is little reason to wait unless conditions are going
to change, and a waiting thread must rely on concurrent threads to change
those conditions. Synchronization is used to provide uninterrupted resource
access (e.g., mutual exclusion), to coordinate phases of a joint computation, to
enforce an order of events (e.g., producer-consumer coupling), and for many
other coordination problems.

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/

22 CONCURRENCY MEETS PARALLELISM

For a concrete example, we look again to the cnt abstraction, which pro-
vided a well-behaved implementation of a counter in a sequential language.
Unfortunately, the abstraction fails when its client employs concurrency.

Suppose the construct
cobegin e; || e, coend

executes e; and e, concurrently, waits until both finish, and then returns unit.
Then a client of cnt might execute

cobegin inc() || inc() coend; read()

and get the result 1, rather than the expected 2. The introduction of concur-
rency has empowered the client: it can now instigate overlapped executions of
the abstraction’s code. An unfortunate interleaving of two inc invocations,

r = getr+1 I r = getr+1

can result in both threads reading the current value of r, then both updating
it to the same new value—dropping one of the increments. Concurrency has
violated the assumption that each inc invocation could reason locally about
r until explicitly giving up control, because the interleaving of concurrent
threads causes control to be given up arbitrarily.

The lesson is that, with expressive interaction, a single thread never ex-
ercises unilateral control over a shared resource. It must instead depend on
other threads to follow a protocol governing the resource at all times, because
those threads might execute at any time.3> Abstraction can guarantee protocol
conformance by restricting direct access to the resource. For example, we can
change the internal representation of cnt to include a lock,3® and rewrite its
methods to follow the protocol that access to r is only permitted when the
lock is held:

lockCnt = let r = new0
lock = new false
inc = A().acq(lock); r := getr+1; rel(lock)
read = A().acq(lock); get r; rel(lock)
in (inc, read)

Abstraction previously enabled local reasoning through invariants on shared,
hidden state, but those invariants only needed to hold at explicit control-
transfer points. With concurrency, the invariants become continuously-
followed protocols, but the benefit of abstraction is the same: we deduce that
the protocols are globally followed by ensuring that they are locally followed.
Locking protocols like the one above then recover something like explicit
control-transfer points—namely, the points at which the lock is not held—
so that invariants on the state protected by the lock only need to hold at such
points. But the locking protocol itself must be followed at all times.

% Mechanisms like software transactional
memory allow an individual thread to effec-
tively gain unilateral control over memory
during an atomic block, but to do so they
impose an expensive, global protocol on all
access to shared state.

3¢ Here we treat the lock as a simple boolean
value. The acq function pauses the thread
until the locK’s value is false and the thread
wins the subsequent race to set it to true. We
will discuss more realistic lock implementa-
tions in §2.4.6.

2.2.4

TOP DOWN: THE PROBLEMS OF CONCURRENCY 23

UNFORTUNATELY, SYNCHRONIZATION COMES WITH PITFALLS OF ITS OWN. As
illustrated by the “fix” to keyboard macros above,

Synchronization is a temporary lapse in concurrency,

and such lapses are not always desirable. Concurrency is often introduced to
improve latency and/or throughput ($2.1); synchronization cuts away at these
benefits. It is especially damaging in a parallel setting, where waiting threads
entail workless processors.

A more pernicious problem with synchronization is what Dijkstra termed3”
the deadly embrace: deadlock. The problem lurks whenever a thread is
responsible for creating conditions that another thread is waiting for, but
is also itself susceptible to waiting. For example, consider a simple message-
passing system with four threads connected point-to-point:3®

p
empy “iu
Q R
empty\A AI
S

The channels connecting the threads are finitely buffered: a thread trying to
send a message on a “full” channel will wait until another thread has received
one of the messages currently in the buffer. An unfortunate consequence is
the potential for situations like the one above, in which

P waits for R to receive, S waits for Q to send,
R waits for S to receive, Q waits for P to send,

and the system grinds to a halt. It is worth stressing that this example uses only
unidirectional communication. Deadlock does not require explicit cycles;
implicit ones will do.

Altogether, then, the problem of timing is to allow the required or desired
races (§2.2.1) and prevent the problematic ones, while guaranteeing global
progress, maximizing throughput, and minimizing latency.3? It is a difficult
balancing act. There are numerous proposals for easing timing difficulties,
ranging from design principles (e.g., waiting on conditions in a fixed, global
order) to significant language mechanisms (e.g., software transactional mem-
ory), each with their own tradeoffs and pitfalls. But the most fundamental
technique is one of the most familiar: managing timing in the same way we
manage other software complexity, through layers of abstraction.

The role of abstraction

Abstraction separates concerns, and thereby isolates complexity. To imple-
ment a module, a programmer must choose how to represent and manipulate

%7 Dijkstra (1965), “EWD123: Cooperating
Sequential Processes”

3% Brinch Hansen (1973), “Operating system
principles”

3 Scalable concurrency adds additional
goals: enabling parallelism while
minimizing memory system traffic.

See §2.3.

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365

24 CONCURRENCY MEETS PARALLELISM

data, often with an eye on performance. But when using the module, those
choices can and should be irrelevant. They do not affect the “answers” (or,
more generally, the observed behavior) that the module produces; they only
affect the speed with which those answers are produced. As long as the
modules client does not observably depend on the module’s speed, it can
benefit from speed improvements while ignoring how they are achieved.

Take the abstraction of mutable, finite maps. There are many ways to imple-
ment the abstraction—hashtables, skiplists, binary search trees, etc. —varying
in performance and implementation complexity. But a client executing a
sequence of operations on a map, e.g.,

insert(37, “hello”); insert(37, “world”); lookup(37)

expects to get the same answer, “world”, regardless of the implementation
used. It should be possible, moreover, for the client to deduce the answer
ahead of time, on the basis of an abstract specification of a mutable finite map,
which then serves as a formal interface between the client and the module
implementation.

All well and good in the sequential case—but as we saw in the previous
section (§2.2.3), concurrency empowers the client to interact with a module
in ways that go beyond one-at-a-time call and response.*® This new mode
of client-module interaction threatens to reveal how the module handles (or
fails to handle) timing issues, thereby breaking down the abstraction. It also
raises new questions about how to specify such abstractions in the first place.

Concretely: what should the following concurrent client of a finite map
expect to happen?

cobegin insert(37, “hello”) || insert(37, “world”) coend; lookup(37)

The reasonable assumption for any “thread-safe” map is that exactly one of the
two client subthreads will win the race, so that either of “hello0” and “world”
are valid answers, and nothing else is. We need a formal specification that
enables such predictions.

For many methods, like insert, the right model of concurrent interaction
is none—as if, in an amazing stroke of luck, the scheduler always avoids
interleaving the executions of concurrent invocations, instead executing
them one at a time. The beauty of this “atomic” specification of method
execution is that it reduces the explanation of concurrent interaction to that
of nondeterministic sequential interaction. But because it is mediated by an
abstraction, this notion of “atomicity” refers only to the observable behavior
of a module, as opposed to its implementation. The result is that clients
can reason about a module as if, e.g., it were implemented using a global
lock, when in reality the implementation provides a much greater degree of
concurrency (and scalability).

In short, abstraction reduces the degree to which concurrency is observ-
able, while retaining its benefits.

Another way of understanding the role of abstraction is through the
granularity at which thread execution is interleaved. The implementation

4 Higher-order languages introduce similar
challenges, because a client can pass a mod-
ule a function (a “callback”) which returns
control to the client during the modules
execution.

“In single-threaded programs, an object must
assume a meaningful state only between
method calls. For concurrent objects, however,
overlapping method calls may be in progress
at every instant, so the object may never be
between method calls. Any method call must
be prepared to encounter an object state that
reflects the incomplete effects of other concur-
rent method calls, a problem that simply does
not arise in single-threaded programs.”

—Maurice Herlihy and Nir Shavit, “The Art
of Multiprocessor Programming”

2.3

BOTTOM UP: THE PROBLEMS OF SCALABILITY 25

of an abstraction may be quite fine-grained, eschewing locks and instead
allowing threads to interact with the data structure through a series of small,
atomic operations on its hidden (but shared) state. If the client could observe
the data structures representation, it could observe the small steps being
taken by each method invocation. But the abstraction barrier means that,
instead, the client merely observes what the methods return, which can be
understood in terms of a coarse-grained interleaving—one in which the
operations “take effect” in a single step.#'

ABSTRACTION DOES NOT “SOLVE” THE PROBLEMS OF SHARING AND TIMING,
which are inherent to expressive concurrent programming (§2.2.1). As we saw
with finite maps above, an abstraction can be shared by multiple client threads,
which can race to access or update it, with nondeterministic results. What has
been gained is the ability to reason about those races abstractly, at the level of
e.g., atomic updates to key-value pairs rather than complicated sequences of
updates to a hashtable representation. It remains the client’s responsibility to
govern its use of the finite map abstraction by a meaningful protocol.

For example, consider the parallel duplicate removal algorithm of §2.1.1.
There, a client uses a shared finite set abstraction (represented by a hashtable),
creating several threads that insert elements into the set concurrently—and
multiple threads might insert the same element at the same time. But the
set is inspected only after all of the threads have completed their insertions.
Using an atomic specification for set insertion, it is nearly trivial to see that
the algorithm is correct. The insertion phase corresponds to inserting all of
the elements of the input list into a set, one at a time, in some order; we reduce
a concurrent execution to a nondeterministic, but sequential one. Since the
contents of the set are only read out after the insertion phase, and (abstractly!)
insertions into a set commute, the order of insertion clearly makes no
difference. Thus the final set represents the input list without duplicates. It
would be much harder to see that the client’s race conditions were harmless
if we had to reason in terms of the set implementation, especially when using
a scalable concurrent set.

Finally, abstraction determines the rules of the game for scalable concur-
rency. On the one hand, an abstraction barrier allows a module to govern its
internal state via a protocol of arbitrary cleverness, without fear that the client
could somehow violate that protocol. On the other hand, the net effect of that
protocol must be, e.g., observable atomicity from the client’s point of view.
Protocols and their guarantees are the subject of PART 1 of this dissertation.

BOTTOM UP: THE PROBLEMS OF SCALABILITY

The problems of concurrent programming are fundamental and timeless. Scal-
able concurrent programming, on the other hand, is very much contingent on
the system architecture du jour. Of course, many of the basic techniques for
scalability have a long shelf life—some state-of-the-art concurrency libraries

Similar benefits can be had even when
methods are not atomic, but instead sup-
port meaningful non-sequential interaction.
Those interactions can still be understood at
a much coarser grain than their implemen-
tations; see §2.4.6.

“The best computer scientists are thoroughly
grounded in basic concepts of how computers
actually work, and indeed that the essence of
computer science is an ability to understand
many levels of abstraction simultaneously. ”

—Donald E. Knuth, “Bottom-up education”

http://dx.doi.org/10.1145/961511.961514

2.3.1

26 CONCURRENCY MEETS PARALLELISM

use variants of algorithms designed fifteen years ago for radically different
hardware.#* But in general, achieving high performance concurrency on
multiprocessors requires attention to architectural details.

Without a doubt, the most important architectural consideration is the
interaction between multiprocessing and the memory subsystem. For a long
time, the gap between effective CPU frequency and effective memory bus
frequency has been growing:

CPUs are today much more sophisticated than they were only 25 years ago. In those
days, the frequency of the CPU core was at a level equivalent to that of the memory
bus. Memory access was only a bit slower than register access. But this changed
dramatically in the early 9os, when CPU designers increased the frequency of the
CPU core but the frequency of the memory bus and the performance of RAM chips
did not increase proportionally.

—Ulrich Drepper, “What every programmer should know about memory”

While CPUs got faster, RAM got bigger. These architectural trends were
largely hidden, however, through the use of caches to mask memory latency.
Because most code naturally possesses temporal and spatial locality, caches
provided the illusion of memory that is both large and fast.

Cache coherence

Unfortunately, multiprocessing and caching conflict.

Caches support the abstraction of a single, global memory space, despite
the fact that they permit multiple copies of a given memory cell to exist—the
fast, cached version(s) and the slow version in RAM. The scheme works in
the single processor case because the lowest level (fastest) cached version is
authoritative. But multiprocessing brings a new complication: because each
processor (or core) has at least one level of private cache, it is no longer
possible to determine the authoritative state of a memory cell on a core-local
basis, within a single cache hierarchy. Cores must coordinate.

Whether in phones®? or servers, present-day commodity multiprocessors
coordinate through cache coherence. Abstractly, cache coherence is a key
mechanism through which a multiprocessor carries out its memory consis-
tency policy:

We view a cache coherence protocol simply as the mechanism that propagates a

newly written value to the cached copies of the modified location. . . . With this

view of a cache coherence protocol, a memory consistency model can be interpreted

as the policy that places an early and late bound on when a new value can be
propagated to any given processor.

—Adve and Gharachorloo, “Shared memory consistency models: a tutorial”

The consistency policy varies by architecture, but we can assume:

THE FUNDAMENTAL PROPERTY OF MEMORY MoDELs#
Memory is sequentially consistent for all well-synchronized programs.

4 The java.util.concurrent library, for exam-
ple, uses a variant of Michael and Scott’s lock-
free queue.

“The presence of multiple cores on a chip shifts
the focus from computation to communica-
tion as a key bottleneck to achieving perfor-
mance improvements. . . . High performance
on-chip communication is necessary to keep
cores fed with work.”

—TJerger, “Chip Multiprocessor Coherence
and Interconnect System Design”

e.g., the ARM Cortex-Ag MPCore.

Adve and Gharachorloo (1996), “Shared
memory consistency models: a tutorial”

http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1109/2.546611

BOTTOM UP: THE PROBLEMS OF SCALABILITY 27

The sequential consistency policy dictates that all memory accesses from all
processors can be interleaved into a global sequence that is consistent with the
semantics for memory, i.e., a read returns the last value written. All processors
observe the same order of events. We will discuss memory consistency in
more detail in §3.2, in particular explaining what it means for a program to
be well-synchronized.#> For the moment, the important implication is that
by issuing certain synchronization instructions, a program can demand a
sequentially-consistent memory.

To guarantee sequential consistency in the well-synchronized case, ar-
chitectures allow one core to gain exclusive access to a block of memory
while performing a write to it. On the other hand, blocks can be freely
shared between cores for read-only access, massively increasing the effective
parallelism of the machine. The goal of cache coherence is to efficiently
balance between the two kinds of access.

Cache coherence works by storing ownership metadata in core-local
caches. At a minimum, each local cacheline has a status of I (“Invalid”), S
(“Shared”), or M (“Modified”). These statuses reflect increasing access levels
to a block: no access, read-only access, and read/write access, respectively. Co-
herence protocols maintain the system-wide invariant that, for each memory
block,46

e cither there is exactly one core holding the block with status M,
e or there are zero or more cores holding the block with status S.

As with a uniprocessor, the lowest-level cache holding a block is authoritative;
cache coherence determines which among several local caches at the same
level is currently authoritative.

The coherence invariant is reminiscent of reader-writer locking, but there
is a fundamental difference: any core may obtain read or write access to a
block at essentially any time. To put it more starkly, exclusive write access to a
block can be revoked arbitrarily, without warning. Any changes to the block
are flushed (committed), as usual for a cacheline eviction.#” Allowing access
to be revoked is essential; otherwise, one core could prevent another from
making progress, indefinitely.#® Revocation is primarily driven by a cache
miss on the part of another core, which can be either a read or a write miss
depending on the access required. The only constraint4® on obtaining access
is the coherence invariant, which guarantees mutual exclusion for writing but
guarantees nothing about the duration of that write access.

The key remaining question is: how is the status metadata in the core-
local caches coordinated? The answer to this question constitutes a coherence
protocol, which is a major point of variance between architectures, and is
coupled with other architectural decisions. It is nevertheless possible to build
a rough cost model that applies to a range of current architectures. A key
observation is that any coherence protocol involves communication between
core-local caches. Such communication is generally routed through a higher

4 All of the code in this dissertation is well-
synchronized.

4 Martin et al. (2012), “Why on-chip cache
coherence is here to stay”

#In some architectures, the block is sent
directly to the core requesting it, rather than
being routed through a higher level of the
memory hierarchy.

#Cf. $2.5.2
Some architectures go further and provide

a fairness guarantee in addition to the basic
memory consistency guarantee.

http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2209249.2209269

28 CONCURRENCY MEETS PARALLELISM

level of the memory hierarchy—one that is shared between the caches being
coordinated—and this routing can make coherence very expensive.
For example, take the recent Nehalem architecture from Intel:

Nehalem Quadcore Nehalem Quadcore

Core O Core 1§ Core 2§ Core 3 Core 4 § Core 5 Core 6 | Core 7

1/0 Hub

A Nehalem system can include multiple processors each with multiple cores,
providing a complex memory hierarchy. The lowest two levels of the hierarchy
(L1 and L2 caches) are core-private. The next level (L3 cache) is shared
between the cores within a processor, but is processor-private. The last level
of the hierarchy is RAM, but access to it is nonuniform: each processor has
dedicated RAM banks (labeled “DDR3”) which can be accessed relatively
quickly, but processors can access each other’s RAM through the QuickPath
Interconnect (QPI). The read latency for each level of the hierarchy, measured
in CPU cycles on a 2.933Ghz machine, is as follows:*°

Li | L2 | L3 | LocalRAM | QPI | Nonlocal RAM
Latency (cycles) | 4 | 10 | 38 191 120 | 191+120 =311

To get a sense for the cost of coherence, we consider a few examples using the
diagrammed Nehalem configuration above.

Suppose that Core o and Core 1 each hold a particular block in L1 cache
(which must therefore be in state S), and that no other cores hold the block
in local cache—and that, moreover, the second processor does not hold the
block in its L3 cache. If Core o tries to write to the block, it will encounter
a write miss, since it does not have write access. This cache miss is purely the
result of coherence. After all, the data was already in L1 cache! Such misses are
called “coherence misses.” Servicing this coherence miss on Nehalem requires
communication not just with the shared L3 cache, but also with the L1 and L2
caches of Core 1, resulting in a measured latency of around 65 cycles—more
than an order of magnitude longer than the 4 cycles it would have taken to
access the L1 cache of Core o without coherence.

The situation is much worse for cross-socket coherence. Consider a com-
parable scenario in which Core o and Core 4 hold a block in their L1 caches in

>° Molka et al. (2009), “Memory
Performance and Cache Coherency

Effects on an Intel Nehalem Multiprocessor
System”

http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22

2.3.2

BOTTOM UP: THE PROBLEMS OF SCALABILITY 29

state S, and no other cores have it locally cached. If Core o writes to the block,
the resulting coherence miss takes around 320 cycles to service—nearly two
orders of magnitude slower than accessing the data in L1 directly.

The two scenarios leave Core 1 and Core 4, respectively, with the block in
L1 cache in state I (invalidated). If the cores immediately try to read the block,
they will take coherence misses with similar costs to the misses experienced
by Core o.

THERE IS A COUNTERINTUITIVE PRINCIPLE AT WORK HERE. In a cache-
coherent system, access locality can lead to cache misses, rather than cache
hits.”* This kind of “bad” locality is known as contention, and is characterized
by multiple cores repeatedly accessing data where at least one core is trying
to write to the data.>* The cost of coherence misses tends to rise with the
number of cores contending for a block; the resulting memory system traffic
makes them more expensive to service than standard cache misses. We can
summarize the situation as follows:

Contended access is slower than uncached access.

where “uncached” is relative to the level on the memory hierarchy encounter-
ing a coherence miss. A good cache coherence protocol will limit the number
and expense of coherence misses, but contention for a memory block is a
source of unavoidable misses. In the end, lagging memory latency comes back
with a vengeance.

The cost of contention has a profound impact on the design of scalable
concurrent algorithms. It is the reason that global locks do not scale: a
contended lock adds the cost of a cache miss to every critical section, no
matter how short those critical sections might otherwise be (see §2.4.2). It
is the reason that semantically read-only operations should be implemented
without writes, whenever possible—which precludes the use of even read-
er/writer locking. It encourages designs in which each write to shared data
does a lot of work, so that fewer writes are needed overall. It can even
trump asymptotic performance: some scalable concurrent algorithms asymp-
totically lag their sequential counterparts in space or time, but their parallel
scalability gives better overall system performance. And the likelihood and
effect of contention grows with increasing parallelism.

Starting with the next section, we turn to techniques for concurrent
programming that are mindful of contention’s cost. We begin with hardware-
level primitives (§2.3.2) and work our way up to simple nonblocking algo-
rithms implementing abstract data types ($2.4).

The foundation of interaction: consensus

One problem with cache coherence, as we have described it, is that it is
impossible for a thread to tightly couple a read and a write. In principle,
another thread might gain exclusive access to the block in between the two

' This phenomenon is sometimes called
cache ping-ponging.

5> Ping-ponging can also result from false
sharing, where cores are accessing distinct
data that happens, unfortunately, to fall into
the same cache block.

“The processor cores themselves run at fre-

quencies where, at full speed, even in perfect
conditions, the connection to the memory can-
not fulfill all load and store requests with-
out waiting. Now, further divide the available
bandwidth by the number of cores, hyper-
threads, and processors sharing a connection
to the Northbridge and suddenly parallelism
becomes a big problem. Efficient programs
may be limited in their performance by the
available memory bandwidth.”

—Ulrich Drepper, “What every
programmer should know about memory”

http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf

30 CONCURRENCY MEETS PARALLELISM

operations and perform a write of its own. This is not a problem that can
be solved by using locks, because it is a problem we face when implementing
locks in the first place! Suppose, for example, that we represent a lock using
a simple boolean flag, where true represents that the lock is held by some
thread, and false represents that it is free. We might arrive at the following
naive spinlock implementation, written in a tail-recursive style:

acq(lock) = if get(lock) then acq(lock) else lock := true

The implementation is hopelessly broken: after this thread observes that the
lock is free, but before claiming it for itself, another thread could acquire the
lock. There is not tight coupling between observation and action.

While there are some famous lock implementations that use only simple
reads and writes,>3 in practice is it much more efficient to use a hardware
operation that can couple reads and writes, sometimes known as read-modify-
write operations. The most commonly available such operation is compare-
and-set (CAS), which is usually>* specified as follows:

cas : Ya.ref(a) x a x & — bool
cas(r,0,n) = atomic { if get(r) = o then r := n; true else false }

The idea is that cas, in one indivisible step, reads a reference and updates it
only if it has an expected value, returning a boolean signifying which path
was taken. Thus, cas arbitrates between multiple threads racing to perform
an update, ensuring that the outcome of the race is coherent—there is just
one winner. In other words, cas allows threads to come to a consensus.>

Using cas, we can write a correct spinlock as follows, again using a boolean
lock representation:

acq(lock) = if cas(lock, false, true) then () else acq(lock)

Now if multiple threads attempt to acquire the lock concurrently, cas will arbi-
trate between them, producing exactly one winner, and thereby guaranteeing
mutual exclusion.

Cache coherence already requires arbitration between processors to resolve
races for write access to a block. A cas instruction can be implemented by
ensuring that such access persists long enough to complete the instruction—
which is essentially the same policy as for a primitive write operation. Thus
the coherence implications for one “round” of attempts by #n + 1 threads to
cas a location are similar to those for n threads trying to read a location
that one thread is writing to. Processors that already hold a block exclusively
can perform a cas within that block relatively quickly, which means that
reacquisitions of a lock implemented as above are relatively cheap.

All of the scalable concurrent algorithms studied in this dissertation use
cas in one way or another.

53 Dijkstra (1965), “EWD123: Cooperating
Sequential Processes”

>+ The universal quantification here can be
problematic; see Chapter 3 for details.

55 Formally, the problem of consensus is to al-
low multiple threads to each propose a value,
and for all of the threads to subsequently
agree on a winning value. The cas operation
is universal, because it can solve consensus
for an arbitrary number of threads. This in
turn means that cas can be used to build a
“wait-free” (§2.5.2) concurrent implementa-
tion for any sequential data structure (Her-
lihy 1991).

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

2.4

2.4.1

THE RUDIMENTS OF SCALABLE CONCURRENCY: PERFORMANCE 31

THE RUDIMENTS OF SCALABLE CONCURRENCY: PERFORMANCE

Taken together, the preceding two sections have isolated the problem of
scalable concurrency:

e Section 2.2 argued that the fundamental challenge of concurrency is man-
aging sharing and timing, a challenge that can be mitigated by abstraction.

e Section 2.3 argued that, with current architectures, the challenge of scal-
ability is enabling parallelism while attending to cache-coherence effects
like contention.

This section briefly surveys some of the most important techniques for build-
ing scalable concurrent abstractions in practice. The rest of the dissertation
is focused on understanding these techniques more formally (PART 1) and
expressing them more declaratively and composably (PART 2).

As observed in $2.2.4, a policy of mutual exclusion between method
invocations is a simple way to specify the behavior of an abstract object
whose methods should only interact sequentially. That specification leads
immediately to an equally simple implementation strategy: take a sequential
implementation, add a global lock to its internal representation, and delimit
each method with a lock acquisition and release.’® From the standpoint
of scalable concurrency, we take this coarse-grained locking strategy as the
baseline. It represents, in a sense, the worst we could do: not only does it rule
out parallelism within the implementation, it also introduces a single memory
location (the lock) which must be written to by every method—a recipe for
contention and attendant clogging of the memory subsystem. When used
by an increasing number of processors, the result is often parallel slowdown
rather than speedup.

Fine-grained locking

If the state hidden within an abstraction is composed of independent pieces,
a natural way to increase scalability is to protect those pieces by independent
locks. For example, the representation for a hashtable involves some number
of buckets of entries, and operations usually interact with a single bucket for
lookup or insertion. A fine-grained locking strategy for a hashtable might
associate a lock with each bucket, resulting in a significant increase in
parallelism and decrease in contention. If two threads attempt to lookup items
whose keys hash to different buckets, they can proceed in parallel, and in fact
do not communicate at all. Although both threads must acquire a lock, the
two locks involved can be arranged to sit in separate cache blocks,’” allowing
the threads to gain write access concurrently. Yet the correctness of the data
structure is still fairly intuitive: each bucket is the authority on the keys that
hash to it, and the per-bucket lock means that threads gain exclusive access
to the relevant authority. Thus when two threads try to concurrently insert an

“An algorithm must be seen to be believed.”

—Donald E. Knuth, “The Art of Computer
Programming, Volume 1: Fundamental
Algorithms”

56 Monitors embody this implementation
strategy (Brinch Hansen 1973).

57 That is, we can deliberately avoid false
sharing ($§2.3.1) by careful layout of data.

2.4.2

32 CONCURRENCY MEETS PARALLELISM

item with the same key, for example, the fact that they must acquire a common
lock will force the operations to take place one at a time, in some order.

Aslong as the number and identity of buckets are fixed, the above strategy
works fairly well. But we have ignored a crucial, if rare, operation: splitting
the hashtable into a greater number of buckets as it grows. It takes great care
to avoid a harmful race between threads trying to acquire a bucket’s lock
and a thread trying to refine the list of buckets. It is not a simple matter of
introducing another lock to protect the buckets themselves; that would put
us back to square one.’® The lesson is that fine-grained locking is easiest to
introduce for fixed size, flat data structures. Such data structures can be under-
stood as a convenient coupling of smaller data structures, each protected by
a (locally) coarse-grained lock. Linked or tree-like data structures, or those
requiring dynamic restructuring, require a much more careful introduction
of fine-grained locks.

Even when fine-grained locking is done correctly, it can still suffer from
scalability problems. The most important problem is that read-only opera-
tions require a lock acquisition—and therefore a write to memory. Although
these writes are spread out over several disparate locks, they can still result in
contention ($2.3.1) between readers if the data is accessed frequently enough.
Since read operations tend to dominate workloads, avoiding this unnecessary
contention can be a significant win.® Doing so requires moving away from
a simple protocol in which all access to each piece of hidden state is tied to
some set of locks.5° In particular, the fact that a thread is executing a read-
only operation must be invisible to concurrent threads, since anything else
would entail coherence misses. The techniques outlined in the remainder of
this section support invisible reads.

Optimistic concurrency

Locking is a pessimistic way to deal with timing problems: a thread assumes
the worst, i.e., that a concurrent thread will attempt to interfere, and prepares
accordingly by alerting any other threads of its intent to access shared data,
thereby forcing them to delay their work. If the lock is held for a long time, the
delay drastically decreases parallel speedup.®® But if the lock is held for a short
time, it becomes a source of memory contention, ping-ponging between the
caches of cores trying to access a shared resource.

In many cases, the pessimism of locking is unfounded: it may turn out
that the threads are merely trying to read some shared data,52 or are trying to
perform writes that can safely proceed concurrently. Optimistic concurrency
is an alternative approach, in which threads do not inform each other of their
presence up front, but instead attempt to work independently for as long
as possible, only checking at the very last moment that their work was not
invalidated by another thread. When the optimism is well-founded, i.e., no
thread meaningfully interfered, the cost of coordination is thereby avoided.

58 See Herlihy and Shavit (2008, chapter 13)
for a survey of concurrent hashtable imple-
mentations.

It was the key to improving the Linux
dcache performance mentioned in $2.1.1, for
example.

¢ Cf. the discussion of locking protocols
in §2.2.3. We will formalize locking proto-
cols in Chapter 4.

® Amdahl (1967), “Validity of the single
processor approach to achieving large scale
computing capabilities”

¢> Reader/writer locking only helps when
critical sections are lengthy. For short-lived
lock acquisitions, both readers and writers
still introduce coherence traffic, since they
must still write to the lock itself.

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

THE RUDIMENTS OF SCALABLE CONCURRENCY: PERFORMANCE 33

For a concrete example, we return once again to counters:

casCnt = let r = new 0

A().let n =getr
in if cas(r, n,n + 1) then () else inc()
read = A().getr

in (inc, read)

inc

While very simple, this code illustrates the essence of the optimistic approach
to dealing with timing: the retry loop. In particular, the inc method reads
the current value of the counter without any explicit coordination with other
threads, which means that it gains no lasting knowledge about the counter’s
state. The very instant after reading, for example, another thread could con-
currently increment the counter. Nevertheless, inc carries on, optimistically
computing the new value of the counter based on the earlier snapshot—
and at the very last moment, atomically performs the update while checking
whether its optimism was misplaced. If in fact another thread interfered, inc
simply throws away its work and tries again.®

The read method stands to benefit the most from optimistic concurrency:
because the data structure is so simple, it can be read in its entirety with-
out any coordination or validation. If the workload of the counter is read-
dominated, then most of the time its contents can be present in the caches of
multiple cores in the “shared” state, recovering cache locality.

As it turns out, casCnt scales better than lockCnt even for workloads con-
sisting solely of writes! Consider the following simple-minded benchmark:
each threads executes a loop where for 98% of the iterations it increments a
private counter, but in 2% of the iterations it increments a shared counter. We
ran the benchmark on a machine®# with two physical processors, each with
four cores, and got the following results:

Predicted

::;:_ CAS
=

E

3 .

£ Locking
s ..‘f‘_

1 8

Threads

The “predicted” series is based on a simple application of Amdahl’s law.%
Neither counter implementation matches the prediction, but this is easy to
explain: the cost of incrementing the shared counter rises with contention,
while our simple prediction assumes a fixed cost (i.e., a 2% sequential bottle-
neck).

It is difficult to say with certainty why the cas-based counter scales so much
better in this case, but the likely cause is the fact that it requires a thread to gain
exclusive access to only one cache line, one time, per successful increment.
The spinlock (which included backoff; see §2.4.4), on the other hand, lives

% We are assuming here that the language
properly implements tail recursion, so that
inc will be compiled to a simple loop.

% In more detail: the machine is a 3.46Ghz
Intel Xeon Xs5677 (Westmere) with 32GB
RAM and 12MB of shared L3 cache. It has
two physical processors with four hyper-
threaded cores each, for a total of 16 hard-
ware threads. L1 and L2 caches are per-core.

% Amdahl (1967), “Validity of the single
processor approach to achieving large scale
computing capabilities”

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

2.4.3

34 CONCURRENCY MEETS PARALLELISM

in a different cacheline than the counter’s data,®® which means two lines are
needed in exclusive mode. Another explanation is that the cacheline holding
the lock ping-pongs under high contention between lock acquisitions: the
thread acquiring the lock obtains exclusive access and writes the lock; other
threads immediately read the lock, so exclusivity is lost; then the original

thread releases the lock, which requires it to again obtain exclusive access.

In contrast, the cas-based algorithm does all of its work in one acquisition
of exclusive cacheline access. In any case, coherence misses become a real
problem once they must go across sockets, hence the rightward-turn of the
lock-based scalability after four threads.

While this particular benchmark should not be taken too seriously, it lends
credence to our earlier claim: scalable concurrency demands attention to
architectural details.

Linked data structures

Unlike counters, most data structures do not fit in a single machine word. So
in general, a single cas operation cannot validate the contents of an entire data
structure while performing an update; cas must be used in a more localized
way. A significant amount of the work that goes into creating a scalable
concurrent algorithm is arranging the representation of its data so that a
single-word cas is meaningful.

Probably the most common representation strategy in practice is to use
linked structures, where updates replace one node with another and cas
compares nodes for identity.” The classic example is Treiber’s lock-free stack
implementation:®®
Treiber = let h = new (null)

push = Ax. let t = new (null)
let n = cons(x, t)
let loop = A(). let c = get h

int:=c¢
if cas(h, c, n)
then () else loop()
in loop()
tryPop = A(). let c = get h
in case ¢

of null = none
| cons(x,t) = ifcas(h, ¢, get(t))
then some(x) else tryPop()
in (push, tryPop)

Here the stack is represented by a linked list which is internally immutable;
only the pointer h to the current head changes. The push method begins by
allocating a new node, and then entering a retry loop. The loop works by (1)
taking a snapshot ¢ of the identity of the current head node, (2) linking the

¢ Most lock representations are padded to
avoid false sharing, but in this case sharing
a cache line with the data would have been
helpful.

¢ In particular, cas enables pointer compari-
son on the structures of the language, expos-
ing the allocation and representation strat-
egy of the compiler. We return to this point
in Chapter 3.

¢ Treiber (1986), “Systems programming:
Coping with parallelism”

THE RUDIMENTS OF SCALABLE CONCURRENCY: PERFORMANCE 35

new node’s tail to ¢, and (3) updating the head assuming its identity has not
changed in the meantime. The implementation of tryPop follows a similar
optimistic strategy.

Treiber’s stack illustrates that optimistic algorithms need not validate their
snapshot against an entire data structure. For the case of push, this fact is quite
easy to see: the new head node has a tail pointer that is directly validated
against the current head pointer, and since that step takes place atomically
(thanks to cas) the rest of the data structure is irrelevant. For tryPop, however,
things are a bit more subtle. In particular, while tryPop does confirm that
the current head pointer is the same as the preceding snapshot c, it does not
confirm that the tail of that node is the same as the preceding snapshot ¢. Yet
its correctness clearly depends on that fact.

The fact that a node’s tail pointer never changes follows from two other
facts:

o First, the stack employs abstraction to hide its internal state; its nodes never
escape as values that the context could manipulate. Consequently, we can
see by inspection that after a node is successfully added to the stack via
push, its tail pointer is never changed. A tail snapshot lasts forever.

e Second, and much more subtly, the snapshot node ¢ cannot be garbage-
collected prior to the cas. This fact is relevant because cas exposes the
identity of nodes (as pointers), so even if a node is not mutated explicitly, it
can be mutated effectively by being reallocated with new contents. Luckily
such a situation is never observable, because as long as a pointer to the
node is maintained in order to perform such a comparison, the node will
not be garbage-collected.®®

In general, algorithms that depend on the identity of nodes to validate
snapshots are susceptible to the so-called “ABA problem,” in which a snapshot
A is taken, after which the data structure is changed to state B and then back
to A—which allows some cas to succeed even though some aspect of the data
structure vitally changed in the interim. If, for example, the tail pointers of
nodes in the stack could be mutated—say, to allow elements to occasionally
be removed from the middle of the stack—then the tryPop method would
suffer from an ABA problem by failing to validate its snapshot of the tail.
Treiber’s stack is much more scalable than a stack protected by a global
lock, even if the latter uses a more efficient sequential representation. It is
nevertheless a quite simple example because, like the counter, there is a single
mutable reference through which all concurrent activity takes place. More
complex linked data structures permit mutation at a dynamically-growing
set locations, and often require traversing the data structure even as the links
between nodes are mutated. We will study such examples in Chapter 4.

¢ We assume garbage collection through-
out. Adding explicit memory management
to scalable concurrent algorithms is difficult,
but there are now several established tech-
niques for doing so (Michael 2004; McKen-
ney and Slingwine 1998).

2.4.4

2.4.5

36 CONCURRENCY MEETS PARALLELISM

Backoff

Optimism is beneficial when it avoids unnecessary worry, but sometimes
worry is warranted. For example, if several threads are attempting to quickly
push large numbers of elements onto a Treiber stack, most of them will
lose the race to cas most of the time. The result is a cascade of memory
coherence traffic due to incessant retrying—where, again, most races will be
lost, creating further retries, and so on. At some point, it would be better
to give up on optimistic concurrency, and simply sequentialize access to the
stack.

Fortunately, it is easy for a thread to determine when it should start worry-
ing: every lost cas race is a sign of contention over the data structure. A simple
strategy for avoiding cascading coherence traffic is exponential backoff, where
a thread busywaits for (on average) exponentially longer periods of time after
each lost cas.”® Randomized backoff tends to evenly spread out access by a
set of threads, effectively sequentializing access without introducing lock-like
coordination. It is a pragmatic, heuristic way of improving the management
of timing in a parallel system, but it has no semantic effect; correctness still
depends on how the underlying algorithm uses cas.

Backoff can go beyond busywaiting. Sometimes there is useful work that
can be done before reattempting a cas. For example, in some concurrent data
structures items are removed in two phases, a “logical” phase in which the
items are marked as deleted, and a “physical” phase in which they are actually
removed.”* During backoff, a thread might traverse the data structure and
remove nodes awaiting physical deletion.”> Another example is elimination,
which we discuss below.

Helping and elimination

We have argued that a key benefit of optimistic concurrency is that threads do
not have to announce their intent to interact with a data structure, a benefit
that is especially important for (morally) read-only operations. For updates,
however, scalability can sometimes be improved by advertising intent in a
cooperative, rather than competitive, fashion:

e IN THE COMPETITIVE APPROACH, a thread obtains exclusive access by
acquiring a lock, which forces all other threads to wait until the end of
its critical section.

e IN THE COOPERATIVE APPROACH, a thread advertises what it is trying to do,
which allows other threads to proceed by first helping it finish its work.

Helping is not so selfless: in reality, one thread is merely “helping” another
thread get out of its way, so that access to some resource is no longer
obstructed. In theory, helping provides a stronger guarantee of system
progress—one that does not depend on fairness—and we explore this point

7 Agarwal and Cherian (1989), “Adaptive
backoft synchronization techniques”

7' Heller et al. (2006), “A lazy concurrent
list-based set algorithm”

7> The java.util.concurrent skiplist does this.

http://dx.doi.org/10.1145/74925.74970
http://dx.doi.org/10.1145/74925.74970
http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1007/11795490_3

2.4.6

THE RUDIMENTS OF SCALABLE CONCURRENCY: PERFORMANCE 37

in §2.5.2. In practice, the progress guarantees must be weighed against the
potential for extra memory coherence traffic. Sometimes it is better to wait.

One particular form of helping that works very nicely in practice is
elimination. The idea is that certain operations on a data structure cancel
each other out, and so if threads can somehow discover that they are trying
to perform such operations concurrently, they can eliminate their work. For
example, if one thread is trying to push a value onto a stack and another is
trying to pop from the stack, the stack does not need to change at all! After all,
if the operations are concurrent, they can be sequenced in either order, and
a push followed by a pop is a no-op. This observation leads to “elimination
backoff stacks,” which consist of a Treiber stack together with a “side channel”
array’3 that pushers and poppers use to find each other.”* Operations are first
attempted on the stack itself, but if the necessary cas fails, the thread flips a
coin and either advertises its operation on the side channel, or else looks for
an advertised operation that it can eliminate. In either case, the amount of
time spent trying to find an elimination partner increases exponentially with
each failed cas, just as in busywait-based backoff. Once the time is up, the
thread cancels any advertised offers and retries the operation on the stack.

Elimination backoft is effective because it spreads out contention: instead
of many cores trying to gain exclusive access to a single cache block contain-
ing the stack head, cores compete for access to a set of blocks (including
each element of the side channel array). Just as randomized exponential
busywaiting tends to spread concurrent accesses out uniformly in time,
randomized elimination tends to spread out contention uniformly in space
(over the side channel array). The result is that each individual cache block
is contended for by fewer threads on average, which greatly reduces the cost
of coherence. Remarkably, the potential for parallelism increases as a result of
highly-concurrent access, because of the increasing likelihood that parallel
sets of pushers and poppers will discover each other.

Synchronization and dual data structures

With scalable concurrency, even the speed of waiting matters.

Consider implementing a lock intended to protect a “popular” resource with
short-lived critical sections. On a parallel’> machine, a good strategy is to
use a spinlock, in which threads waiting to acquire the lock busywait (“spin”
instead of actually blocking. Spinlocks make sense when the average critical
section is much shorter than the average cost of a context switch.”® We saw
a very simple spinlock implementation in §2.3.2, in which the lock is just a
boolean reference and acquisition works by repeated cas attempts:

acq(lock) = if cas(lock, false, true) then () else acq(lock)

While the implementation is semantically sound, it suffers from unfortunate
interactions with cache coherence. To see why, imagine a situation in which

73 The side channel is an array so that multi-
ple eliminations can proceed in parallel. The
indices at which offers are made or looked
for follows the same exponential growth pat-
tern as the backoff timing.

74 Hendler et al. (2004), “A scalable lock-
free stack algorithm”

7> Without parallelism, busywaiting of any
kind is useless: no concurrent thread could
possibly change conditions while another
“actively” waits.

7¢ A context switch occurs when a core stops
executing one thread and begins executing
another, in this case because the execution
of the first thread was “blocked,” waiting for
some condition to change.

http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/1007912.1007944

38 CONCURRENCY MEETS PARALLELISM

many threads are concurrently attempting to acquire the lock. As these
waiting threads spin around the acquisition loop, they generate a massive
amount of coherence traffic: each cas attempt requires gaining exclusive
access to the cache block containing the lock, so the block continuously
ping-pongs between the waiting cores. The traffic deluge eats into memory
bandwidth that could otherwise be used by the lock-holding thread to get
actual work done. By waiting so aggressively, threads delay the very thing
they are waiting for.

The situation can be mildly improved by guarding the cas with a snapshot
of the lock, adopting an approach more in the spirit of optimistic concur-
rency:

acq(lock) = if get(lock) then acq(lock) //lock is not free; retry
else if cas(lock, false, true) then () //lock appears free; race to claim it
else acq(lock) // lost race to claim; retry

It is enlightening to think carefully through the cache implications of this new
strategy. After the lock is acquired by a thread, its value will remain true until it
is released. Consequently, the cache block holding it can be held concurrently
by all the waiting threads in “shared” mode. When these threads spinwait on
thelock, they will do so by accessing their own local cache—the ping-ponging
has disappeared.

But what happens when the lock is released? First, the lock-holder must
gain exclusive access to the locK’s cache block. Afterwards, all of the waiting
threads will read that block, requiring coherence traffic proportional to the
number of waiters. All of the waiters will observe that the lock is now free,
and so they will all attempt to cas it at once. Only one cas will win, of course,
but nevertheless all of the waiting threads will get the cache block in exclusive
mode for their cas attempt. Thus, while the revised locking strategy eliminates
coherence traffic during the critical section, there is still a cascade of traffic
once the lock is released. For popular resources and short critical sections,
this traffic spells disaster.

The most important strategy for cutting down this traffic was introduced
by Mellor-Crummey and Scott (1991), who suggested that waiting threads
should place themselves in a (lock-free) queue. Instead of spinwaiting on the
lock itself, each thread spinwaits on a distinct memory location associated
with its entry in the queue. A thread releasing the lock can therefore signal
a single waiting thread that the lock is available; there is no cascade of cas
attempts (most of which will fail).

WAITING ALSO PLAYS A ROLE IN OPTIMISTIC CONCURRENCY. Take Treiber’s
stack. Both push and tryPop are total operations: they can in principle succeed
no matter what state the stack is in, and fail (and retry) only due to active
interference from concurrent threads. A true pop operation, on the other
hand, is partial: it is undefined when the stack is empty. Often this is
taken to mean that the operation should wait until another thread changes

2.5

THE RUDIMENTS OF SCALABLE CONCURRENCY: CORRECTNESS 39

conditions such that the operation is defined, e.g., by pushing an item onto
the stack. Partial operations introduce considerable complexity, because all of
the operations on the data structure must potentially signal waiting threads,
depending on the changes being performed.

William N. Scherer, IIT and Scott (2004) introduced the concept of dual
data structures, which contain both traditional data as well as its “dual,’
reservations for consuming a bit of data once it has arrived. The beauty of
the approach is that both data and reservations can be added to a data
structure following the usual methods of optimistic concurrency, which
makes it possible to build scalable concurrent abstractions with both total
and partial operations. In fact, as we will see in Chapter 8, even the scalable
locks of Mellor-Crummey and Scott (1991) can be viewed as a kind of dual
data structure in which acq is a partial operation.

THE RUDIMENTS OF SCALABLE CONCURRENCY: CORRECTNESS

When reasoning about “reactive systems” which participate in ongoing inter-
action with their environment, it is helpful to distinguish between two basic
kinds of correctness properties:

e SAFETY PROPERTIES, which say that “nothing bad happens.” Semi-formally,
a pure safety property is one for which any violation can be witnessed by
a finite amount of interaction, no continuation of which will satisfy the
property. A failure of safety requires only finite observation.

e LIVENESS PROPERTIES, which say that “something good keeps happening”
Semi-formally, a pure liveness property is one for which every finite
amount of interaction has some continuation that will satisfy the property.
A failure of liveness requires infinite observation.

Each step of internal computation a thread takes is considered to be an
(uninformative) interaction. So, for example, the fact that a thread will send
some message is a liveness property: if all we have observed so far is that
the thread has computed internally for some finite number of clock ticks, we
cannot say yet whether the thread will eventually return a result. We can only
observe divergence by waiting for a message for an “infinite amount of time.”
On the other hand, if the thread sends the wrong value, it will do so after
some finite amount of interaction, and no subsequent amount of interaction
will erase that mistake.

In common temporal logics, every property can be expressed as a con-
junction of a pure safety property with a pure liveness property.”” Such a
decomposition is useful because the two kinds of properties are best tackled
with different tools (invariance and well-founded measures, respectively),
and the proof of a liveness property often builds on already-proved safety
properties.

Although we will be exclusively concerned with proving safety properties,
it is helpful to understand both the safety and the liveness properties that are

77 Alpern and Schneider (1985); Manolios
and Trefler (2003)

2.5.1

40 CONCURRENCY MEETS PARALLELISM

commonly sought for scalable concurrent algorithms, since both influence
algorithm design. We briefly discuss them next.

Safety: linearizability

From the outset, the safety of scalable concurrent algorithms has been char-
acterized by a property called linearizability.”® The property is intended to
formalize the “atomic specification” of abstractions we discussed informally
in §2.2.4. The idea is to view the behavior of a data structure abstractly, as a
sequence of calls by and responses to some number of concurrent clients. In
such a “history” of interaction, clients cannot issue a new request until the
last request has returned, but multiple clients may have outstanding requests,
which abstractly models the unpredictable timing of concurrent interaction.
The goal of linearizability is to formalize the following principle:

Each method call should appear to take effect instantaneously at some moment
between its invocation and response.

—Herlihy and Shavit (2008, chapter 3)

An implementation is “linearizable” if, for every history it generates, it is
possible to produce a “matching atomic history” that obeys its specification. A
matching history is a sequence of the same calls and responses in a possibly-
different order, subject to a simple constraint: if a given response occurred
prior to a given call in the original history, it must do so in the matching
history as well. A history is atomic if every call is immediately followed by its
response—meaning that the interactions were purely sequential. An atomic
history can easily be validated against a traditional, sequential specification
for an abstraction.

To illustrate these ideas concretely, consider a concurrent stack. Here are
two very similar histories, only one of which linearizable:

LINEARIZABLE NOT LINEARIZABLE
cally(push, 3) callg(push, 3)

call; (push, 7) call; (push, 7)

call, (tryPop, ()) resp, (push, ())

respy (push, ()) cally (tryPop, ()

call; (tryPop, ()) call; (tryPop, ())

resp; (push, ()) resp; (push, ())

resp, (tryPop, none) resp, (tryPop, none)
resps (tryPop, some(3)) resps (tryPop, some(3))

The atomic history matching the first history is as follows:

ATOMIC HISTORY

call,(tryPop, ()); resp,(tryPop, none)
cally(push, 3); respo(push, ())
call;(tryPop, ()); resp;(tryPop, some(3))
call; (push, 7); resp; (push, ())

78 Herlihy and Wing (1990),
“Linearizability: a correctness condition for
concurrent objects”

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972

2.5.2

THE RUDIMENTS OF SCALABLE CONCURRENCY: CORRECTNESS 41

The second history, on the other hand, is not linearizable because the push by
thread 0 is completed prior to the attempt to pop by thread 2—and so, given
the circumstances, the latter call cannot lead to a response of none.

The intent of linearizability is to reduce concurrent specifications to se-
quential ones, and therefore to reduce concurrent reasoning to sequential
reasoning. It has long served as the “gold standard” safety specification for
concurrent data structures with method-atomic specifications. Nevertheless,
we will argue in §3.3 and §3.4 that contextual refinement is the semantic
property that clients want, rather than linearizability. Contextual refinement
directly formalizes the idea that a client can link their program with a scalable
concurrent algorithm for performance, but reason about it as if they were
using a much simpler, coarse-grained algorithm.

Liveness: nonblocking progress properties

One downside of locking is that a delay of the thread holding a lock results in
a further delay of all threads waiting for the lock. For example, a very unlucky
thread might encounter a page fault within its critical section, with disastrous
performance ramifications. Whether or not such a situation is likely to arise
in practice, it is a problem that many scalable concurrent algorithms simply
do not have: they are formally non-blocking.”®

Non-blocking liveness properties are applied to scalable concurrent ab-
stractions that provide some set of methods. They characterize progress
guarantees for completing in-progress, concurrent method invocations.

The weakest property is obstruction-freedom, which says that at any time,
if a single thread executing a method is allowed to proceed in isolation, it will
eventually complete the method execution. With an obstruction-free abstrac-
tion, method invocations can only fail to make progress if another thread
is actively interferes. In contrast, with a lock-based abstraction, an isolated
thread executing a method may fail to make progress for the simple reason
that it does not hold the lock, and will be unable to acquire the lock until
some other thread makes progress. The idea behind obstruction-freedom is to
model an unbounded delay of one thread as a permanent failure; obstruction-
freedom then asks that other threads can continue making progress in such
a case. It thereby precludes the use of locks.

A yet-stronger condition is the (confusingly named) lock-freedom prop-
erty, which says that if some method is being executed, some method will
complete execution—but not necessarily the same one! In other words, a
method invocation can only fail to make progress if some other invocation
is succeeding.3° Lock-freedom neither assumes fairness®® from the sched-
uler, nor guarantees fair method execution. It implies obstruction-freedom
because if only one method is executing, that must be the method making

progress.

7 Herlihy and Shavit (2008), “The Art of
Multiprocessor Programming”

% Consider the cases in which cas can fail in
Treiber’s stack, for example.

% e.g, that a thread that is continuously
ready to execute will eventually be executed.

42 CONCURRENCY MEETS PARALLELISM

Finally, wait-freedom simply guarantees that every method invocation
will eventually finish in a finite number of steps, even if concurrent method
invocations arrive continuously.

Altogether, we have:

wait-free = lock-free = obstruction-free = nonblocking

Most scalable concurrent data structures are designed to be lock-free, and
many rely on helping (§2.4.5) to achieve this goal. Wait-freedom is considered
prohibitively expensive. Obstruction-freedom was introduced to characterize
progress for some software transactional memory implementations.82 Just as
complexity analysis does not tell the whole story of real-world performance
for sequential algorithms, non-blocking liveness properties are only part of
the story for scalable concurrency—they can sometimes profitably be traded

in exchange for better cache behavior.%3

82 Herlihy, Luchangco, and Moir (2003),
“Obstruction-free synchronization: double-
ended queues as an example”

% Hendler et al. (2010), “Flat combining
and the synchronization-parallelism
tradeoft”

http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

Part II

UNDERSTANDING SCALABLE CONCURRENCY

A calculus for scalable concurrency

Synopsis This chapter formalizes a calculus, Ff,, which is a variant of
the polymorphic lambda calculus extended with mutable references, cas and
fork—the essential features needed to model scalable concurrent algorithms
written in a high-level language. The chapter defines and discusses a memory
consistency model (§3.2), refinement (§3.3), and atomicity (3.4), in particular
contrasting linearizability and refinement (§3.4.2). Some auxiliary technical
details appear in Appendix A.

THE CALCULUS

Any formal study of concurrent algorithms must begin by formalizing a
language in which to write them. In the past, scalable algorithms have
been formalized in low-level, C-like settings, usually untyped and without
abstraction mechanisms or a way to define procedures. But in practice, even
algorithms written in low-level languages use hiding to enforce local proto-
cols on their data. Libraries like JUC and TBB are written in typed, object-
oriented languages and use polymorphism to provide generic data structures.
JUC in particular provides support for futures and fork/join computations
that is intrinsically higher-order, relying on the ability to pass objects with
unknown methods as arguments and on inheritance, respectively. There are
also generic constructions for producing concurrent data structures from se-
quential ones—e.g., Herlihy’s universal construction' and the more practical
“flat combining” construction®>—which are best-expressed as higher-order
functions (or even as SML-style functors).

We therefore study scalable concurrency within a calculus we call Fl,
which is a variant of the polymorphic lambda calculus (System F), extended
with tagged sums, general mutable references (higher-order state), equi-
recursive types, cas, and fork. The result is a very compact calculus with that
can faithfully model JUC-style algorithms, including those that use polymor-
phic, recursively-linked data structures, hiding, and higher-order features.
As we will see in Chapters 4 and 5, these features also suffice to formalize
the interaction between linguistic hiding mechanisms and concurrent data
structures, or, more succinctly, to study concurrent data abstraction.

“Language is the armory of the human mind,
and at once contains the trophies of its past
and the weapons of its future conquests.”

—Samuel Taylor Coleridge

' Herlihy (1991), “Wait-free
synchronization”

> Hendler et al. (2010), “Flat combining and
the synchronization-parallelism tradeoff”

45

http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

46 A CALCULUS FOR SCALABLE CONCURRENCY

COMPARABLE TYPES

TyPES

VALUES

EXPRESSIONS

o

unit
bool
nat
T+T
ref(T)
ref:(T)

pa.o

TXT
Ho.T
Ya.t

T—>T

9

true

false

(v,v)
rec f(x).e
A.e

null

X

v
if ethen e else e

e+e

(e e)

let (x,y) = e ine

ee

e _

case(e,null = e, x = e)
inj; e

case(e, inj; x = e,inj, y = e)

get(e[i])
e[i] = e

cas(e[i], e, e)

fork e

Unit (i.e., nullary tuple)
Boolean

Natural number
Tagged union

Mutable tuple reference
Optional reference

Recursive comparable type

Comparable type
Type variable
Immutable pair type
Recursive type
Polymorphic type
Function type

Unit value

Boolean value

Boolean value
Number value

Pair value

Recursive function
Type abstraction

Heap location

Null optional reference
Variable

Value

Conditional

Addition

Pair introduction

Pair elimination

Function application

Type application

Optional reference elimination
Tagged union injection
Tagged union elimination
Mutable tuple allocation
Mutable tuple dereference
Mutable tuple assignment
Mutable tuple atomic update

Process forking

Figure 3.1:) syntax

3.1.1

Syntax

Figure 3.1 gives the syntax of Fl,. The language is essentially standard, but
there are subtleties related to cas, and a few unusual aspects that help keep
our treatment of algorithms concise. We discuss both below.

MODELING COMPARE-AND-SET As we discussed in §2.3.2, cas is a
hardware-level operation: it operates on a memory cell containing a single
word-sized value, comparing that value for physical equality and updating it
as appropriate. In practice, this word value is usually a pointer to some other
object.3 In a low-level language, none of this is surprising or problematic. In
a high-level language, however, pointer comparison is not always appropriate
to expose, since it reveals the allocation strategy of the compiler (and other-
wise may break programmer abstractions). On the other hand, languages like
Java (and, of course, C++) already expose pointer comparisons, and these are
the languages used to build JUC and TBB.

In order to faithfully model JUC-style algorithms without strongly com-
mitting the linguistic model to pointer comparison, we introduce a distinct
category of comparable types o, as opposed to general types 1.4 The cas
operator can only be applied at comparable type, so the distinction allows
a language designer to choose which physical representations to reveal. For
simplicity, FY, treats only base types (i.e., unit values, natural numbers, and
booleans), locations (i.e., reference types) and tagged unions (i.e., sum types)
as comparable. The inclusion of tagged unions is justified by the fact that the
operational semantics explicitly heap-allocates them; see §3.1.3.> Comparable
types also include recursive type definitions over other comparable types,
which is a bit subtle: the type variable introduced by the recursion can only
appear within a general type 7, which in turn is protected by a layer of
indirection through the heap (either in a tagged union or reference). The
idea is just that there needs to be some physical source of identity to actually
compare, and in the end we use erased equi-recursive types, which have no
physical, run-time existence.
KEEPING THINGS CONCISE ~ We make several concessions in the calculus
that will pay dividends later on, when formally reasoning about algorithms:

e Following Ahmed (2006), terms are not annotated with types, but poly-
morphism is nevertheless introduced and eliminated by explicit type
abstraction (A.e) and application (e _).

e References are to mutable tuples ref(T) (as opposed to immutable pairs
T, X 1), useful for constructing objects with many mutable fields.® The
term get(e[i]) reads and projects the i-th component from a reference e,
while e[i] := e’ assigns a new value to that component. When e is a single-
cell reference, we will usually write get(e) instead of get(e[1]) and e := €’
instead of e[1] := ¢’.

THE CALCULUS 47

3 See §2.4.3.

4The distinction could also be phrased in
terms of a kinding system: one would have a
single syntactic category of types, but assign
types distinct kinds of either comparable
C or general x, with a subkinding relation
C < x. We have opted for the lighter-weight
syntactic distinction, and model subkinding
by embedding comparable types into the
syntax of general types.

> An alternative design would be to intro-
duce an explicit type constructor of im-
mutable “boxes,” which simply wrap a value
of an arbitrary type with an explicitly-
comparable identity. Boxed values would
then be the only comparable type. A smart
compiler would be able to treat the box as a
no-op most of the time.

¢ The overbar notation represents a vector.

3.1.2

3.1.3

48 A CALCULUS FOR SCALABLE CONCURRENCY

e The type ref;(7) of “option references” provides an untagged union of
null values and reference types.” Because reading and writing operations
work on references, and not option references (which must be separately
eliminated by cases), there are no null-pointer errors.

The net effect is flatter, less verbose type constructions with fewer layers of
indirection.

DERIVED FORMS We will freely use standard derived forms, e.g.,

Ax.e = recz(x).e z fresh
letx=eine’ = (Az.e')e z fresh
e;e/ = letz=eine' zfresh

as well as nested pattern matching and recursive function definitions in let-
bindings.

Typing

The type system for Fl,; is quite straightforward to formalize. First, there are

typing contexts:
TYPE VARIABLE CONTEXTS A == - | A«
TERM VARIABLE CONTEXTS [== | [,x:7
COMBINED CONTEXTS Q == AT

The typing judgment in Figure 3.2 uses combined typing contexts € to
reduce clutter; comma-adjoined type or term variables are simply joined to
the appropriate context within. The calculus additionally requires that all
recursive types pa.7 be productive, meaning that all free occurrences of «
in 7 must appear under a non-y type constructor.

Operational semantics

The operational semantics of Fly is formulated in evaluation-context style.
To define the primitive reductions, we first formalize heaps:

HEAP-STORED VALUES u € HeapVal == (¥) | inj; v

HEeaps h € Heap 2 Loc — HeapVal

Here we clearly see that tagged sums and mutable tuples are heap-allocated:
their canonical forms are heap-stored values u rather than values v. Heaps
are just partial functions from locations € to heap-stored values. Primitive
reductions work over pairs of heaps and expressions, and their definition
(Figure 3.3) is entirely straightforward.

7 Contrast this with a tagged option type,
which would require an extra indirection
through the heap.

WELL-TYPED TERMS

Q+ () : unit Q + true : bool

Q + e : bool Qrei:T Qre:n

Qre:1

Q) + false : bool

Qrifethenejelsee,: T

Q. f:t'>1tx:Tre:t Qre: 7' >1

QO+ n:nat

Qre:Tx1

THE CALCULUS 49

Q,x:THXx:T

Qx:1,y:pre:t

Qr (e, e):11x1,

Qre 7

Qrrec f(x)e:1T > 71

Q+ e :ref,(7) Qre:1

Qree:r

Qx:ref(T)Fey: 7

Q1+ case(e,null = e, x =€) : T

Q + null : ref (7)

Qrlet(x,y)=eine :7

Q+ e:ref(T)
Q+ e:ref(7)

Qre:T;

Qrinjje:n+1

Qre:1+1; Q,x:Tj+e;: T Qare:T Qre:Va.1 Qre;:T;
Q + case(e,inj; x = ey, inj, x =€) : T QrAe:Va.r Qre_:1[7/a] Q + new (€) : ref(T)
Q+ e:ref(7) Q+ e:ref(7) Qre' 1 Q+ e :ref(T) ;=0 Qre,:o Qre,:0
Q+ get(e[i]): T Qre[i] := € :unit Q + cas(e[i], eo, €,) : bool
Q + e : unit Qre:pa.t Qre:1[pa.7/a]

Q + fork e : unit

PRIMITIVE REDUCTIONS

hin+m

h; get(€[i])
hye[i] = v
hycas(€[i], v, Vi)
hycas(€[i], v, Vi)

h; case(#, inj, x = ey, inj, x = e;)

h;if true then ¢, else e,

h; if false then e else e,

h; case(null, null = e, x = e;)
h;case(€,null = e, x = e;)
hilet (x,y) = (vi,vz) ine

h; (rec f(x).e) v

hsinj; v

h;(A.e) _

h;new (V)

Qre:tfpa.t/a]

h; k

hyv;

hle[i] =v]; ()
h[€[i] = v,]; true
h; false
hye;[v/x]

h; e

h; e

h; ey

hyey[€/x]
hse[vi/x,v2/y]

hse[rec f(x).e/f,v/x]

hy[€winj; v]; €
h;e
helew (v)];e

Qre:pat

Figure 3.2: Fc’f,s typing

when k =n+m
when h(¢) = (V)
when ¢ € dom(h)
when h(&)[i] =,
when h(€)[i] £ v,
when h(€) = inj; v

Figure 3.3: Ff,; primitive reductions

50 A CALCULUS FOR SCALABLE CONCURRENCY

To formalize general reduction, we first define the evaluation contexts K,
which specify a left-to-right, call-by-value evaluation strategy:

K == []]|ifKtheneelsee | K+e | v+K | (K,e) | (v,K)
let (x,y)=Kine | Ke | vK | inj; K | K_

new (v,K,e) | get(K[i]) | K[i] = e | v[i] == K

|
| case(K,inj, x = e,inj, x = ¢) | case(K,null = e, x = ¢)
|
| cas(K[i],e,e) | cas(v[i],K,e) | cas(v[i],v,K)

A program configuration (or just “configuration”) ¢ is a pair of a heap and
a thread pool T:

T e ThreadPool £ N fir*lExpression
¢ w= IT

The thread pool assigns each thread a unique identifier in N. For simplicity,
the language does not allow a thread to observe its identifier; while adding
this feature (along with the ability to wait for termination of a given thread)
to the language is easy, doing so would complicate the model in Chapter 5
and is not necessary for the algorithms we study.

Finally, reduction on configurations simply allows a given thread to exe-
cute a step (possibly within an evaluation context) and defines the semantics
of fork:

GENERAL REDUCTION T - h;T
hie > h';e

hTw i Kle]] - h;Tw i K[e']]

h;Tw[i— K[forke]] > s Tw[i~K[()]]w[j~ e]

THE MEMORY CONSISTENCY MODEL

The semantics we have just defined provides a model of shared-memory
concurrency that, until recently, was uncontroversial: the heap h in Ff,;
provides a global, sequentially consistent view of memory to all threads.
That is, the semantics interleaves thread execution, and each step a thread
takes operates on that single, global heap. Each update a thread performs is
immediately visible to all other threads through the global heap.

Unfortunately, such an account of shared memory is wildly unrealistic in
general, for reasons that span the entire tower of abstractions that make up
modern computer systems:

e Optimizing compilers liberally reorder instructions in ways that are un-
observable for sequential code, but very much observable for concurrent
code.

THE MEMORY CONSISTENCY MODEL 51

e Writes performed by a CPU are not sent directly to main memory, which
would be extremely expensive; instead, they update the most local cache.®
Even with cache-coherent architectures, it is possible for activity on differ-
ent memory locations to appear to happen in different orders to different
CPUs.

e CPUs also reorder instructions, for the same reasons and with the same
caveats as compilers.

These problems all stem from the implementation of “memory” as an abstrac-
tion for sequential code—an abstraction that begins leaking its implementa-
tion details in the concurrent case.

Because sequential performance is paramount, the solution is to weaken
the abstraction rather than to change the implementation. The result is the
(ongoing) study and formulation of memory consistency models at both the
hardware and language levels.

Here we are concerned only with language-level memory models, and the
key question is: how does the sequentially-consistent model of Ff,s limit the
applicability of our results in practice? More concretely, if we prove the cor-
rectness of an algorithm in FY., what does that tell us about a transliteration
of the algorithm into, say, Java or Scala?

While no modern memory model guarantees sequential consistency in
general, the primary goal of most memory models is to delineate a class
of “well-synchronized” programs® for which memory is guaranteed to be
sequentially-consistent (while still leaving plenty of room for optimization).
The idea is that certain language primitives are considered to be “synchro-
nized,*® meaning amongst other things that they act as explicit barriers to
instruction reordering and force cache flushes. In other words, synchronized
operations effectively “turn off” the problematic optimizations to the memory
hierarchy, and provide walls over which the optimizations cannot cross.
Lock acquisition/release and cas are examples of such operations. Moreover,
many languages provide a way to mark a particular reference as sequentially-
consistent," meaning that every read and write to the reference acts as a
synchronized operation.

We have glossed over many details, but the upshot is clear enough: the
memory model of Fl; is realistic if we consider all references as being
implicitly marked as sequentially-consistent. In particular, if a transliteration
of an algorithm into a real language explicitly marks its references as volatile,
the algorithm will behave as it would in FE.. This strategy is reasonable
for a majority of scalable concurrent algorithms, which in practice use such
marked references anyway. But it does mean that Ff, cannot be used to
study more subtle algorithms, such as RCU in Linux," that use references
with weaker consistency. It also means that Ff,; cannot specify the “happens-
before” implications of concurrency abstractions that make up part of
the API for libraries like JUC. Finally, it means that Fl, is inappropriate
for studying reference-heavy sequential code, which would run incredibly

8 See §2.3.

° Proper synchronization is often called
data race freedom”

* For simplicity, this discussion glosses over
the various distinctions that some memory
models make between different flavors of
synchronization or barrier operations.

"In Java, this is provided by the volatile
keyword.

* McKenney and Slingwine (1998), “Read-
copy update: Using execution history to
solve concurrency problems”

 The “happens-before” relation is a key as-
pect of many memory models.

http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

33

52 A CALCULUS FOR SCALABLE CONCURRENCY

slowly—though it should be noted that in a functional language such code
is relatively uncommon.

CONTEXTUAL REFINEMENT

The essence of abstraction is hiding: abstraction is only possible when some
details are not meaningful and need not be visible. Or, put differently, an
abstraction barrier delineates which details are visible at which “level of
abstraction.” When we speak of specification and implementation, we usually
think of these as characterizing, respectively, what a client can observe from
outside an abstraction barrier and how those observations are generated by
code within the barrier. Clients thus only reason about what an abstraction
does (its “spec”), not how (its implementation).

Specifications come in many forms, some of which are tied to a particular
logical formalism. But one particularly simple, logic-independent method
of specification is a so-called reference implementation, which avoids saying
“what” an abstraction should do by instead saying “how” to implement a very
simple version of the abstraction that exhibits all the permissible observable
behavior. This form of specification has many downsides—it is often more
concrete than necessary, and it is very easy to overspecify—but it is well-
suited for libraries where it is difficult to formulate a sufficiently general
“principal specification,” and where there is a large gap in complexity between
the real and the reference implementations. Clients are then free to introduce
further abstraction, e.g., by showing that the reference implementation in
turn satisfies some other, more abstract speciﬁcation, and then reasoning on
the basis of that specification.

This section defines the standard notion of contextual refinement (here-
after: refinement), which we use to formalize specification via reference
implementation. We discuss our particular use of reference implementations
in §3.4.

REFINEMENT CAPTURES OBSERVABLE BEHAVIOR VIA CLIENT INTERACTION.
Suppose e, is a library, and e; is a reference implementation for it. If no client
can tell that it is linked against e, rather than e;—that is, if every “observable
behavior” of e, can be reproduced by e;—then indeed e, meets its spec e, i.e.,
e, refines e;. Conversely, if e; behaves in a way that is meaningfully different
from its spec, it should be possible to find a client that can tell the difference."4

We formalize the notion of an unknown (but well-typed!) client as a
context' C. Contexts are classified by a standard typing judgment

C:(Q,1)~(Q,7)

such that whenever Q + e : 7, we have Q' + C[e] : 7. The notation C[e]
indicates plugging the expression e into the hole of context C, yielding a new
expression.

“Type structure is a syntactic discipline for
maintaining levels of abstraction.”

—]John C. Reynolds, “Types, abstraction
and parametric polymorphism”

“Don’t ask what it means, but rather how it is
used.”

—Ludwig Wittgenstein

'+ This is, in fact, a tautology: a difference is
“meaningful” precisely when it is observable
by a client.

5 A context is an expression with a “hole”
into which another expression can be
placed.

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

3.4

Then, if Q + e, : Tand Q + e : 7, we say e; contextually refines es, written
QEe <e:Tif:

for every i, jand C: (Q,) ~ (@, nat) we have
VaVT,. @i Cle]] =" hslir n]u T,
= 3T;. &[jr Cles]] =" hg[j n]w Ty

Thus an “observable difference” between two terms is any distinction that
some client can transform into a difference in the natural number its main
thread returns. Refinement is asymmetric, since the spec e sets an upper
bound on the behaviors® of the implementation e,. It is also a congruence,
since any composition of implementations refines the corresponding compo-
sition of specs.

Refinement hinges on the power of the context C: what can it observe, and
with what can it interfere? The more powerful the context, the less freedom
we have in implementing a specification:

e Concurrency changes the when, but not the what, of observation. For
example, in a first-order language, a sequential context can only interact
with the state before or after running the program fragment in its hole. A
concurrent context might do so at any time. But the allowed interactions
are the same in either case.

e Abstraction mechanisms, on the other hand, determine what but not when
observations are allowed. For example, a context can only observe a func-
tion by applying it, concurrently or sequentially. The context cannot tell
directly whether the function is in fact a closure containing some internal
mutable reference; it can only observe which outputs are generated from
which inputs over time. The same goes for abstract data types, which deny
the context access to their representation.

The scalable concurrent algorithms we will study in the next several chapters
rely on abstraction to limit the power of their (possibly concurrent) clients:
essentially all of the interesting action is hidden away in their internal state.

OBSERVABLE ATOMICITY

Most of the scalable algorithms we will study within Fly, are data structures
whose operations are intended to “take effect atomically;” even though their
implementation is in fact highly concurrent.” We are now in a position
to formalize this intent: a data structure is observably atomic if it refines a
canonical atomic spec, i.e., a spec of the form

let X = e in mkAtomic(ey, ..., e,)

OBSERVABLE ATOMICITY 53

1 The plural here is intended: Fly, has sev-
eral sources of nondeterminism, including
memory and thread allocation and thread
interleaving. The spec should exhibit the
maximum observable nondeterminism.

7 See §2.2.4 and $§2.4.

3.4.1

54 A CALCULUS FOR SCALABLE CONCURRENCY

where the overbar notation represents a (possibly empty) list, and where

acg = rec f(x).if cas(x, false, true) then () else f(x)

1>

rel Ax. x = false
withLock(lock, e) 2= Ax.acq(lock); let r = e(x) in rel(lock); r
mkAtomic(e,...,e,) = letlock = new (false) in

(withLock(lock, 1), ..., withLock(lock, e,))

The idea is that a “canonical atomic spec” is just a data structure protected
by a global lock, for which mutual exclusion between method executions
(and hence their atomicity) is trivially assured. Since global locking is the
simplest way to achieve atomicity,'® such specs are reasonable “reference
implementations” More flexible definitions are certainly possible, but this
simple one suffices for our purposes.

To see how this definition plays out concretely, we turn back to concurrent
counters. Recall the simple (but surprisingly scalable) optimistic counter
from $2.4.2:

new 0

A().let n =getr
in if cas(r, n,n + 1) then () else inc()
read = A().getr

in (inc, read)

casCnt = let r

inc

A canonical atomic spec for the counter is as follows:
atomCnt = let r = new 0 in mkAtomic(A().r := getr+1, A(). getr)
And indeed, we will show as a warmup example (§6.2) that
- casCnt < atomCnt : (unit — unit) x (unit - nat)

which means that a client can safely link against casCnt while reasoning as
if it were linked against atomCnt. Admittedly, the “simplification” is rather
underwhelming in this case, but for even slightly more sophisticated algo-
rithms, the canonical atomic spec is much easier to reason about than the
implementation.

Although the definition of the locks used for mkAtomic internally use cas,
in practice we reason about it more abstractly, e.g., by using very simple Hoare
triples that summarize their effect.'

The problem with atomic blocks

Despite the fact that we ultimately reason about global locks in an abstract
way, it is still a bit unsatisfying that canonical atomic specs need to talk
about locks at all. Why not instead add an atomic keyword (to be used by
specifications only) with a single-step operational semantics, e.g,

hye =* hsv

h; K[atomic e] = h'; K[v]

*® See the discussion at the beginning of §2.4.

* This is, in fact, an example of the “further
abstraction” that a client of a reference im-
plementation can employ (§3.3).

3.4.2

Although canonical atomic specs would still be written in essentially the same
way (trading atomic for mkAtomic), their interpretation would be more triv-
ially atomic. In fact, such “atomic blocks” provide strong atomicity, meaning
that they appear atomic even if they access memory that is also access outside
of any atomic block. The mkAtomic sugar, by contrast, supports only weak
atomicity: the methods within it only execute atomically with respect to each
other, not with respect to arbitrary other code.*®

Unfortunately, the semantic strength of such an atomic keyword is also
its downfall: it empowers contexts to make unrealistic observations, and in
particular to observe the use of cooperation in scalable concurrent algorithms.
To see why, consider an elimination stack (§2.4.5)*" that provides push and
tryPop methods, together with the obvious canonical atomic spec for a stack.
In F%., the elimination stack refines its spec, as one would expect. But if we
added an atomic keyword, we could write a client like the following:

fork push(0); fork push(1);
atomic { push(2); tryPop() }

When linked with the stack specification, this client’s main thread always
returns some(2), because its definition of tryPop always pops off the top item
of the stack, if one is available. But when linked with the elimination stack
implementation, this client could return some(0), some(1), or some(2)! After
all, the elimination-based tryPop does not always look at the top of the stack—
it can instead be eliminated against concurrent push operations. Since the
forked push operations are concurrent with the embedded tryPop operation,
they may therefore be eliminated against it.

In short, atomic is too powerful to be allowed as a program context.**

While it is possible to integrate atomic in a more restricted (and hence less
problematic) way, doing so is tricky in a higher-order language like Fl;,. We
have investigated the use of a type-and-effect system like the one studied by
Moore and Grossman (2008): types with a “not safe for atomic” effect classify
terms that may use atomic but not be placed within other atomic blocks. In
the end, though, the added complexity of a type-and-effect system together
with (surmountable) step-indexing problems?? convinced us to stick with the
simpler lock-based treatment of atomicity.

Refinement versus linearizability

We have proposed that the correctness*# of a scalable data structure should
be expressed by refinement of a canonical atomic spec, but nearly all of
the existing literature instead takes linearizability (§2.5.1) as the key safety
property. We close out the chapter by arguing in favor of the refinement
methodology.

At first blush, refinement and linearizability look rather different:

e While refinement has a fairly standard definition across languages, the
meaning of the definition is quite language-dependent. The previous

OBSERVABLE ATOMICITY 55

2° See Blundell et al. (2006) for a more de-
tailed discussion of weak and strong atomic-

ity.

> In particular, we consider a slight variant
of the elimination stack that may try elimina-
tion before trying its operation on the actual
stack.

22 This observation should serve as a warn-
ing for attempts to integrate STM (which
can provide a strong atomic facility) with
scalable concurrent data structures.

* See Birkedal et al. (2012) for a step-
indexed treatment of atomic.

*+In terms of safety §2.5.

56 A CALCULUS FOR SCALABLE CONCURRENCY

section gives a perfect example: by adding atomic to the language, we
would drastically change the refinement relationships, invalidating some
refinements that held in the absence of atomic.

e Linearizability, on the other hand, is defined in terms of quite abstract
“histories,” seemingly without reference to any particular language.

But to actually prove linearizability for specific examples, or to benefit for-
mally from it as a client, some connection is needed to a language. In partic-
ular, there must be some (language-dependent) way to extract the possible
histories of a given concurrent data structure—giving a kind of “history
semantics” for the language. Once a means of obtaining histories is defined,
it becomes possible to formally compare linearizability with refinement.

Filipovi¢ et al. (2010) study the relationship for a particular pair of first-
order concurrent languages. In both cases, linearizability turns out to be
sound for refinement, and in one case it is also complete.>> But such a study
has not been carried out for a higher-order polymorphic language like Fls,
and it is not immediately clear how to generate or compare histories for such
a language. In particular, the arguments and return values of functions may
include other functions (themselves subject to the question of linearizability),
or abstract types, for which a direct syntactic comparison is probably too
strong.

The key message of Filipovic et al. (2010) is that refinement is the property
that clients of a data structure desire:

Programmers expect that the behavior of their program does not change whether
they use experts’ data structures or less-optimized but obviously-correct data
structures.

—Ivana Filipovi¢ et al., “Abstraction for Concurrent Objects”

and that, consequently, linearizability is only of interest to clients insofar as it
implies refinement.

IF LINEARIZABILITY IS A PROOF TECHNIQUE FOR REFINEMENT, its soundness
is a kind of “context lemmaS saying the observable behavior of a data
structure with hidden state can be understood entirely in terms of (concur-
rent) invocations of its operations; the particular contents of the heap can
be ignored. The problem is that the behavior of its operations—from which
its histories are generated—is dependent on the heap. Any proof method that
uses linearizability as a component must reason, at some level, about the heap.
Moreover, linearizability is defined by quantifying over all histories, a quantifi-
cation that cannot be straightforwardly tackled through induction. Practical
ways of proving linearizability require additional technical machinery, the
validity of which must be separately proved.

* The difference hinges on whether clients
can communicate through a side-channel;
linearizability is complete in the case that
they can.

> Robin Milner (1977), “Fully abstract
models of the lambda calculus”

http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953

A similar progression of techniques has been developed for reasoning
directly about refinement (or equivalence), mainly based on (bi)simulations®
or (Kripke) logical relations.?® These methods directly account for the role of
hidden state in the evolving behavior of a data structure, and they also scale to
higher-order languages with abstract and recursive types. Recent logical rela-
tions have, in particular, given rise to an abstract and visual characterization
of protocols governing hidden state, based on state-transition systems.>®

The next two chapters show how to extend logical relations to deal with
sophisticated concurrent algorithms—connecting the correctness of these
algorithms to the theory of data abstraction while avoiding linearizability
altogether.

OBSERVABLE ATOMICITY 57

7 Abramsky (1990); Sumii and Pierce
(2005); Sangiorgi et al. (2007); Koutavas
and Wand (2006)

8 Pitts and Stark (1998); Ahmed (2006);
Ahmed et al. (2009); Dreyer, Neis, and
Birkedal (2010)

* Dreyer, Neis, and Birkedal (2010), “The
impact of higher-order state and control
effects on local relational reasoning”

http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566

Local protocols

SyNopsis This chapter introduces local protocols and develops, through
examples, the key ideas we use to handle scalable algorithms: role playing
via tokens ($4.3), spatial locality via local life stories (§4.2), thread locality via
specification resources (§4.4), and temporal locality via speculation (§4.5).

OVERVIEW

The motivation for proving a refinement e; < e; is to enable a client of alibrary
e, to reason about it in terms of some more abstract specification es. But to
actually prove refinement, it is vital to view the client more abstractly:

e DEFINITIONALLY, refinement requires consideration of every well-typed
context C into which a library e, can be placed. In the execution of the
resulting program C| ¢, |, the client C may invoke the library e, many times
and in many ways—perhaps even forking threads that use it concurrently.
In between these interactions with the library, the client may perform its
own local computations.

e INTUITIVELY, refinement should not depend on the execution of any par-
ticular clients, since the library must be well-behaved for all (well-typed)
clients. Moreover, libraries that hide their state within an abstraction
barrier greatly limit the scope of interaction: a client context can neither
observe nor alter the hidden state directly, so all interactions are mediated
by the library’s methods. From the perspective of a library, then, the
behavior of a client can be reduced to a collection of possibly-concurrent
method invocations.

To bring definition and intuition into alignment, we need a way of modeling
arbitrary client behavior without enumerating particular clients.

Protocols are the answer. They characterize hidden state: what it is, and
how it can change. The only way a client can interact with hidden state
is through the library, so protocols need only explain the behavior of the
library implementation' with respect to its hidden state. A particular client
is abstractly modeled by the moves in the protocol it makes through calls to
the library. An arbitrary client can then modeled by considering arbitrary
protocol moves. Protocols enable us to reason about method invocations
in isolation. Instead of considering an arbitrary sequence of prior method
invocations, we simply start from an arbitrary protocol state. And instead of

A programmer should be able to prove that
his programs have various properties and do
not malfunction, solely on the basis of what
he can see from his private bailiwick.”

—James H Morris Jr., “Protection in
programming languages”

“Protocol is everything”

—Francois Giuliani

>,

' Morris Jr. (1973)’s “private bailiwick”

59

http://dx.doi.org/10.1145/361932.361937
http://dx.doi.org/10.1145/361932.361937

60 LOCAL PROTOCOLS

considering arbitrary concurrent invocations, we simply force our reasoning
to withstand arbitrary “rely” (environment) moves in the protocol.

The state transition system approach

To make our discussion more concrete (and give some useful background),

we briefly review Dreyer, Neis, and Birkedal (2010)’s state transition system

(STS) approach to reasoning about hidden state in sequential languages.
Suppose we want to prove that oddCnt < cnt (§2.2.2), i.e., that:

let r = new 37 let r = new0
inc = A().7r := getr+2 inc = A().r = getr+1
read = A(). g“rz—_” < read = A().getr
test = A().isOdd(get r) test = A().true

in (inc, read, test) in (inc, read, test)

The hidden state of the oddCnt “library” is just the hidden reference r, which is
embedded in the exported closures (inc, read, test) but is not itself exported
directly. Consequently, the values it can take on are entirely determined by
(1) its initial value and (2) the modifications made possible by the library
methods. Since inc is the only method than can update the reference, we
describe r with the following STS:

Although we have labeled the nodes suggestively, in Dreyer et al.’s approach
the states of such transition systems are abstract: each state is interpreted as
an assertion on heaps. In Chapter 5 we will introduce a syntax and semantics
for assertions, but in the meantime we will describe them as needed.

For the above STS, the interpretation for a node n is

The interpretation I reveals a fundamental fact: refinement is proved via

rye=pn o x Iy "’s(

“relational” reasoning, meaning in particular that we relate the state of the
implementation heap (using separation logic-style> heap assertions x —; y)
to the state of the specification heap (using heap assertions x ~— y).3 After
all, like oddCnt, the specification cnt has hidden state that affects its behavior.
Any execution of the implementation must be mimicked by its specification,
in the style of a simulation. In particular, there are dual obligations for the
implementation and specification of a method:#

1. For every step an implementation method makes, any changes to the
implementation heap must be permitted by the STS, possibly by moving

to a new ST state. (Impl. step = STS step)

2. For any move made in the STS, it must be possible to take zero or
more steps in the specification method yielding a new specification heap

satisfying the new STS state. (STS step = Spec. step)

> In separation logic, the assertion x +— y
is satisfied by a heap with a single location,
x, that contains the value y (Reynolds 2002),
and * is a version of conjunction for which
the two conjuncts must be satisfied by dis-
joint portions of the heap.

* To distinguish the uses of the bound vari-
able r in oddCnt and cnt, we a-rename it to
r; and rg respectively.

+ Thus the interpretation I plays the role of
a “linking invariant” (or “refinement map”;
Hoare 1972; Abadi and Lamport 1991)—as
one would expect to find in any refinement
proof—but one whose meaning is relative to
the current ST state.

To prove that oddCnt refines cnt, we must in particular show refinement for
each method. Suppose we execute inc in oddCnt starting from an arbitrary STS
state 1, and hence a heap where r; has value ». In its second step of execution,
inc will update 7, to n + 2, which requires moving to the next STS state—and

hence, showing that cnt’s version of inc can be executed to take rs from n=37

2
to ("LW, which indeed it can.” The proof of refinement for read is even
more pleasantly trivial.® Finally, refinement for test is also easy, since the STS
is constrained enough to imply that 7, is always odd.

As an aside, we could have instead labeled the states by their “abstract”
value, and make the interpretation do the work of picking out the correspond-

ing concrete value:

with interpretation

I(n) =

This “alternative” STS/interpretation is semantically identical to the original

e (2n+37) x

rs =g N

one.

It turns out that, however, that the original STS is overkill: the fact that
oddCnt refines its spec does not in any way depend on the monotonically-
increasing nature of r. All that is really needed is an invariant. Simple
invariants can be expressed by one-state systems, e.g.,

with the interpretation giving the invariant:

I(DummyState) = 3n.r >, (2n+37) =

rs =g N

Even though there are no “moves” in the ST, a change to the implementation
heap requires a corresponding change to the specification heap in order for
the dummy state’s interpretation to be satisfied—so the proof obligations for
refinement using this STS are essentially the same as for the original one.

As IS WELL KNOWN, INVARIANTS ARE NOT ALWAYS ENOUGH, especially when
reasoning about concurrency.” We close the discussion of Dreyer, Neis,
and Birkedal (2010) with a classic, so-called “awkward” example,® where
invariants fail even in the sequential setting:

let x =new (0)inAf.x:=1; f(); get(x) =< Af.f();1

The example captures, in the most trivial way possible, hidden state that is
lazily initialized. It is contrived, but illustrative and subtle. The subtlety arises
from the dynamics of control. The implementation® first allocates x with
value 0, and then yields control to the client, returning a closure. When the
client later invokes the closure, the internal state is updated to 1, but then

OVERVIEW 61

5 We know; at the outset, that n = 2m +37 for
some m, due to our choice of node labels.

¢ As if the interpretation I was designed
specifically to support it. . .

7 Jones (1983), “Tentative steps toward

a development method for interfering
programs”

8 The example is due to Pitts and Stark
(1998), who dubbed it “awkward” because
their invariant-based method could not
cope with it.

% The term on the left.

http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925

4.1.2

62 LOCAL PROTOCOLS

control is again returned to the client (by invoking the callback, f). How do
we know, upon return, that x has the value 12*°

Intuitively, x must have the value 1 because the only code that can change
x is the very function under consideration—which sets it to 1."* Formally, we
can capture the irreversible state change of x via a simple STS:

with the interpretation I(n) = x ~; n."* According to this STS, after the
expression x := 1 is executed, the protocol is in its final state—and, no matter
what the callback does, there’s no going back.

Scaling to scalable concurrency

Our “local protocols” build on Dreyer, Neis, and Birkedal (2010)’s state transi-
tion systems,'? generalizing them along several dimensions in order to handle
scalable concurrent algorithms. We next briefly outline these extensions, and
then devote the rest of the chapter to explaining them through examples.
Chapter 5 then formalizes protocols and a model built around them.

SPATIAL LOCALITY As we stressed in $1.2.1, we seek to understand fine-
grained concurrency at a fine grain, e.g.,, by characterizing concurrent in-
teraction at the level of individual nodes. Compared to Dreyer, Neis, and
Birkedal (2010)’s work, then, we deploy our protocols at a much finer gran-
ularity and use them to tell local life stories about individual nodes of a data
structure (§4.2). Of course, there are also “global” constraints connecting up
the life stories of the individual nodes, but to a large extent we are able to
reason at the level of local life stories and their local interactions with one
another.

ROLE-PLAYING Many concurrent algorithms require the protocols gov-
erning their hidden state to support role-playing—that is, a mechanism by
which different threads participating in the protocol can dynamically acquire
certain “roles”. These roles may enable them to make certain transitions that
other threads cannot. Consider for example a locking protocol, under which
the thread that acquires the lock adopts the unique role of “lock-holder” and
thus knows that no other thread has the ability to release the lock. To account
for role-playing, we enrich our protocols with a notion of tokens ($4.3), which
abstractly represent roles. The idea is that, while the transition system defines
the basic ways hidden state can change, some transitions “reward” a thread
by giving it ownership of a token, whereas other transitions require threads
to give up a token as a “toll” for traversal.'4
THREAD- AND TEMPORAL LOCALITY In proving refinement for an oper-
ation on a concurrent data structure, a key step is identifying the point during

' This is the problem of sharing (§2.2.2) in
action, mitigated by abstraction (§2.2.4).

" Notice that this function could very well
be invoked from the client’s callback. Higher-
order programming leads to reentrancy.

* With this example, the implementation’s
internal state has no observable effect on
its behavior, and so the specification has no
hidden state at all.

* Including its use of a step-indexed Kripke
logical relation as a foundation for proving
refinement, as we will see in Chapter 5. The
“Kripke” frame is essentially the protocol
itself.

*This idea is highly reminiscent of re-
cent work on “concurrent abstract predi-
cates” (Dinsdale-Young et al. 2010), but we
believe our approach is simpler and more
direct. See Chapter 7 for further discussion.

4.13

its execution at which the operation can be considered to have “committed”,
i.e., the point at which its canonical atomic spec can be viewed as having exe-
cuted.” With scalable algorithms, these commit points can be hard to identify
in a thread-local and temporally-local way. For example, in an elimination
stack ($2.4.5) a thread attempting to pop an element might eliminate its
operation against a concurrent push—thereby committing a push operation
that, semantically, belongs to another thread. In other algorithms like CCAS'S
(which we discuss in Chapter 6), the nondeterminism induced by shared-
state concurrency makes it impossible to determine when the commit has
occurred until after the fine-grained operation has completed its execution.

On the other hand, the protocol method bakes in thread- and temporal
locality. At each point in time, the protocol is in a definite state, and changes
to that state are driven by single steps of implementation code without regard
to past or future steps. External threads are treated entirely abstractly—they
merely “cast a shadow” on the protocol by updating its state in between the
steps of the thread of interest. So the question is: how can the inherent locality
of protocols be reconciled with the apparent nonlocality of sophisticated
algorithms?

The whole point of protocols (or, more generally, Kripke logical relations)
is to provide a way of describing local knowledge about hidden resources, but
in prior work those “hidden resources” have been synonymous with “local
variables” or “a private piece of the heap”. To support thread- and temporally-
local reasoning about scalable algorithms, we make two orthogonal general-
izations to the notion of resources:

e We extend resources to include specification code ($4.4). This extension
makes it possible for “the right to commit an operation” (e.g., push, in the
example above) to be treated as an abstract, shareable resource, which one
thread may pass to other “helper” threads to run on its behalf.

o We extend resources to include sets of specification states ($4.5). This
extension makes it possible to speculate about all the possible specification
states that an implementation could be viewed as refining, so that we can
wait until the implementation has finished executing to decide which one
we want to choose.

A note on drawing transition systems

In our examples, we use a compact notation to draw structured branches:

OVERVIEW 63

5 This is often called the “linearization
point” of the algorithm when proving lin-
earizability (§2.5.1).

16 Fraser and Tim Harris (2007),
“Concurrent programming without locks”

http://dx.doi.org/10.1145/1233307.1233309

4.2

4.2.1

64 LOCAL PROTOCOLS

SPATIAL LOCALITY VIA LOCAL LIFE STORIES
A closer look at linking: Michael and Scott’s queue

The granularity of a concurrent data structure is a measure of the locality of
synchronization between threads accessing it. Coarse-grained data structures
provide exclusive, global access for the duration of a critical section: a thread
holding the lock can access as much of the data structure as needed, secure in
the knowledge that it will encounter a consistent, frozen representation. By
contrast, fine-grained data structures localize or eliminate synchronization,
forcing threads to do their work on the basis of limited knowledge about its
state—sometimes as little as what the contents of a single word are at a single
moment.

While we saw some simple examples of scalable, fine-grained data struc-
tures in §2.4, we now examine a more complex example—a variant of
Michael and Scott’s lock-free queue'” —that in particular performs a lock-free
traversal of concurrently-changing data. The queue, given in Figure 4.1, is
represented by a nonempty linked list; the first node of the list is considered
a “sentinel” whose data does not contribute to the queue. Here the list type is
mutable,

list(r) = pa.ref((ref:(7),)

in addition to the mutable head reference.

MSQ: Va. (unit — ref;(a)) x (& — unit)
MSQ = A.
let head = new (new (null, null)) (* initial sentinel *)

deq = A().letn = get head
in case get(n[2])
of /= if cas(head,n,n’)
then get(n’[1]) else deq()

| null = null, (* queue is empty *)
enqg = Ax.letn = new (new x,null) (% node to link in *)
lettry = Ac. case get(c[2])

of ! = try(c) (* ¢ is not the tail *)

| null = if cas(c[2], null, n)

then () else try(c)
in try(get head) (* start search from head *)

in (deq, enq)

Nodes are dequeued from the front of the list, so we examine the deq code
first. If the queue is logically nonempty, it contains at least two nodes: the
sentinel (physical head), and its successor (logical head). Intuitively, the deq
operation should atomically update the head reference from the sentinel to

7 Michael and Scott (1998), “Nonblocking
Algorithms and Preemption-Safe Locking
on Multiprogrammed Shared Memory
Multiprocessors”

Figure 4.1: A simplified variant of
Michael and Scott (1998)’s lock-free
queue

http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446

4.2.2

SPATIAL LOCALITY VIA LOCAL LIFE STORIES

its successor; after doing so, the old logical head becomes the new sentinel,
and the next node, if any, becomes the new logical head. Because there is no
lock protecting head, however, a concurrent operation could update it at any
time. Thus, deq employs optimistic concurrency ($2.4.2): after gaining access
to the sentinel by dereferencing head, it does some additional work—finding
the logical head—while optimistically assuming that head has not changed
behind its back. In the end, optimism meets reality through cas, which
performs an atomic update only when head is unchanged. If its optimism was
misplaced, deq must start from scratch. After all, the queue’s state may have
entirely changed in the interim.

The key thing to notice is just how little knowledge deq has as it executes.
Immediately after reading head, the most that can be said is that the resulting
node was once the physical head of the queue. The power of cas is that it mixes
instantaneous knowledge—the head is now n—with instantaneous action—
the head becomes n'. The weakness of cas is that this potent mixture applies
only to a single word of memory. For deq, this weakness is manifested in the
lack of knowledge cas has about the new value n’, which should still be the
successor to the physical head 7 at the instant of the cas. Because cas cannot
check this fact, it must be established pessimistically, i.e., guaranteed to be true
on the basis of the queue’s internal protocol. We will see in a moment how to
formulate the protocol, but first, we examine the more subtle enq.

In a singly-linked queue implementation, one would expect to have both
head and tail pointers, and indeed the full Michael-Scott queue includes a
“tail” pointer. However, because cas operates on only one word at a time, it is
impossible to use a single cas operation to both link in a new node and update
a tail pointer. The classic algorithm allows the tail pointer to lag behind the
true tail by at most one node, while the implementation in java.util.concurrent
allows multi-node lagging. These choices affect performance, of course, but
from a correctness standpoint one needs to make essentially the same argu-
ment whether one has a lagging tail, or simply traverses from head as we do.

In all of these cases, it is necessary to find the actual tail of the list (whose
successor is null) by doing some amount of traversal. Clearly, this requires at
least that the actual tail be reachable from the starting point of the traversal;
the loop invariant of the traversal is then that the tail is reachable from the
current node. But in our highly-concurrent environment, we must account
for the fact that the data structure is changing under foot, even as we traverse
it. The node that was the tail of the list when we began the traversal might not
even be in the data structure by the time we finish.

The story of a node

We want to prove that MSQ refines its coarse-grained specification CGQ,
shown in Figure 4.2. Ideally, the proof would proceed in the same way one’s
intuitive reasoning does, i.e., by considering the execution of a single function
by a single thread one line at a time, reasoning about what is known at

65

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java?view=markup

66 LOCAL PROTOCOLS

CGQ = A.let head = new (null)
deq = case get head
of n = head := get(n[2]); new (get(n[1]))
| null = null, (* queue is empty *)
enqg = Ax.letenq’ = Ac. case get(c[2])
of ¢ = enq’(c') (* cisnotthe tail *)
| null = ¢[2]:= new (x,null)
in case get(head) of n = enq’(n)
| null = head := new (x,null)

in mkAtomic(deq, enq)

each program point. To achieve this goal, we must solve two closely-related
problems: we must characterize the possible interference from concurrent
threads, and we must characterize the knowledge that our thread can gain.

We solve both of these problems by introducing a notion of protocol, based
on the abstract STSs of Dreyer, Neis, and Birkedal, but with an important
twist: we apply these transition systems at the level of individual nodes, rather
than as a description of the entire data structure. The transition systems
describe what we call the local life stories of each piece of a data structure. The
diagram in Figure 6.6 is just such a story. Every heap location can be seen
as a potential node in the queue, but all but finitely many are “unborn” (state
1). After birth, nodes go through a progression of life changes. Some changes
are manifested physically. The transition from Live(v, null) to Live(v, £), for
example, occurs when the successor field of the node is updated to link in a
new node. Other changes reflect evolving relationships. The transition from
Live to Sentinel, for example, does not represent an internal change to the node,
but rather a change in the node’s position in the data structure. Finally, a node
“dies” when it becomes unreachable.

Logically in queue

Sentinel(v, £)

Reachable

The benefit of these life stories is that they account for knowledge and
interference together, in a local and abstract way. Knowledge is expressed
by asserting that a given node is at least at a certain point in its life story.
This kind of knowledge is inherently stable under interference, because all
code must conform to the protocol, and is therefore constrained to a forward

Figure 4.2: A coarse-grained queue

“Theres always the chance you could die right
in the middle of your life story.”

—Chuck Palahniuk

Figure 4.3: A protocol for each node
of the Michael-Scott queue—one per
possible memory location.

SPATIAL LOCALITY VIA LOCAL LIFE STORIES 67

march through the STS. The life story gathers together in one place all the
knowledge and interference that is relevant to a given node, even knowledge
about an ostensibly global property like “reachability”. This allows us to draw
global conclusions from local information, which is precisely what is needed
when reasoning about scalable concurrency. For example, notice that no node
can die with a null successor field. A successful cas on the successor field from
null to some location—like the one performed in engq—entails that the succes-
sor field was instantaneously null (local information), which by the protocol
means the node was instantaneously reachable (global information), which
entails that the cas makes a new node reachable. Similarly, the protocol makes
it immediately clear that the queue is free from any ABA problems ($2.4.3),
because nodes cannot be reincarnated and their fields, once non-null, never
change.

To FORMALIZE THIS REASONING, we must connect the abstract account of
knowledge and interference provided by the protocol to concrete constraints
on the queue’s representation, ensuring that “Dead” and “Live” mean what we
think they do. For the queue, we have the following set of states for each node’s
local STS:

So = {1}
{Live(v,v") | v,v" € Val}
{Sentinel(v,v") | v,v' € Val}
{Dead(v,£) | v € Val, £ € Loc}

c C C

along with the transition relation ~(as given in the diagram (Figure 6.6).'®

These local life stories are then systematically lifted into a global protocol:
the data structure as a whole is governed by a product STS with states
S £ Loc 2 So, where 2 indicates that all but finitely many locations are
in the 1 (unborn) state in their local STS.' The transition relation ~ for the

product STS lifts the one for each node’s STS, pointwise:
s~s' iff Ve s(€) ~os'(€) v s(€) =5"(8)

Thus, at the abstract level, the product STS is simply a collection of indepen-
dent, local STSs.

At the concrete level of the interpretation I, however, we record the
constraints that tie one node’s life story to another’s; see Figure 4.4. As the
example at the top of the figure shows, the linked list managed by the protocol
does not begin at head. Instead it begins with a prefix of the Dead nodes—
nodes that are no longer reachable from head, but that may still be referenced
locally by a snapshot in some thread. The node pointed to be head is the sole
Sentinel, while the remaining suffix of the list constitute the Live nodes. The
interpretation guarantees such a configuration of nodes by first breaking the
product state s into three disjoint pieces:

s = sp W [€~ Sentinel(vg,v)] @ s

¥ Recall that the annotated edges denote
branches for choosing particular concrete v
and ¢ values (§4.1.3).

* That is, we pun the L state in the local STS
with the partiality of a product state s as a
function: the domain of s is just those loca-
tions that have been “born” into the queue.

68 LOCAL PROTOCOLS

Thread-local reference head
! J
U £ [T) [R 7 N pry 1 Ry B
~——
Dead Sentinel Live

head £ x P X
I(s) = DeadSeg(sD)_’e) * (ea 1tk Ly (VO VI) *

+ LiveSeg(sr, vy, vs, null, null)
headg — vg * locks —¢ false

for any ¢, vo, V1, Vs, Sp, SL
with s = sp & [€ — Sentinel(vg, v;)] & 51, where:

13

DeadSeg(@, ¢, €")
DeadSeg(sp w [€ — Dead(v, ¢')], ¢, £")

empAl=2¢"
2+, (v,€') * DeadSeg(sp, ¢, ¢")

13

13

emp AV, =V Avs =

LiveSeg(sp & [v; = Live(vo,v))], vi, v/, vs, v¢) = 3xp, X, Ve X VMxgia * vy X

LiveSeg(@, vy, vi', vs, V)

>

* VP (VO,VI/) * Vs g (xsa V;)
’

+ LiveSeg(sp,vi,v)',vi,vl)
Figure 4.4: Interpreting the lifted,
Due to the other constraints of I, the sp part of the state must contain exactly global protocol
the Dead nodes, while s; contains exactly the Live ones—and there must,
therefore, be exactly one sentinel:

o The DeadSeg predicate is essentially the same as the recursive “list segment”

predicate from separation logic:*® DeadSeg(sp, £, ") is satisfied iff s p rep- ** Reynolds (2002), “Separation logic: a
resents a linked list segment of Dead nodes, starting at £ and terminating logic for shared mutable data structures”
at £”, and each such node actually exists on the implementation heap.” * We could also pick out the corresponding
“garbage” nodes on the spec side, but there is
¢ In contrast, the more complicated LiveSeg predicate is a relational version 10 reason to do so.

of the list segment predicate: LiveSeg(sy, v;,vi’, vs,v.) holds iff s repre-
sents a linked list segment of Live nodes starting at v; and ending at v}’ on
the implementation heap, with a corresponding list segment starting at v,
and ending at v/' on the spec heap. The predicate is indexed by general
values, rather than just locations, because the Live segment can terminate
with null (which is not a location). Since the queue is parametric over the
type « of its data, the data stored in each Live implementation node must
refine the data stored in the spec node at type a, written x; < x, : a; see
Chapter 5.

The interpretation also accounts for two representation differences be-
tween MSQ and CGQ. First, the node data in the implementation is stored
in a ref,(«a), while the specification stores the data directly. Second, the
specification has a lock. The invariant requires that the lock is always free
(false) because, as we show that MSQ refines CGQ, we always run entire critical
sections of CGQ at once, going from unlocked state to unlocked state. These
“big steps” of the CGQ correspond to the linearization points of the MSQ.

43

A VITAL CONSEQUENCE OF THE INTERPRETATION is that Dead nodes must
have non-null successor pointers whose locations are in a non-1 state (i.e.,
they are at least Live). This property is the key for giving a simple, local loop
invariant for enqg, namely, that the current node c is at least in a Live state. It
follows that if the successor pointer of ¢ is not null, it must be another node at
least in the Live state. If, on the other hand, the successor node of ¢ is null, we
know that ¢ cannot be Dead, but is at least Live, which means that ¢ must be
(at that instant) reachable from the implementation’s head pointer. Thus we
gain global reachability information on the basis of purely local knowledge
about the protocol state.

More generally, while the interpretation I is clearly global, it is designed to
support compositional, spatially-local reasoning. Every part of its definition
is based on decomposing the product state s into disjoint pieces, with only
neighbor-to-neighbor interactions. Thus when reasoning about updating a
node, for example, it is possible to break s into a piece sy corresponding to
the node (and perhaps its immediate neighbor) and a “frame” s for the rest of
the data structure. The interpretation can then be shown to hold on the basis
of some updated s}; with the same frame sp—meaning that the rest of the data
structure need never be examined in verifying the local update. The detailed
proof outline for MSQ (as well as the other examples in this chapter) is given
in Chapter 6, and it includes a more detailed treatment of the mechanics of
spatial locality.

ROLE-PLAYING VIA TOKENS

Although Michael and Scott’s queue is already tricky to verify, there is a
specific sense in which its protocol in Figure 4.1 is simple: it treats all threads
equally. All threads see a level playing field with a single notion of “legal”
transition, and any thread is free to make any legal transition according to
the protocol. Many concurrent algorithms, however, require more refined
protocols in which different threads can play different roles—granting them
the rights to make different sets of transitions—and in which threads can
acquire and release these roles dynamically as they execute.

In fact, one need not look to scalable concurrency for instances of this
dynamic role-playing—the simple lock used in the coarse-grained “spec” of
the Michael-Scott queue is a perfect and canonical example. In a protocol
governing a single lock (e.g., lock, in CGQ), there are two states: Unlocked and
Locked. Starting from the Unlocked state, all threads should be able to acquire
the lock and transition to the Locked state. But not vice versa: once a thread
has acquired the lock and moved to the Locked state, it has adopted the role
of “lock-holder” and should know that it is the only thread with the right to
release the lock and return to Unlocked.

To support this kind of role-playing, our protocols enrich STSs with a
notion of tokens, which are used to grant authority over certain types of
actions in a protocol. Each STS may employ its own appropriately chosen

ROLE-PLAYING VIA TOKENS 69

“The essence of a role-playing game is that it
is a group, cooperative experience.”

—Gary Gygax

4.4

70 LOCAL PROTOCOLS

set of tokens, and each thread may privately own some subset of these tokens.
The idea, then, is that certain transitions are only legal for the thread that
privately owns certain tokens. Formally this is achieved by associating with
each state in the STS a set of tokens that are currently free, i.e., not owned by
any thread.>* We then stipulate the law of conservation of tokens: for a thread
to legally transition from state s to state s’, the (disjoint) union of its private
tokens and the free tokens must be the same in s and in s’.

For instance, in the locking protocol, there is just a single token—call it
TheLock. In the Unlocked state, the STS asserts that TheLock must belong to the
free tokens and thus that no thread owns it privately, whereas in the Locked
state, the ST'S asserts that TheLock does not belong to the free tokens and thus
that some thread owns it privately. Pictorially, e denotes that TheLock is in the
free tokens, and o denotes that it is not:

Comoeds > Clacet

When a thread acquires the physical lock and transitions to the Locked state,
it must add TheLock to its private tokens in order to satisfy conservation of
tokens—and it therefore takes on the abstract role of “lock holder”. Thereafter,
no other thread may transition back to Unlocked because doing so requires
putting TheLock back into the free tokens of the STS, which is something
only the private owner of TheLock can do. For a typical coarse-grained data
structure, the interpretation for the Unlocked state would assert ownership of
all of the hidden state for the data structure, while the Locked state would own
nothing. Thus, a thread taking the lock also acquires the resources it protects,
but must return these resources on lock release (in the style of concurrent
separation logic?3).

As this simple example suggests, tokens induce very natural thread-relative
notions of rely and guarantee relations on states of an STS. For any thread i,
the total tokens A of an STS must equal the disjoint union of i’s private tokens
Aj, the free tokens A, in the current state s, and the “frame” tokens A fame
(i.e., the combined private tokens of all other threads but i). The guarantee
relation says which future states thread i may transition to, namely those that
are accessible by a series of transitions that i can “pay for” using its private
tokens A;. Dually, the rely relation says which future states other threads may
transition to, namely those that are accessible by a series of transitions that
can be paid for without using i’s private tokens A; (i.e., only using the tokens
in Aframe). These two relations play a central role in our model (Chapter 5).

THREAD LOCALITY VIA SPECIFICATIONS-AS-RESOURCES

As explained in §2.4.5, some algorithms use side channels, separate from
the main data structure, to enable threads executing different operations to
cooperate. To illustrate this, we use a toy example—inspired specifically by

*> Another perspective is that the free tokens
are owned by the STS itself, as opposed
to the threads participating in the protocol;
¢f. concurrent separation logic (O’Hearn
2007).

3 O’Hearn (2007), “Resources,
concurrency, and local reasoning”

http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1016/j.tcs.2006.12.035

THREAD LOCALITY VIA SPECIFICATIONS-AS-RESOURCES 71

elimination stacks**—that isolates the essential challenge of reasoning about
cooperation, minus the full-blown messiness of a real data structure.

THE FLAG IMPLEMENTATIONS.

redFlag = < blueFlag
let flag = new true, let flag
chan = new 0,

24 Hendler et al. (2004), “A scalable lock-
free stack algorithm”

S

= new true,
= A().flag := not (get flag),

flip = A().if cas(chan,1,2) then () else read = A(). get flag
if cas(flag, true, false) then () else in mkAtomic(flip, read)
if cas(flag, false, true) then () else
if cas(chan, 0,1) then

if cas(chan, 1,0) then flip() else chan := 0

else flip(),

read = A(). getflag

in (flip, read)
THE PROTOCOL. THE PROTOCOL STATE INTERPRETATION.

Offered(j, K); o
Accepted(j, K); 0

Figure 4.5 shows the example, in which redFlag is a lock-free imple-

K

mentation of blueFlag.>> The latter is a very simple data structure, which
maintains a hidden boolean flag, and provides operations to flip it and read
it. One obvious lock-free implementation of flip would be to keep running
cas(flag, true, false) and cas(flag, false, true) repeatedly until one of them suc-
ceeds. However, to demonstrate cooperation, redFlag does something more
“clever”: in addition to maintaining flag, it also maintains a side channel chan,
which it uses to enable two flip operations to cancel each other out without
ever modifying flag at all!

More specifically, chan adheres to the following protocol, which is visual-
ized in Figure 4.5 (ignore the K’s for now). If chan +; 0, it means the side
channel is not currently being used (it is in the Empty state). If chan ~, 1, it
means that some thread j has offered to perform a flip using the side channel
and moved it into the Offered(j, —) state. If chan ~; 2, it means that another
thread has accepted thread js offer and transitioned to Accepted(j, —)—thus
silently performing both flip’s at once (since they cancel out)—but that thread
j has not yet acknowledged that its offer was accepted.

Like the locking example, this protocol uses a single token—call it Offer—
which is free in state Empty but which thread j moves into its private tokens

I(Empty)
I(Offered(j, K))
I(Accepted(j, K))

Q % dx:bool. flag,

1>

Q *chan~; 0
Q * chan ;1% j ¢ K[flipg()]
Q * chan ;2 % j >4 K[()]

1>

Il>

= x * flagg =5 x * lock = false

Figure 4.5: Red flags versus blue flags

> This example was proposed by Jacob
Thamsborg, who named the two data struc-
tures according to the colors associated with
left- and right-wing political stances in Eu-
rope respectively. Readers in the U.S. should,
therefore, swap the colors.

http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/1007912.1007944

72 LOCAL PROTOCOLS

when it transitions to the Offered(j, —) state. After that transition, due to its
ownership of Offer, thread j is the only thread that has the right to revoke that
offer by setting chan back to 0 and returning to Empty. On the other hand,
any thread may transition from Offered(j, —) to Accepted(j, —), since the two
states have identical free tokens, namely, none. Once in the Accepted(j, —)
state, though, thread j is again the only thread able to Empty the channel.

The implementation of flip in redFlag then works as follows. First, we use
cas to check if another thread has offered to flip (i.e., if chan —; 1), and if so,
we accept the offer by setting chan to 2. We then immediately return, having
implicitly committed both flips right then and there, without ever accessing
flag. If that fails, we give up temporarily on the side-channel shenanigans
and instead try to perform a bona fide flip by doing cas(flag, true, false) and
cas(flag, false, true) as suggested above. If that fails as well, then we attempt to
make an offer on the side channel by changing chan from 0 to 1. If our attempt
succeeds, then we (rather stupidly®S) try to immediately revoke the offer and
loop back to the beginning. If perchance another thread has preempted us at
this point and accepted our offer—i.e., if cas(chan,1,0) fails, implying that
another thread has updated chan to 2—then that other thread must have
already committed our flip on our behalf. So we simply set chan back to 0,
freeing up the side channel for other threads, and return. Finally, if all else
fails, we loop again.

As far as the refinement proof is concerned, there are two key points here.

THE FIRST concerns the cas(chan,1,0) step. As we observed already, the
failure of this cas implies that chan must be 2, a conclusion we can draw
because of the way our protocol uses tokens. After the previous cas(chan, 0,1)
succeeded, we knew that we had successfully transitioned to the Offered(j, —)
state, and thus that our thread j now controls the Offer token. Local ownership
of Offer means that other threads can only transition to a limited set of states
via the rely ordering (i.e., without owning Offer): they can either leave the state
where it is, or they can transition to Accepted(j, —). Thus, when we observe
that chan is not 1, we know it must be 2.

THE SECOND, more interesting point concerns the semantics of cooperation.
If we make an offer on chan, which is accepted by another thread, it should
imply that the other thread performed our flip for us, so we don’t have to. At
least that’s the intuition, but how is that intuition enforced by the protocol?
That is, when we observe that our offer has been accepted, we do so merely
by inspecting the current value of chan. But how do we know that the other
thread that updated chan from 1 to 2 actually “performed our flip” for us?
For example, as perverse as this sounds, what is to prevent redFlag from
performing chan := 2 as part of its implementation of read?

OUR TECHNIQUE FOR ENFORCING THE SEMANTICS OF COOPERATION is to treat
specification code as a kind of resource. We introduce a new assertion, j = e,

*$ At this point in a real implementation, it
would make sense to wait a while for other
threads to accept our offer, but we elide
that detail since it is irrelevant for reasoning
about correctness.

4.5

TEMPORAL LOCALITY VIA SPECULATION 73

which describes the knowledge that thread j (on the spec side) is poised to
run the term e. Ordinarily, this knowledge is kept private to thread j itself,
but in a cooperative protocol, the whole idea is that j should be able to pass
control over its spec code e to other threads, so that they may execute some
steps of e on its behalf.

Specifically, this assertion is used to give semantic meaning to the
Offered(j, K) and Accepted(j, K) states in our protocol (see the interpretation
I in Figure 4.5). In the former state, we know that j », K[flip;()], which
tells us that thread j has offered its spec code K[flips()] to be run by another
thread, whereas in the latter state, we know that j >, K[()], which tells
us that j’s flip has been executed. (The K is present here only because we
do not want to place any restrictions on the evaluation context of the flip
operation.) These interpretations demand that whatever thread accepts the
offer by transitioning from Offered(j, K) to Accepted(j, K) must take the
responsibility not only of updating chan to 2 but also of executing flipg()—
and only flips()—on j’s behalf. When j subsequently moves back to the Empty
state, it regains private control over its specification code, so that other threads
may no longer execute it.

TEMPORAL LOCALITY VIA SPECULATION

Another tricky aspect of reasoning about concurrent algorithms (like the
“conditional CAS” example we consider in §6.6) is dealing with nondeter-
minism. The problem is that when proving that an algorithm refines some
coarse-grained spec, we want to reason in a temporally-local fashion—i.e.,
using something akin to a simulation argument, by which the behavior of
each step of implementation code is matched against zero or more steps of
spec code—but nondeterminism, it would seem, foils this plan.

To see why, consider the following example, which does not maintain
any hidden state (hence no protocol), but nevertheless illustrates the core
difficulty with nondeterminism:

rand = A().let y = new false in (fork y := true);get y
Ax. x = O;rand()
earlyChoice 2 Ax.letr=rand()inx := O;r

11>

lateChoice

‘We want to show that lateChoice refines earlyChoice. Both functions flip a coin
(i.e., use rand() to nondeterministically choose a boolean value) and set a
given variable x to 0, but they do so in opposite orders. Intuitively, though,
the order shouldn’t matter: there is no way to observe the coin flip until the
functions return. However, if we try to reason about the refinement using a
simulation argument, we run into a problem. The first step of lateChoice is
the setting of x to 0. To simulate this step in earlyChoice, we need to match
the assignment of x to 0 as well, since the update is an externally observable
effect. But to do that we must first flip earlyChoice’s coin. While we have the
freedom to choose the outcome of the flip,?” the trouble is that we don’t know

“If the world were good for nothing else, it is a
fine subject for speculation.”

—William Hazlitt

*” For every implementation execution, we
must construct some spec execution.

74 LOCAL PROTOCOLS

what the outcome should be: lateChoice’s coin flip has yet to be executed.

The solution is simple: speculate! That is, if you don’t know which spec
states to step to in order to match an implementation step, then keep your
options open and maintain a speculative set of specification states that are
reachable from the initial spec state and consistent with any observable effects
of the implementation step. In the case of lateChoice/earlyChoice, this means
that we can simulate the first step of lateChoice (the setting of x to 0) by
executing the entire earlyChoice function twice. In both speculative states x
is set to 0, but in one the coin flip returns true, and in the other it returns
false.

This reasoning is captured in the following Hoare-style proof outline:

{xI <Y xg : ref(nat) A j > K[earIyChoice(xs)]}
x =0
{x[<V xq : ref(nat) A (j s K[true] @ j > K[false])}
rand()
{ret. (ret = true Vv ret = false) A (j =5 K[true] ® j >, K[false])}
{ret. j =¢ K[ret])}

The precondition j ¢ K[earlyChoice(xs)]—an instance of the assertions on
specification code introduced in the previous section—denotes that initially
the spec side is poised to execute earlyChoice. After we execute x := 0 in
lateChoice, we speculate that the coin flip on the spec side could result in
earlyChoice either returning true or returning false. This is represented by
the speculative assertion (j s K[true] @ j s K[false]) appearing in the
postcondition of this first step, in which the @ operator provides a speculative
choice between two subassertions characterizing possible spec states. In the
subsequent step, lateChoice flips its coin, yielding a return value ret of either
true or false. We can then refine the speculative set of specification states to
whichever one (either j = K[true] or j =, K[false]) matches ret, and simply
drop the other state from consideration. In the end, what matters is that we
are left with at least one spec state that has been produced by a sequence of
steps matching the observable behavior of the implementation’s steps.

While the lateChoice/earlyChoice example is clearly contrived, it draws at-
tention to an important point: client contexts are insensitive to the “branching
structure” of nondeterminism. There is no way for a client to tell when a
nondeterministic choice was actually made.?® In practice, scalable algorithms
sometimes employ deliberate nondeterminism, e.g., during backoft ($2.4.4)
or for complex helping schemes ($2.4.5), but their specifications generally do
not—and so it is crucial that clients cannot tell the difference. Moreover, even
when a given method does not toss coins directly, the thread scheduler does,
and in some cases the appropriate moment to execute spec code depends on
future scheduling decisions (§6.6). Speculation handles all of these cases with
ease, but its validity rests on the weak observational power of clients.

The idea of speculation is not new: it is implicit in Lynch and Vaandrager’s
notion of forward-backward simulation,” and a form of it was even proposed

** This point is actually rather subtle: its va-
lidity rests on our definition of refinement,
which simply observes the final answer a
client context returns. See Chapter 7 for an
in-depth discussion.

*® Lynch and Vaandrager (1995), “Forward
and Backward Simulations: Part I: Untimed
Systems”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf

TEMPORAL LOCALITY VIA SPECULATION 75

in Herlihy and Wing’s original paper on linearizability3°® (although the pro-
posal has not been used in subsequent formal logics for linearizability). What
is new here is our particular treatment of speculation, which is designed for
composability:3!

e Previous simulation-based accounts of speculation apply it only at a global
level, working monolithically over the entire specification state. Our treat-
ment, by contrast, builds on our idea of specifications-as-resources ($4.4)
which allows the specification state to be broken up into pieces that can be
owned locally by threads or shared within a protocol. Speculation enriches
these resources into sets of pieces of the specification. The combination of
two sets of spec resources is then just the set of combined resources.

e Previous assertional accounts of speculation (e.g., prophecy3?) generally
use “ghost” variables (also known as “auxiliary state”) to linearize the
branching structure of nondeterminism by recording, in advance, the
outcome of future nondeterministic choices.33 It is not clear how to
generalize this approach to thread-local reasoning about a part of a pro-
gram running in some unknown context.34 Our treatment, by contrast,
does not collapse the branching structure of the program being executed,
but instead simply records the set of feasible spec executions that could
coincide with it. Specification resources are crucial for enabling thread-
local speculation, because they make it possible for a refinement proof for
an implementation thread to consider only the corresponding spec thread
to later be composed with refinement proofs for additional threads.

We give a more detailed comparison to related work in Chapter 7.

3° Herlihy and Wing (1990),
“Linearizability: a correctness condition for
concurrent objects”

* Unfortunately, “composability” has sev-
eral different meanings in this setting. Here
we mean composability of refinements for
parts of a program into refinements for their
composition, as opposed to transitive com-
posability of refinement, which previous ac-
counts of speculation certainly supported.

3* Abadi and Lamport (1991), “The
existence of refinement mappings”

3 Manolios (2003), “A compositional
theory of refinement for branching time”

3+ Ley-Wild and Nanevski (2013),
“Subjective Auxiliary State for Coarse-
Grained Concurrency”

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134

5.1

A logic for local protocols

Synopsis This chapter defines the syntax (§5.2) and semantics (§5.3 and §5.4)
of a logic for refinement based on local protocols. The logic ties together
a Kripke logical relation (traditionally used for showing refinement of one
program by another) with Hoare triples (traditionally used for reasoning
about a single program). The chapter sketches some proof theory for the
logic ($5.5) and outlines a proof of soundness for refinement ($§5.6). The
full logic is summarized in Appendix B, and detailed proofs are given in
Appendix C.

OVERVIEW

All the work we did in the last chapter rests on essentially two formal
structures: transition systems and assertions. In this chapter, we deepen our
understanding of these structures by:

1. FORMALIZING our transition systems and the syntax and semantics of
assertions—and thereby formalizing local protocols, which are just transi-
tion systems with assertional interpretations. The result is a logic for local
protocols.

2. DEMONSTRATING that when assertions about refinement hold according
to our semantics (which involves local protocols), the corresponding
contextual refinement really does hold—i.e., showing the soundness of the
logic for its intended domain.

3. SKETCHING enough proof theory to illustrate the core reasoning principles
for the logic.

In program logics for first-order languages, there is usually a strict separation
between assertions about data (e.g., heap assertions) and assertions about
code (e.g., Hoare triples). But the distinction makes less sense for higher-order
languages, where code is data and hence claims about data must include
claims about code. Our logic is therefore built around a single notion of
assertion, P (shown in Figure 5.1), that plays several disparate roles. This
uniformity places claims about resources, refinement, and Hoare triples on
equal footing, which makes it easy to express a central idea of the logic: that
refinement reasoning can be carried out using the combination of Hoare
triples and specification resources.
We begin, in §5.2, with an informal tour of assertions.

“Logic takes care of itself; all we have to do is
to look and see how it does it

—Ludwig Wittgenstein

77

78 A LOGIC FOR LOCAL PROTOCOLS

ASSERTIONS P = v=vy Equality of values
| emp Empty resource
(2 == ¢| x) | €~ u Singleton implementation heap
| €-su Singleton specification heap
(i == i] x) | imge Singleton specification thread
| i~ Island assertion
| PxP Separating conjunction
| P=P Implication
| PaAP Conjunction
| PvP Disjunction
| 3x.P Existential quantification
| Vx.P Universal quantification
| PeP Speculative disjunction
| ¢ Pure code assertion
| P Later modality
| Tem {x.P} Threadpool simulation
PURE CODE ASSERTIONS ¢ == {P}e{x.Q} Hoare triple
| v<Yvir Value refinement
| Qrex<fe:r Expression refinement
ISLAND DESCRIPTIONS == (0,1,5,A)
where I € 6.S — Assert, State interpretation
sef.S, Current state (rely-lower-bound)
AC.A, Owned tokens
A#0.F(s) (which must not be free)
STATE TRANSITION SYSTEMS 6 == (S, A,~,F)
where S a set, States
A aset, Tokens
~C8§xS, Transition relation
FeS—p(A) Free tokens
MAIN THREAD INDICATORS ™ 5= i ID of main thread

none

No main thread

Figure 5.1: Syntax of assertions

5.2

5.2.1

5.2.2

5.2.3

ASSERTIONS

Assertions are best understood one role at a time.

Characterizing the implementation heap

The first role our assertions play is similar to that of heap assertions in sepa-
ration logic: they capture knowledge about a part of the (implementation’s)
heap, e.g., x +; 0, and support the composition of such knowledge, e.g,
x +; 0 % y =, 1. In this capacity, assertions make claims contingent on the
current state, which may be invalidated in a later state.

Characterizing implementation code

On the other hand, some assertions are pure, meaning that if they hold in a
given state, they will hold in any possible future state. The syntactic subclass of
(pure) code assertions ¢ all have this property, and they include Hoare triples
{P} e {x. Q}. The Hoare triple says: for any future state satisfying P, if the
(implementation) expression e is executed until it terminates with a result,
the final state will satisfy Q (where x is the value e returned). So, for example,
{emp} new 0 {x. x —, 0} is a valid assertion, i.e., it holds in any state. More
generally, the usual rules of separation logic apply, including the frame rule,
the rule of consequence—and sequencing. The sequencing rule works, even
in our concurrent setting, because heap assertions describe a portion of heap
that is privately owned by the expression in the Hoare triple. In particular,
that portion of the heap is guaranteed to be neither observed nor altered by
threads concurrent with the expression.

Characterizing (protocols on) shared resources

The next role assertions play is expressing knowledge about shared resources.
All shared resources are governed by a protocol. For hidden state, the protocol
can be chosen freely, modulo proving that exported methods actually follow
it. For visible state, however, e.g., a reference that is returned directly to the
context, the protocol is forced to be a trivial one—roughly, one that allows the
state to take on any well-typed value at any time, accounting for the arbitrary
interference an unknown context could cause (see Section 5.4).

Claims about shared resources are made through island assertions i — 1
(inspired by LADR"). We call each shared collection of resources an island,
because each collection is disjoint from all the others and is governed by
an independent protocol. Each island has an identifier—a natural number—
and in the island assertion i ~ : the number i identifies a particular island
described by 1.*> The island description 1 gives the protocol governing its
resources, together with knowledge about the protocol’s current state:

ASSERTIONS 79

' Dreyer, Neis, Rossberg, et al. (2010), “A
relational modal logic for higher-order
stateful ADTs”

> We will often leave off the identifier as
shorthand for an existential quantification,
i.e., when we treat / as an assertion we mean
Ix. x 1.

http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323

5.2.4

80 A LOGIC FOR LOCAL PROTOCOLS

e The component § = (S, A, ~,F) formalizes the STS for the protocol,
where S is its set of states, A is its set of possible tokens, ~ is its transition
relation, and F is a function telling which tokens are free at each state.3
The dynamics of STSs, e.g., conservation of tokens, is formalized in the
next section (§5.3).

e The component I tells how each state of the STS is interpreted as an
assertion characterizing the concrete resources that are actually owned by
the island in that state.*

e The components s and A express knowledge about the state of the protocol
(which is at least s) from the perspective of a thread owning tokens A
at that state. This knowledge is only a lower bound on the actual state of
the protocol, which may in fact by in any “rely-future” state, i.e., any state
that can be reached from s by the thread’s environment without using the
thread’s privately-owned tokens A.

Characterizing refinement and spec resources

Finally, assertions play two refinement-related roles.

The first is to express refinement itself, either between two closed values
(v; ¥ vg & T) or between open expressions (Q + e; <€ e : T)—a syntactic
claim of semantic refinement (Q E ¢, < e : T1in §3.3).

Until this point, we have avoided saying anything about spec terms, but in
order to prove refinement we need to show that the observable behavior of
an implementation can be mimicked by its spec. This brings us to an essential
idea:

THE SLOGAN

By treating spec code as a resource, we can reduce
refinement reasoning to Hoare-style reasoning.

THE MATH
e <£ es:T =~ (roughly!)

vj. {] s est e {xl. dxs. x; <V X P TA Jrsg xs}

Thus, the final role assertions play is to express knowledge about—and
ownership of—spec resources, which include portions both of the heap (e.g.,
x + 0) and of the threadpool (e.g., j > es). These resources can be shared
and hence governed by protocols, just as implementation-side resources can.

When proving refinement for a data structure, we will prove something
like the above Hoare triple for an arbitrary application of each of its methods—
usually in the scope of an island assertion giving the protocol for its shared,
hidden state. For each method invocation, we start from an arbitrary state
of that protocol, and are given ownership of the spec code corresponding
to the invocation, which we may choose to transfer to the protocol to
support cooperation (as explained in Section 4.4). But in the end, when the

* We will use dot notation like 6. to project
named components from compound ob-
jects.

+The assertion interpreting a state is as-
sumed to not make claims about token own-
ership at any island, although it can make
claims about the protocol or state of any
island. The reason for this restriction is ex-
plained in §5.3.2.

5.2.5

53

5.3.1

implementation’s invocation has finished and returned a value x;, we must
have regained exclusive control over its spec, which must have mimicked it
by producing a value x; that x; refines.

The remaining miscellany

The remaining forms of assertions include standard logical connectives, and
two more technical forms of assertions— >P and T@m {x. P}—which we
explain in the Section 5.4.

SEMANTIC STRUCTURES

The semantics of assertions is given using two judgments, one for general as-
sertions (W, n =7 P) and the other for code assertions (U ° ¢), where P and
@ contain no free term variables but may contain free type variables bound
by p. To explain these judgments, we begin with the semantic structures of
worlds W, resources n and environments p, together with operations on them
needed to interpret assertions.

Resources
The resources n = (h,2) that assertions claim knowledge about and owner-

ship of include both implementation heaps &, and speculative sets X of spec
configurations,’ as shown in Figure 5.2.

DoMAINS

StateSet = { X c Heap x ThreadPool | X finite, nonempty }

a

Resource = { 5 € Heap x StateSet }

COMPOSITION (These operations are partial)

{I’llL*th;TlL*JTz | hi;T,‘EZ,‘ }
(if all compositions are defined)

(h1 U] h2,21 ® 22)

13

State sets Z ® 2,

13

Resources (h1,Z1) ® (hy, %)

Resources can be combined at every level, which is necessary for interpret-
ing the * operator on assertions:

e For heaps and threadpools, composition is done via w, the usual disjoint

union.

e The composition of state sets is just the set of state compositions—but it is
only defined when all such state compositions are defined, so that specula-
tive sets X have a single “footprint” consisting of all the locations/threads

SEMANTIC STRUCTURES 81

5 Recall that a configuration ¢ = h; T consists
of a heap and a threadpool.

Figure 5.2: Resources and their
composition

5.3.2

82 A LOGIC FOR LOCAL PROTOCOLS

existing in any speculative state.® To ensure that this footprint is finite, we
require that speculation is itself finite.

o Composition of general resources is the composition of their parts.

Islands and possible worlds

All assertions are interpreted in the context of some possible world W, which
contains a collection w of islands. Both are defined in Figure 5.3.

¢ This is a rather technical point, but it is an
important one. The point is that the specu-
lative combination @ should insist that all
of its constituent assertions are satisfiable
in combination with the rest of the current
state.

DoMAINS
Island, 21 i=(6,]5A) 0 eSTS, s€0.S, Je0.S—>UWorld, — g(Resource),
Ac6.A, A#0.F(s), J(s) + o
World,, 2 { W = (k, w) ‘ k<n, w ENfEIslandk }

UWorld, = { U eWorld, | U=|U|}

STRIPPING TOKENS AND DECREMENTING STEP-INDICES

(6,],5,4)| = (6.].5,2) [(6, 7,50, A) [k = (6,As.](s) I UWorldy, so, A)

|(k, w)] £ (k,Mijw(i)]) >(k+1lLw) = (kAi.lw(i)]k)
COMPOSITION

Islands (6,],5,A4) ® (0',],s,A") = (6,],5,AwA) when6=0,s=5s,J=]

13

Worlds (k,w) ® (k' ")

(k, di.w(i) ® w'(i)) when k = k', dom(w) = dom(w')

Semantic islands look very much like syntactic island assertions—so much
so that we use the same metavariable / for both.” The only difference is
that semantic islands interpret STS states semantically via J, rather than
syntactically via I. Unfortunately, this creates a circularity: J is meant to
interpret its syntactic counterpart I, and since assertions are interpreted in
the contexts of worlds, the interpretation must be relative to the “current”
world—but we are in the middle of defining worlds! The “step index” k in
worlds is used to stratify away circularities in the definition of worlds and
the logical relation; it and its attendant operators 1> and | - |, are completely
standard, but we briefly review the basic idea.®

The technique of step indexing was introduced by Appel and McAllester
(2001)? and greatly expanded by Ahmed (2004). Boiled down, the idea is as
follows. Programs exhibit or observe circularity one step of execution at a
time. Therefore, for safety properties—which are inherently about finite exe-
cution (§2.5)—circularities can be broken by defining the properties relative
to the number of execution steps remaining, i.e., a “step index” Properties
defined in this way are generally vacuous at step-index 0 (as, intuitively,
there is no time left to make any observations), and serve as increasingly
good approximations of the originally-intended property as the step index is
increased. Following this strategy, we define worlds as a step-indexed family

Figure 5.3: Islands and worlds

7 When the intended use matters, it will al-
ways be clear from context.

8 We direct the interested reader to ear-
lier work for a more in-depth explanation
(Ahmed 2004; Dreyer, Neis, and Birkedal
2010; Dreyer, Neis, Rossberg, et al. 2010).
The less interested reader should simply ig-
nore step indices from here on.

® Similar techniques had already appeared
for dealing with circularity in rely-guarantee
(also called assume-guarantee) reasoning,
e.g, Abadi and Lamport (1995); Abadi and
Lamport (1993).

5.3.3

5.3.4

of predicates. Each recursion through the world drives down the step index,
the idea being: for the program to observe the actual heap described by the
world, it must take at least one step. Put differently, we check conformance to
protocols not in absolute terms, but rather for # steps of execution. Ultimately,
if a program conforms for every choice of #, that is good enough for us.

With those ideas in mind, the definitions of 1> and | -], are straightfor-
ward. The “later” operator > decrements the step-index of a world (assuming
it was non-zero), i.e., it constructs a version of the world as it will appear
“one step later” Its definition relies on the auxiliary restriction operator |- |,
which just throws away all data in the world at index larger than k (and
thereby ensures that the resulting world is a member of Worldy).

There is an additional subtlety with the definition of worlds: it is crucial
that all participants in a protocol agree on the protocol’s interpretation of
a state, which must therefore be insensitive to which tokens a particular
participant owns. We guarantee this by giving the interpretation] access
to only the unprivileged part of a participant’s world, |W|, which has been
stripped of any tokens; see the constraint on the type of J. The monotonicity
requirement s explained in $5.3.4.

Finally, to determine the meaning of assertions like x +— 1*x — 1/, we must
allow islands to be composed. Semantic island composition ® is defined only
when the islands agree on all aspects of the protocol, including its state; their
owned tokens are then (disjointly) combined. Note, however, that because
island assertions are rely-closed, an assertion like x — 1 * x — 1’ does not
require ¢ and ¢’ to assert the same state. It merely requires that there is some
common state that is in both of their rely-futures. Worlds are composable
only when they define the same islands and those islands are composable.

Environments

The terms that appear within assertions may include free type variables,
which are interpreted by an environment p mapping them to relations

VeVRel, = { V e UWorld, ™" p(Val x Val) }

This interpretation of types is standard for logical relations, and in particular
supports relational parametricity,'® in which the interpretation of an abstract
type may relate values of potentially different types on the implementation
and specification sides.

We explain the monotonicity requirement '~ below.

Protocol conformance

The judgment 6 + (s, A) ~ (s’, A") given in Figure 5.4 codifies the law of
conservation of tokens (§4.3) for a single step.”” We use this judgment in
defining two relations governing changes to an island’s state:

SEMANTIC STRUCTURES 83

' Reynolds (1983), “Types, abstraction and
parametric polymorphism”

I We use the more readable notation s ~4 s’
in place of 0.~ (s,s’).

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

84 A LOGIC FOR LOCAL PROTOCOLS

[SLAND AND WORLD FRAMING

frame(0,],s,A) = (6,], s, 0.A-0.F(s)-A) frame(k,)

PROTOCOL CONFORMANCE

£ (k, Ai.frame(w(i)))

Protocol step Or (s,A) ~ (s',A) 2 s~gs, O.F(s)wA=0.F(s")uwA
Island guarantee move (6,],s,A) guEar (0, 7,s',A") £ 0=0", J=T, O0r (s,A) ~* (s, A)
rel uar
Island rely move ! EY I £ frame(t) gE frame(:")
World guarantee move (k, w) e (K, 0") 2 k>k', Viedom(w).|w(i)]w e w'(i)
rel uar
World rely move w EY w’ 2 frame(W) gE frame(W’)

o The guarantee relation guEar, which characterizes the changes an expression
can make to an island given the tokens it owns. A guarantee “move” may
include changes to both the state of the STS and the privately-owned
tokens, as the expression gains or loses tokens in making the move.

e An expression can likewise rely on its environment to only change an

island 1 according to the tokens that the environment owns, i.e., the tokens

rel
in frame(t). The rely relation c only allows the STS state to change. The

tokens stay fixed because a rely move is performed by the environment of
an expression, which gains or loses its own tokens but cannot affect the
tokens owned by an expression.

IT 15 crUCIAL that the basic stepping judgment
0+ (s,A) ~ (s',A")

is defined over single steps in the transition system (s ~ s’), and only
guar
afterwards transitively-closed (in &). In other words, the transition relation

itself is not required or considered to be transitively-closed. Consider, for
example, the following STS:

The set of tokens here is just {e}. Suppose the island is in state B and that we
own the token, i.e.,

1=(6,].8,{e})

where 0 is the STS above and] is some interpretation. The expectation is
that the environment is “stuck” with respect to the protocol: it would need to
own the token to make progress, but we own the token. In other words, the
protocol should guarantee that

rel
if 1=(60,],8,{e}) then Ve = =t

Figure 5.4: Protocol conformance

5.3.5

If, however, the stepping relation was transitively closed internally, it would
include an edge directly from B to D, thereby allowing the environment to
make such a move without owning any tokens!

On the other hand, the fact that the rely and guarantee relations apply
transitive closure externally allows threads to take multiple steps through
the protocols as long as each individual step is permitted based on the
conservation of tokens. So here, for example, our thread can move from B
to D because it has enough tokens to first move to C.

There is thus an important case in which the basic transition system is
effectively transitively closed: for any party that owns all of the non-free
tokens. In such cases, the conservation law has no effect and the protocol
degenerates to a simple STS in the style of Dreyer, Neis, and Birkedal (2010).
In practice, the situation usually arises not because some thread owns all of
the non-free tokens, but rather because it owns none of them—and so its
environment (the frame) owns them all. In particular, for any unprivileged
world U, the rely relation coincides with the (reflexive, transitive closure of)
the raw transition relation.

THE RELY AND GUARANTEE VIEWS OF A PROTOCOL give rise to two notions
of future worlds. In both cases, the world may grow to include new islands,
but any existing islands are constrained by their rely and guarantee relations,
respectively. While the rely relation on worlds is defined using framing and
the guarantee relation on worlds, it could have equivalently used the rely
relation on islands instead:

rel rel
(ko) € (K,0') = k>k, Viedom(w). |w(i)|y & @' (i)

Island interpretations J are required to be monotone with respect to the
rely relation on worlds (written "%). Since the interpretations are applied to
unprivileged worlds, the monotonicity requirement ensures that making any
move in one island cannot possibly invalidate the interpretation of another.

World satisfaction

Worlds describe shared state abstractly, in terms of protocol states. Expres-
sions, on the other hand, are executed against some concrete resources. The
world satisfaction relation n : W,n' defines when a given collection of
concrete resources # “satisfies” a world,

n:(W,yq') £ Wk>0 —
n=n"®1n;, Viedom(W.w). 5; € interp(W.w(i))(>|W])

meaning that # breaks into a disjoint portion for each island, with each
portion satisfying its island’s current interpretation. The parameter 5’ repre-
sents additional resources that are private, and therefore disjoint from those
governed by the world—a notational convenience for defining the semantics
of assertions below.

SEMANTIC STRUCTURES

85

5.4

5.4.1

86 A LOGIC FOR LOCAL PROTOCOLS

SEMANTICS

The semantics of assertions satisfies a fundamental closure property: if

rely
W,n =P Pand W © W' then W',y ° P. All assertions are therefore

“stable” under arbitrary interference from other threads. This should not be a
surprise: assertions are either statements about private resources (for which
interference is impossible) or about shared islands (for which interference is
assumed, e.g., we are careful to only assert lower bounds on the state of an
island). The only subtlety is in the semantics of implication, which must be
explicitly rely-closed to ensure stability."?

In general, the semantics of assertions is defined inductively using a
lexicographic order: by step index (a component of the world), then by
the syntactic structure of assertions. For interpreting refinement assertions,
however, things are more complicated, as we explain in §5.4.2.

Resources, protocols, and connectives

The semantics of the basic assertions about private resources are straightfor-
ward, as are those for the basic logical connectives; see Figure 5.5.

> This kind of closure is standard in logical
relations, as well as Kripke-style interpreta-
tions of intuitionistic implication.

R | W,p="R iff R W,n =P R ff
o |IWlEo P=Q | YW S W W, P — W ne Q
VI=Vy | VI=V > u n=([¢~ul,{z:0})
emp | W=|Wl|n=(2,{2;2}) Ersu n=(2,{[t~ul;o})
PAQ | W,nEeP Pand W, P Q ise n=(2,{a;[i~el})
PvQ | W,qef Por W,y = Q i (0,1,5,4) | W.o(i)'S (6,15 A)
Vx.P | Vv. W,n E” P[v/x] where [I] 2 As.AU.{n | U,nE” I(s)}
x.P | Iv. W,n P P[v/x] P, % P, W=WQW,, =11 ®12, Wi,n; =P P;
pP | Wk>0 = pW,pE’P PoP, HE=%U%;, W,(4.h,XZ;) =P

There are just a few interesting points to take note of:

o The meaning island assertions is just as informally described: the protocol
in the world differs only in giving a semantic state interpretation I, rather
than a syntactic one J,"® and the assertion’s state s and tokens A together
give only a rely-lower-bound on the true state of the island.

e While in general properties may be interesting even when the world’s
index is 0 (i.e., W.k = 0), the later modality >P is defined to be vacuously
true in such cases.'#

o In a speculative choice P @ Q, the two choices P and Q are understood in
the same world and under the same implementation resources, but they

Figure 5.5: The semantics of resource
and protocol assertions, and the
connectives

" There is a rather subtle point here: we
assume that the denotation function [I] con-
structs a semantic Islandyy i, i.e., that the
argument U is drawn from UWorldy . This
ensures the well-foundedness of assertion
semantics.

"4 This aspect of step-indexing makes it
highly reminiscent of coinduction.See Hur
et al. (2012) for a recent investigation of the
connections.

5.4.2

must each be satisfied by a (nonempty, possibly nondisjoint) subset of the
set of spec states X. The lack of disjointness makes speculative choice quite
different from separating conjunction; in particular, it is idempotent, i.e.,
P @ P is equivalent to P.

Refinement
The value refinement assertion v; <¥ v : T requires that any observations a
context can make of v; at type T can also be made of v, as evidenced by its

semantics in Figure 5.6.

SEMANTICS 87

To A Vs Uefv, <Yyt iff
T v v + v : 1 for 1}, € {unit, bool, nat}
o " Vs (vi,vs) € p(a)(U)
T x1y | (v,vh) (V$,v8) | UEP (W <V vdir A v <V asi1y)

T 1 |recfx.e |recfx.es | U >(x:1H efvi/f] < es[vs/f]:7)

Va.r A.e A.eg U’ p(are <€ e 1)
Ut v Vs UEf v <Y v tfpa.t/a]
ref;(7) null null always
A A Uk e <Y & ref(T)
ref(T) ¢ ¢, U R inv(35 3. (Ax <V y:7) Aoy (%) % & = ()
T+ T, & A 3i. Uk 3x,y. bx <Y yi1; Adnv(v, =, inj; x % vg b inj;)

where inv(P) = (({dummy},@,@,A_.@),A_.P,dummy, &)

Those readers familiar with Kripke logical relations will recognize the seman-
tics of value refinement as essentially the standard definition of logical ap-
proximation between values. Base type values must be identical. For function
types, we check that the bodies of the functions are related when given related
arguments,'> which, due to the semantics of implication, might happen in a
rely-future world. For recursive types, we check that the values are related at
the unfolded type (we explain why this is well-founded below). Values that
are exposed to the context at heap-allocated type—ref and sum types—are
forced to be governed by a trivial island'® allowing all type-safe updates (in
the case of ref’s) and no updates (in the case of sums). Hidden state, on the
other hand, is by definition state that does not escape directly to the context,
and so we need say nothing about it for value refinement.

To see why the definition of value refinement is not circular, we must
take note of several facts. First, almost every mention of value refinement
on the right-hand side of the definition is within either a > or an inv, with
the sole exception of recursive types. Both > and inv have the effect of

Figure 5.6: The semantics of value
refinement

' The quantification over related arguments
is performed within expression refinement,
Figure 5.7

' The “invariant island” inv(P) for an as-
sertion P that we use to constrain exposed
heap data is just a formalization of the

“DummyState” protocol discussed in the

Overview of Chapter 4.

5.4.3

88 A LOGIC FOR LOCAL PROTOCOLS

strictly decreasing the step index when interpreting the assertion within them
(recall that semantic island interpretations are given at strictly smaller step
indexes, to avoid circularity); decreasing step indexes provide a well-founded
measure. For recursive types the argument is a bit more subtle: it relies on
the Ff,; requirement that all recursive types be productive, meaning that a
recursive type variable can only appear under a non-u type constructor. That
means, in particular, that a recursive type must always consist of some finite
outer nest of y-bindings, followed immediately by a non-u, non-variable type
constructor. As we just argued, the interpretation of all such type constructors
drives the step index down.

The fact that refinement is a “pure” assertion, i.e., insensitive to the state
of private resources or the ownership of private tokens, is essential for
soundness. The reason is simple: once a value has reached the context, it can
be copied and used concurrently. We therefore cannot claim that any one copy
of the value privately owns some resources. If P is impure, we say

UEPP = Ny, W#U. W’ P

where # as usual means that the composition W ® U is defined.””

Q U Qre <feg:1 iff

VK,j. UEP {j>sKles]} e {x.3y. x <V y:1nj>»sK[y]}
v

T, Q| Vv UP v <V v it = Q'+ e[n/x] <€ es[vs/x]: 1

a, Q' VV.UERPLl-VIQ e <f et T

For expression refinement Q) + ¢, <% e, : 7, shown in Figure 5.7, we first
close off any term or type variables bound by Q with the appropriate universal
quantification. Closed expression refinement is then defined in terms of
a Hoare triple, following our sketch in §5.2.4. The main difference in the
actual definition is that we additionally quantify over the unknown evaluation
context K in which a specification is running; this annoyance appears to be
necessary for proving that refinement is a precongruence. Important note: this
is not the same kind of quantified contextual property that we started with
(i.e., in the definition of contextual refinement). In particular, it is not even
possible to examine the context we are given. Rather, it is a way of forcing
refinement proofs to use exactly the part of the spec expression involved in
the refinement, leaving any surrounding evaluation context intact.

Hoare triples and threadpool simulation

Hoare triples are defined via the threadpool simulation assertion T@m {x. Q},
which is the engine that powers our model:

UEP{P} e {x.Q} 2 Vi UK P=[i—e]@i{x.Q}

7 For any W#U wehave W ® U = W.

Figure 5.7: The semantics of
expression refinement

55

Threadpool simulation (Figure 5.8) accounts for the fact that an expression
can fork threads as it executes, but that we care about the return value only
from some “main” thread m, which is the initial thread i here.

BASIC REASONING PRINCIPLES 89

1>

Wo, =P T@m {x. Q}
WT—h,T = 35,0, W '3, W. 223, .3 : W, g e

T=Tyw[m—v] = 32’,71’,W’g£(a,rW. =3, hI:Wi.nen

rel
YW 2 Wo, nr#n. if W.k>0and h,2: W,y ® 5p then:

» Win'ef T'em {x. Q}
» Wion P Q[v/x] * To@none {x. tt}

where W’

To satisfy T@m {x. Q} at some W and 7, the threads in T must first of all
continuously obey the protocols of W, assuming they share private ownership
of #. That is, every atomic step taken by a thread in T must:

e transform its shared resources in a way that corresponds to a guarantee
guar
move in the protocol (W' "2 W), and

e preserve as a frame any private resources # of its environment;
e but it may change private resources # in any way it likes.

In between each such atomic step, the context might get a chance to run,
which we model by quantifying over an arbitrary rely-future world.'® If at
any point the main thread m terminates, it must do so in a state satisfying
the postcondition Q, where x is bound to the value the main thread returned.
Afterwards, any lingering threads are still required to obey the protocol using
the remaining resources, but the main thread identifier is replaced by none.

That threadpool simulation is, in fact, a simulation is due to its use of
the speculative stepping relation £ = X', which requires any changes to
the spec state to represent feasible execution steps: every new state must be
reachable from some old state, but we are free to introduce multiple new states
originating in the same old state, and we are free to drop irrelevant old states
on the floor. As a result of how simulation is defined, such changes to the spec
state can only be made to those parts that are under the threadpool’s control,
either as part of its private resources (allowing arbitrary feasible updates) or
its shared ones (allowing only protocol-permitted updates).

BASIC REASONING PRINCIPLES

Although we will not pursue an in-depth study of proof theory for the logic
of local protocols,” in this section we sketch some of the basic reasoning
principles supported by the logic.

guar
2n

guar
W2 W 2 WAWk=W0.k+n
>33 2V eX. JceX. ¢ ¢

Figure 5.8: Threadpool simulation

*® Recall the discussion in the Overview of
Chapter 4: this is how we model the behavior
of an arbitrary client while making a single
pass through the implementation code.

A formal manipulator in mathematics often
experiences the discomforting feeling that his
pencil surpasses him in intelligence.”

—Howard Eves

"> We leave this to future work, and expect
that some choices in the design of assertions
will need to change to accommodate a clean
proof theory; see Chapter 13.

5.5.1

5.5.2

90 A LOGIC FOR LOCAL PROTOCOLS

Hypothetical reasoning and basic logical rules

Most of the inference rules will be presented in hypothetical style, e.g.,

P+ P PrQ
Pr-PAQ

The metavariable P ranges over hypotheses,*®
P u= .| PP

giving rise to the following semantic interpretations,

|>

W,nef P =
PeEQ

VPeP. W,n &l P
YW,n,p,p. WP yP = W,5 P yQ

13

where y ranges over variable-to-value substitutions and p and y are con-
strained to close both P and Q. Thus the soundness of the rule above means
that the following implication holds:

PEP PEQ
PeEPAQ

ie, PEPandPE QimpliesP = PAQ

With those preliminaries in place, we give in Figure 5.9 the basic laws for
intuitionistic first-order logic and for separating conjunction.* These laws are
easy to prove, either directly or through appeal to standard model-theoretic
arguments. Since they are standard, we do not discuss them further here.

In addition, we include the fundamental laws governing the “later” modal-
ity >P. The first is a monotonicity law saying that anything true at the current
step index will remain true at a smaller index; after all, decreasing step
indices represent decreasing observational power on the part of programs.
Step indexing also gives rise to proofs with a coinductive flavor via the LB
rule,”> which makes it possible to prove P while assuming that it holds one
step later. We will see in §5.5.7 how the L6B rule supports reasoning about

recursion.

Reasoning about programs: an overview

Program reasoning works in three layers:

e THE TOP LAYER is refinement, which often serves as the end-goal of a proof.
The proof rules for introducing refinements are just reformulations of the
semantics of refinement.?? In particular, expression refinement requires
proving a Hoare triple, which we do using lower-level concurrent Hoare
logic.

e THE MIDDLE LAYER is “concurrent Hoare logic,” in which we prove Hoare
triples {P} e {x.Q}. The “concurrent” nature of this logical layer is

*° Despite the presence of separating con-
junction, we keep things simple here and do
not introduce bunched contexts (O’Hearn
and Pym 1999), instead including a set of
axioms for separating conjunction. This is
one of the reasons the proof theory we are
presenting is just a sketch.

* O’Hearn and Pym (1999), “The logic of
bunched implications”

** Appel et al. (2007), “A very modal model
of a modern, major, general type system”

>3 This should not be surprising: as it is, re-
finement is a thin veneer over the rest of
the logic, and could be treated entirely as a
derived form if we moved to a second order
(relational) logic (like Plotkin and Abadi
(1993), Dreyer et al. (2009), or Dreyer, Neis,
Rossberg, et al. (2010).

http://www.jstor.org/stable/10.2307/421090
http://www.jstor.org/stable/10.2307/421090
http://dx.doi.org/10.1145/1190216.1190235
http://dx.doi.org/10.1145/1190216.1190235

BASIC REASONING PRINCIPLES 91

LAWS OF INTUITIONISTIC FIRST-ORDER LOGIC.

PeP P+ P[v/x] Prv=v PrP PrQ PrPAQ PrPAQ
PrP P+ P[v'/x] P-PAQ PP PrQ
PrPvAQ P,P+R P,Q+R PrP PrQ P,P-Q PrP=Q PrP

P+R P+PvQ P+PvQ Pr+P=Q Pr-Q
P+ Ply/x] y fresh P+ Vx.P Pr3x.P P,Ply/x]+Q y fresh P+ P[v/x]
P+ Vx.P P+ P[v/x] P+Q P+ Ix.P

AXIOMS FROM THE LOGIC OF BUNCHED IMPLICATIONS.

(PvQ)=*R (P*R) v (QxR)

<~
P p
Q = Q» (PAQ)*R —> (P+R)A(Q+R) P.ArQ P.P+Q
<
—

(P+Q)*R <= Px*(Q=*R)

(3x. P) »Q 3x. (P * Q) P,Pix P Qi *Q,

Pxemp < P
(Vx.P)*Q Vx. (P* Q)

LAWS FOR THE “LATER” MODALITY.

Mono LoB
>Vx.P < Vx.pP
Pr+P P,>P+P >(PAQ) < »>PADRQ
_— >Ix.P <« dx.pP
P+ >P P+P >(PvQ) <= pPvD>Q

>(P*Q) <= DpP*pQ

Figure 5.9: The basic logical laws
reflected in the fact that all of the heap assertions in pre- and post-
conditions are understood to characterize thread-private state, while all
claims about shared state are made through island assertions. That means
that all assertions are automatically “stable” under concurrent interference.
Concurrent Hoare logic is used primarily to glue together the results of
reasoning in the lower-level atomic Hoare logic.

e THE BOTTOM LAYER is “atomic Hoare logic,” which is used to reason
about atomic steps of execution without regard to concurrent threads.
Atomic Hoare logic uses an alternative, “atomic” Hoare triple (P) a (x.Q)
in which pre- and post-conditions may characterize private and shared
state alike, in terms of concrete heap/code resources rather than through
island assertions. Atomic triples are restricted to the following atomic
expressions, whose execution is guaranteed to take exactly one step:

a == newV | get(v[i]) | v[i] := v | cas(v[i],v,v) | inj; v

Since the pre- and post-conditions of atomic triples are not stable under
concurrent interference, atomic Hoare logic does not provide rules for
sequencing. Instead, atomic triples must be lifted to concurrent triples,
which requires showing that any changes made to a shared resource
must be permitted by the protocol governing it. Since protocols govern

92 A LOGIC FOR LOCAL PROTOCOLS

execution one atomic step at a time, the restriction of atomic triples to
atomic expressions is a vital one.

When we say “Hoare triple” or “Hoare-style reasoning” without qualification,
we mean “‘concurrent Hoare triple” and “concurrent Hoare logic”

Recall that the semantics of refinement and Hoare triples is given with
respect to an unprivileged world U and without reference to any private
resources (§5.4). Consequently, the rules for program reasoning uses a re-
stricted form of the hypothetical style: instead of an arbitrary set of hypothesis
P, the rules use a set of “pure” hypothesis ®©. A hypothesis P is pure if its
meaning is insensitive to the ownership of tokens or private resources, i.e., if
for every W, 5 and p

W,nef P < |W|,g" P
We next elaborate on each layer of program reasoning, working top-down.

Reasoning about refinement

Since there are two kinds of refinement—one between values, one between
expressions—we begin with a rule that relates them:

D+ V1 Sv Vi T
O+ <£ vy T
The rule shows that expression refinement contains value refinement. As it

turns out, this rule will be derivable from the following one (SPECINTRO),
together with the rule RETURN in §5.5.4:

SPECINTRO

VK, j. @+ {jrs Kles]} e {x.3y. x <V y:1aj»sK[y]}

Ore<fe:t

SPECINTRO rule merely restates the definition of (closed) expression refine-
ment in terms of Hoare triples (§5.2). We omit the other rules recapitulating
the definition of (open) expression refinement.

The rules in Figure s5.10 for introducing value refinement are also just
recapitulations of its definition; there are also a set of rules in the other
direction for eliminating refinements, which we omit. We also omit rules for
type variables; see Chapter 13. Since the rules are so closely correlated with
the types of the language, we don't bother to separately name them.

Concurrent Hoare logic

The “glue” rules for concurrent Hoare logic, shown in Figure 5.11, are com-
pletely straightforward. Since we are working in an expression-oriented
rather than statement-oriented language, we have a BIND rule for connecting

®r ()<Y () :unit @ true <” true : bool

vy =rec f(x).e
O, x, <V x5 : T+ pe[vi/f] <€ es[vs/f]: T

Or vl <V OF vy <V vy,

O + false <" false : bool

BASIC REASONING PRINCIPLES 93

Vv

Or+n<"n:nat

vs = rec f(xs).es

O+ (v),v5) <V (vi,v5) T x Ty

O+ pe, <Fegit

Or Ay, <Y Aeg: Va.T

O v, <Y v : T[pa.t/a]

Oy, <Y Vst Yo T

DO+ inV(HE,?. N\x =V y i Aav e (%) *vs o (?))

® - null <Y null : ref,(7)

Orv, vt 1

OF by, <Y v ref(7)
v

D+ v, <7 v refy(T)

O+ 3x, y. bx <V y i1 Adnv(v, =y inj; X % vg g inj;)

O F v, <Y v :ref(T)

an expression to an evaluation context (rather than a sequencing rule for
statements).>* The only other unusual feature is that we funnel all use of
hypotheses through the rule Hypo, which allows them to be brought into
the precondition of a triple. (A kind of converse rule, HrypoOuUT, allows pure
assertions to be brought out of the purview of Hoare logic and into the general
proof context.)

The “primitive” rules shown in the bottom of Figure 5.1 are more inter-
esting: as the name suggests, they provide the means of proving triples about
primitive operations. Primitives fall into two categories: pure and imperative.

PURE OPERATIONS (e.g., addition, conditionals and function application)
neither inspect nor alter the heap. As such, they have only one interaction
with Hoare-style reasoning: they decrease the number of steps remaining. The

. ... pure
rule PURE supports reasoning about pure steps of computation: if e — e
(note the lack of heap), and e’ satisfies a particular Hoare triple, then e

satisfies the same Hoare triple one step earlier.

IMPERATIVE OPERATIONS—all those in the grammar of atomic expressions
a (§5.5.2)—interact with the heap in some way, which requires us to take
concurrency into account. Consequently, we have two basic rules for reason-
ing about imperative operations, depending on whether they are applied to
private or shared resources:

e Private resources must be mentioned explicitly and concretely in the
pre- and post-conditions of a concurrent Hoare triple. Atomic Hoare
triples (P) a (x.Q), as we will see shortly, operate on precisely such
concrete assertions. Therefore the PRIVATE rule simply lifts atomic Hoare
reasoning.?® Additional, potentially-shared resources can then be framed
in using FRAME.

d>r—vlsvvszrl+rz

Figure 5.10: Introduction rules for
value refinement

>+ Of course, statement-style sequencing is a
derived form of let, and likewise the stan-
dard Hoare-style sequencing rule is deriv-
able from BIND.

* This auxiliary stepping relation is given in
Appendix A.

> The use of [> is justified by the fact that
an atomic expression always takes one step
to execute.

94 A LOGIC FOR LOCAL PROTOCOLS

“GLUE” (LOGICAL AND STRUCTURAL) RULES FOR CONCURRENT HOARE LOGIC.

BinD

(P} e {x.Q} Vx. {Q} K[x] {y.R} ReTuRN
{P} K[e] {y.R} {emp} v {x.x =v Aemp}
CONSEQUENCE DisjuNcTION FRAME
PP {P'} e {x.Q'} Q' +Q {P} e {x.Q} {P,} e {x.Q} {P} e {x.Q}
{P} e {x.Q} {Pv P} e {x.Q} {P*R} e {x.Q*R}
Hypro HypoOuTt WEAKEN
O+ P {PAQ} e {x.R} P pure ®,P+{Q} e {x.R} O+ {P} e {x.Q*R}
O+ {Q} e {x.R} O+ {PArQ} e {x.R} O+ {P} e {x.Q}
PRIMITIVE RULES FOR CONCURRENT HOARE LOGIC.
PUPIflEre PRIVATE
e > {P}e{Q} (P) a (x. Q)
{>P} e {Q} {>P} a {x.Q}
SHA::T; P guar NEWISLAND
Vi 240,32 0.3Q. (e d(es)* P)a(x. > I(Vs)* Q) A (i Q)R {P} e {x.Qx* p>r.I(1.5)}
{i~19*>P} a {x. R} {P} e {x.Q*1}
PRIVATESUMELIM

ie{l,2} {€winj; x » P} e; {ret. Q}

{€inj; x * >P} case(¥,inj; x = ej,inj, x = e;) {ret. Q}

Figure 5.11: Concurrent Hoare logic
o Shared resources, on the other hand, are characterized indirectly through
island assertions, i.e., controlled by protocols. In reasoning using the
SHARED rule, we employ our rely and guarantee preorders to reason about
concurrent interference and the permissible state changes according to a

protocol. The rule focuses on a particular island with ID i described by
rely
1g. Of course, the real state of the island is some 1 2 3. For each such

possible state, the operation a we are performing must move the protocol
guar
to a guarantee-future state // 3 1, at the same time establishing some

postcondition Q.*” In checking the operation a against the protocol, we 7 This postcondition could contain, for
example, resources whose ownership just

use an atomic Hoare triple as applied to the interpretations of the protocol
p PP P P passed from the island to the local thread.

states—exposing the concrete shared resources of the island. Although
each possible protocol state 1 might lead to a different concrete new state
1" and postcondition Q, all such final states must be summarized by a
single, abstract postcondition R. The use of the > modality around the
island’s interpretation in the postcondition is justified by the fact that
island interpretations are delayed one step; see the definition of world
satisfaction (§5.3.5).

5:5-5

Of course, shared resources are initially created as private ones and later
exposed to other threads. The rule NEwIsLAND allows a private resource to
be “downgraded” into a shared one.

Finally, the rule PRIVATESUMELIM accounts for the case construct on sum
types, which interacts with the heap but is not an atomic expression. The rule
eliminates a sum whose value is known and whose heap representation is
privately-owned. By applying the rule of DIsjUNCTION, it can be made to
operate on a sum whose value is not known in advance. We omit the similar
rule that works on sums whose heap representation is managed as part of a
shared island.

Atomic Hoare logic

Finally, we have atomic Hoare triples, whose definition is loosely a one-step,
single-thread version of threadpool simulation:

E(P)a(x.Q) = VYW,n, yr#n,p.
if W.k>0and >W, 5 =P Pand (1 ® ng).h;a — h';v then 3n"#np.
W =("®ne)h, (n®ne)Zz3(n'®ne).Z, bW,n =P Q[v/x]

where P and Q are assumed to be token-pure, i.e., not to include any
island assertions claiming ownership of tokens.?® We also assume that P,
Q and a have no free term variables, but in the inference rules below we
implicitly universally-quantify any free variables (just as with hypothetical
reasoning, §5.5.1). Finally, a subtle point regarding step-indexing: we interpret
P as being implicitly wrapped in a > modality, which allows us to avoid
cluttering the rules of atomic Hoare logic with the modality—but note that,
when we lift atomic triples in the PRIVATE and SHARED rules (§5.5.4), the
modality becomes explicit.

The most important difference from threadpool simulation (and, thus,
from concurrent triples) is that atomic triples do not interpret the islands
of W. All of the resources they interact with must be concretely described
by the precondition P. There is therefore no mention of rely or guarantee
relations—protocols play no role here. We ultimately get away with this
because atomic Hoare triples deal only with one-step executions, whose
protocol conformance can be checked when they are lifted into concurrent
Hoare triples ($5.5.4).

The rules in Figure 5.12 spell out the atomic Hoare logic. They are pleas-
antly straightforward—essentially the standard “small axioms” of sequential
separation logic,> with the notable absence of a rule for sequencing. As with
the PRIVATESUMELIM rule, we axiomatize cas using a pair of rules for its two
possible outcomes, but we can derive a rule that covers both by applying
ACONSEQUENCE and ADISJUNCTION.

BASIC REASONING PRINCIPLES 95

** Recall that this is the same restriction
placed on the interpretations of islands.

*? Reynolds (2002), “Separation logic: a
logic for shared mutable data structures”

5.5.6

96 A LOGIC FOR LOCAL PROTOCOLS

REASONING ABOUT ATOMIC EXPRESSIONS.

INJECT ALLoc DEREF
(emp) inj; v (ret. ret —, inj; v) (emp) new ¥ (ret. ret =, (¥)) (v = (v)) get(v[i]) (ret. ret = v; Av =, (¥))
ASSIGN
(v (v v)) v[E] = vi(retoret= () Av iy (Voo Vie, Vs Vigts -5 Vi)
CASTRUE
(v (v, v)) cas(v]i], vi, vi) (ret.ret = true Av > (Vi oo, Vi, Vi Vied -2 -5 Vi)
CASFALSE

(v =1 (V) Ave #vi]) cas(v[i], v, v}) (ret. ret = false A v = (V))

LOGICAL AND STRUCTURAL RULES.

ACONSEQUENCE AFRAME
P+P (P') a (x. Q') Q' +Q (P) a (x. Q)
(P) a (x. Q) (P*R)a(x.Q=R)

Reasoning about specification code

Our treatment of program reasoning thusfar has focused on implementation
code, but specifications are programs, too.

Execution of specification code is always tied, simulation-style, to the exe-
cution of implementation code, as can most vividly be seen in the definition
of threadpool simulation (§5.4.3). That definition presents two opportunities
for executing spec code: either in response to atomic steps of implementation
code, or when the (main thread of the) implementation produces a value.
We likewise have two proof rules for spec execution, one for atomic triples
and one for concurrent triples. The rules allow the spec to take steps “in the
postcondition” of a triple:

AEXECSPEC ExecSpecC
(P) a (x. Q) Q=3R {P} e {x.Q} Q3R
(P) a (x.R) {P} e {x.R}

The ExecSpEc and AEXECSPEC rules have something of the flavor of the rule
of consequence, but do not be deceived: P = Q and P = Q are quite different
claims. The latter is defined as follows:

FP2Q £ YW, h 3, Zp4, p.
ifW,(h,2)=” Pthen32'. (20 2F) 2 (2 ®Zp)and W, (h,2) 2 Q

So P = Q means that the (set of) spec resources in P be can be (specula-
tively) executed to produce new spec resources satisfying Q. Its definition is
essentially an excerpt from the definition of atomic triples.

We will not give a detailed set of proof rules for spec execution =, instead
leaving such claims as proof obligations to be carried out “in the model”

ADISJUNCTION
(P1) a (x. Q) (P2) a (x. Q)
(P v Py)a(x. Q)

Figure 5.12: Atomic Hoare logic

5.5.7

5.5.8

Reasoning about recursion

The LOB rule provides the essential ingredient for reasoning about recursion,
but it may not be obvious how to usefully apply it. While there are many useful
recursion schemes derivable from L6B, the one we will use applies to Hoare
triples on the bodies of recursive functions:

UNFOLDREC

O+Vf,x. {PAVx.{P} fx {ret. Q}} e {ret. Q}
@+ Vx. {P} e[rec f(x).e/f] {ret. Q}

The UNFOLDREC rule provides a coinductive reasoning principle for recursive

functions, allowing a triple to be proved under the assumption that it holds
whenever the function is applied. It is derivable using L6B, PURE and Hypo
(together with several of the standard logical rules).

We omit the derivation, which is somewhat tedious, but the intuition is
simple. If we instantiate the LoB rule to the conclusion of UNFOLDREC, we
have the derived rule

@, pVx.{P} e[rec f(x).e/f] {ret. Q} + Vx.{P} e[rec f(x).e/f] {ret. Q}

O+ Vx.{P} e[rec f(x).e/f] {ret. Q}

But a function application takes a step to actually perform! The assumption
we gain from the LOB rule characterizes a function application just after f3-
reduction, and is wrapped with a use of “later” By using the PURE rule (§5.5.4),
we can replace it with an assumption characterizing a function application
just before 3-reduction—and thereby “eat up” the extra 1> modality at just the
right moment.

Derived rules for pure expressions

We close the discussion of proof theory with a few derived rules dealing with
common pure expression forms:

O+ {P} e {x. >Q} O+ Vx. {Q} ¢ {y.R}
O+ {P}letx=cine {y.R}

O+ {P} e {x.(x=truen >Q)) Vv (x =false A >Q,)}
D+ {Ql} (4] {ret. R} O+ {Qz} () {ret. R}
@ + {P} if e then ¢ else e, {ret. R}

Or{P}e{x.(x=nullA>Q)) Vv (IL.x=€AD>Q,)}
O+ {Q} e {ret. R} O+ Ve {Qy[8/x]} ey {ret. R}
O+ {P} case(e,null = ¢;,x = e;) {ret. R}

These rules all follow through use of PURE, CONSEQUENCE and DISJUNCTION.

BASIC REASONING PRINCIPLES

97

5.6

5.6.1

98 A LOGIC FOR LOCAL PROTOCOLS

METATHEORY

Having seen all the layers of our logic, there are now two interesting metathe-
oretic questions to ask about its soundness:

1. Are the proof rules sound for the semantics of assertions?

2. Do refinement assertions actually imply the corresponding contextual
refinements?

Most of our proof-theoretic rules follow quite simply from assertion seman-
tics. The interesting ones—primarily, the “glue” rules for concurrent Hoare
logic (§5.5.4)—are built on precisely the same lemmas we use in showing
soundness for contextual refinement. So we focus on Question 2.

Soundness for refinement

The key theorem is the following:3°

&

Theorem 1 (Soundness). If E QO +e; < e, :7then Q E e <e,: T

In proving a contextual refinement from a refinement assertion, we cannot
assume anything about the world U in which we work. After all, the world
is a representation of the context’s behavior, about which we must assume
nothing.

Soundness relies on the usual decomposition of contextual refinement into
two properties: adequacy and compatibility.3'

ADEQUACY FOR REFINEMENT ASSERTIONS IS EASY TO SHOW:
Theorem 2 (Adequacy). Suppose k= - - ¢, < e, : nat, and let i, j and 1 be

arbitrary. If we have

3h, . @ [i e] >" hli=n]uw T
then we also have

Jhy, To. B5[j = ea] =" hps[j o n]u Th.

Adequacy just says that when we assert refinement between closed expres-
sions of nat type, the directly-observable behavior of the implementation e,
(as a program) is reproducible by the specification e.

COMPATIBILITY IS MUCH MORE DIFFICULT TO SHOW:

Theorem 3 (Compatibility). If = Q + e; <€ e; : Tand C: (Q,7) ~ (Q/,7')
then = Q' - C[e;] <€ Cley] : 7'

Compatibility captures the idea that, if we claim an implementation refines
its spec, layering on additional client-side observations should never enable
us to discover an implementation behavior not reproducible by the spec. We
prove it by induction over the derivation of C : (Q, 1) ~ (Q',7'), treating
each case as a separate “compatibility lemma?”

“Anything that thinks logically can be fooled
by something else that thinks at least as logi-
cally as it does.”

—Douglas Adams, The Hitchhiker’s Guide

3° We abbreviate VU. U =2 g as = ¢.

3" Any relation that is adequate and compat-
ible is contained in contextual refinement,
which is the largest such relation.

5.6.2

LEMFRAME

W,n e Tem {x. Q} We,ny =P R W#Wy n#n ¢
We Wnnens e’ Tem {x. Q *R}

LEMPAR
Wi#W, m#n, T#T, my # none = m; € dom(Ty)

Wi, m =P Tiem; {x. Q} W, 112 P To@m;y {x. Qo)
W@ Wa,m @ ny P Ty w Th@my {x. Ql}

LEMSEQ
W,nef [i-e]w T@i {x. Q}
Vv, W' . W' = Qv/x] = W',5' &’ [i~ K[v]]@i {x. R}

W, e [i > K[e]]w T@i {x. R}

Lemmas for threadpool simulation

The key to tractability for the compatibility lemmas is isolating a yet-lower-
level set of lemmas, working at the level of threadpool simulation, that allow
us to glue together computations in various ways. These are the same lemmas
we mentioned above that likewise support the glue rules of concurrent Hoare
logic. They are shown as inference rules in Figure 5.13.3>

To prove the lemmas in Figure 5.13, we need another set of lemmas giving
some fundamental properties of the rely and guarantee preorders:

rely
Lemma 1 (Rely-closure of Assertions). W,n =’ Pand W = W’ implies
W', 5 =P P.
rely
Lemma 2 (Rely Decomposition). If W; ® W, & W’ then there are W' and

rely rely
W/ with W' = W/ @ W/, W; © W and W, © W

guar
Lemma 3 (Token Framing). If W © W'and W#W; then there exists some

rel r
W/#W such that Wy © W/and We W, & W' e W/,

The LEMPAR lemma provides the basis for compatibility of fork, while
LEMSEQ is used not only to prove the BIND rule, but also in nearly every
compatibility lemma that involves subexpressions. For example, consider
compatibility of function application:

FQre<‘e:7T>1 EQre<fe):r

£

! !
FEQree < ee:T

The expression e; e, is evaluated by first evaluating e; and ej, but these
subexpression evaluations are completely uninteresting: in the proof, we want
to simply “drop in” the assumptions about e; and e] and jump directly to the

METATHEORY 99

Figure 5.13: Key, low-level lemmas for
soundness

*>'The notation # is used in the standard
way to claim that the relevant composition
is defined. For example, W#W' means that
W ® W' is defined.

100 A LOGIC FOR LOCAL PROTOCOLS

interesting part, namely 3-reduction. The LEMSEQ lemma lets us do exactly
that.3?

The proof of LEMSEQ is what motivates the inclusion of an unknown
evaluation context K in the definition of expression refinement (§5.4.2): when
reasoning about the evaluation of a subexpression e in some K[e], we treat
K as part of the unknown context. But when reasoning about the subsequent
execution of the continuation K[v], we think of K as part of the expression.

Detailed proofs of the lemmas in Figure s5.13, the compatibility lemmas,
and other key glue rules of concurrent Hoare logic are given in Appendix C.

3 This is a bit like “locally” TT-closing (Pitts
and Stark 1998) the logical relation.

Example proofs

Synopsis This chapter exercises the logic of local protocols on a series of
realistic examples employing several sophisticated techniques for scalability:
elimination backoft (§6.4), lock-free traversal (§6.5), and helping (§6.6).

PROOF OUTLINES

Before examining examples, we need to set some ground rules for tractable
notation.

We show example proofs as “Hoare proof outlines”, which interleave
code with (colored) annotations making assertions. In reading such a proof
outline, one should imagine each bit of code, along with the assertions
immediately before and after it, as comprising a concurrent Hoare triple:

o A sequence like
{P}e; {x.Q} e’ {y. R}
then comprises two triples {P} e {x.Q} and Vx. {Q} ¢ {y.R}
together with a use of the derived rule for sequencing the two expressions.
It is therefore a proof of {P} e;e’ {y.R}. Since semicolon-sequenced
code usually just returns unit values in between, we often omit the binder
for x.

o Similarly, a sequence like
{P}letx=cin{Q} e {y.R}

comprises two triples {P} e {x.Q} and Vx. {Q} ¢’ {y. R} together
with a use of the derived rule for sequencing the two expressions. It is
therefore a proof of {P} letx =eine’ {y.R}. Note that we implicitly
use the let-binder x in the postcondition Q.

e Uses of the rule of CONSEQUENCE are given as back-to-back annotations:
{P}{Q}. Similarly, uses of EXECSPEC are given as back-to-back annota-
tions with = written in between: {P} = {Q}.

e Conditionals are handled using a joint precondition and annotating each
branch with its own assertion. For example, the outline

{P} if ethen {Q;} e; {ret. R} else {Q,} e, {ret. R}

“None of the programs in this monograph,
needless to say, has been tested on a machine.”

—Edsger W. Dijkstra
“Beware of bugs in the above code; I have only

proved it correct, not tried it”

—Donald E. Knuth

101

102 EXAMPLE PROOES

comprises the triples

{P} e {x. (x =true A >Q;) v (x = false A >Q;)}
{Qi} e {ret. R} {Q2} ey {ret. R}

and constitutes a proof of

{P} if e then ¢ else e, {ret. R}

e We consistently use the UNFOLDREC rule (§5.5.7) to deal with recursion.
Rather than explicitly writing the unfolded recursive assumption nested
within an assertion, we leave it implicit. For example, when reasoning
about rec f(x).e, we will use a proof outline like

{P} e {ret. Q}

with f and x free, in which we implicitly assume that
Vx. {P} fx {ret. Q}

e We implicitly use the MoNo rule to strengthen preconditions or weaken
postconditions as necessary, and implicitly apply WEAKEN to throw away
unneeded assertions in the postcondition.

We use proof outlines to give the high-level structure of a proof in terms
of its step-by-step gluing of concurrent Hoare triples—but of course, the
correctness of the individual Hoare triples will not always be apparent. Thus
we often supplement proof outlines with detailed explanations of how they
use the PRIVATE and SHARED rules (§5.5.4) to lift atomic triples, and in some
cases also give details for the atomic triples themselves.

WARMUP: CONCURRENT COUNTERS

For our first example refinement proof, we return again' to concurrent
counters—a simple enough example to let us “practice” the basic proof
mechanics without getting bogged down in algorithmic details.

We prove in particular that the following optimistic, cas-based counter,

a

casCnt = let r = new 0

A().letn =getr
in if cas(r, n,n + 1) then () else inc()
read = A().getr

in (inc, read)

inc

refines the following canonical atomic spec,
atomCnt 2 let r = new 0 in mkAtomic(A().r := getr+1, A(). getr)

In other words, we will show

&

-+ casCnt <° atomCnt : (unit — unit) x (unit - nat)

' And not for the last time! See §10.2.1.

6.2.1

6.2.2

WARMUP: CONCURRENT COUNTERS 103

The protocol

Before delving into the details of the proof, we need to determine the
protocol governing casCnt’s hidden state: the reference r. Fortunately, the
protocol is extremely simple: the entire internal state of the data structure
is represented by a single value at base type. Consequently, executing a cas on
r is so informative that the inc operation can withstand essentially arbitrary
interference, so long as the spec’s state remains linked. In other words, we can
use the following invariant (i.e., single-state) protocol:*

inv(3n. r; >, 1 * rg g 1 * locks g false)

As usual, in reasoning about the code we rename variables, adding 1 and s
subscripts to clearly distinguish between implementation- and specification-
side names. Here the invariant ensures that the implementation and spec
counter values change together, and that every execution of spec code goes
through an entire critical section (leaving the lock from mkAtomic free, i.e.,
false).

The proof

The proof of refinement here, as with most we will consider, works in
essentially two stages:

Construction. First we account for the code making up the “constructor” of
an object. For counters, construction includes includes the allocation of
r; on the implementation side and s and locks on the spec side. Once
the objects have been constructed, we introduce a new island to link
implementation and specification together.

Method refinement. We then prove refinement of the method tuples returned
by the spec by those of the implementation. These refinement proofs
assume the existence of the island introduced in the first stage.

And so we begin.

CONSTRUCTION. To prove
casCnt <¢ atomCnt : 7 where 7 = (unit — unit) x (unit - nat)
it suffices to show (by SPECINTRO, §5.5.3), for all j and K, that
{j =s K[atomCnt]} casCnt {x. By x <Y yiT A jog K[y]}

Using the derived rule for let expressions (§5.5.8), we can first reason about
the allocation of r;:
(emp)) new O (r;. r; —; 0)

which, by AFRAME (§5.5.5), gives us

(j s K[atomCnt]) new O (r,. ; = 0 * j 5 K[atomCnt])

* Invariant protocols inv(P) were defined
in §5.4.2.

104 EXAMPLE PROOFS

At this point, the implementation’s representation has been constructed, but
the spec’s has not. Recalling the definition of mkAtomic (§3.4), it is easy to see
that

j=s KlatomCnt] = 3Jrs. j>»>s K[(incs, reads)] * locks - false * rg =5 0

where

Il>

incg withLock(locks, A().rs = getrs+1)
read; = withLock(locks, A(). get r5)

Thus, by ASPECEXEC (§5.5.6), we have
(j s K[atomCnt]) new O (r;. ; = 0 % Irs. j ¢ K[(incs, reads)] * locks — false * g = 0)

At this point in the proof, the representations have been constructed as
privately-owned resources. We therefore lift our atomic triple to a concurrent
one using PRIVATE ($5.5.4):

{>j»s K[atomCnt]} new 0 {r,. r, —; 0% Irs. j =5 K[(incs,reads)] * locks — false * rg —s 0}

Although the representations are not exported directly, the exported closures
(e.g., incs) have shared access to them—so to finish the construction phase,
we need to move them into an island. We do so using NEwISLAND (and an

application of CONSEQUENCE, which we elide):3 3 Recall that we use ¢ as a shorthand for the
assertion dx. x — 1.

{>j s K[atomCnt]} new 0 {r,. 3rs. j =5 K[(incs,reads) * 1}

where 1 £ inv(3n. r; =) n % g ¢ 1 * locks > false)

METHOD REFINEMENT. To show refinement for the pair of methods, we

must show refinement for each independently:# +Here we are implicitly using the rule
for introducing value refinement at pair
i Finc, <V incg : unit > unit and 1 + read; <" read; : unit — nat type (§5.5.3), as well as the HypoOuT rule

to record the assumption :.
where ing; is the actual (recursive) function definition for inc’s implementa-

tion, and likewise for read,.” We will examine the proof for inc, from which * In the rest of the examples for this section,
we will continue to follow this convention,

. . . using subscripts I and s on method names
Showing refinement amounts to proving, for all j and K, that to stand for the corresponding anonymous,

recursive function definitions.

the proof for read can be easily extrapolated.

VY, <Y x t unit. {j ¢ K[incBodys[inc,/inc]]} incBody,[inc; /inc] {ret;. Trets. ret, <V retg : unit A j > Klret]}

where incBody, is the body of inc, (and likewise for the spec versions). Since
inc, is a recursive function, we will use UNFOLDREC to carry out the proof. As
discussed in §6.1, we give the proof for its body, treating inc as a free variable
which we implicitly assume to behave according to the triple we prove.

The first, somewhat startling observation about the proof outline (Fig-
ure 6.1) is that we do not bother to record any new facts when executing get 7,.
But the reason is simple: there are no stable facts to be gained! The moment
after reading r;, all we know is that its value was once n, and our one-state
protocol (recorded in 1) is too simple to record even this fact.

WARMUP: CONCURRENT COUNTERS 105

Let es = K[incBody, [incs/inc]]:

{j»sesx1}
let n = getr; in
{j=ses*i}
if cas(ry, n,n +1)
then {j - K[()] * 1} () {ret. ret = () A j s K[()]}
else {j s es * 1} inc() {ret. ret = () A j s K[()]}

NoT To woRRY—it is the cas that will tell use the value of r when we really
need to know it.

Despite gaining nothing semantically® from taking the snapshot of r, it is
still worthwhile seeing how the triple

{jrses*1} getr, {n. j>ges*1}

is actually proved, namely, by lifting an atomic triple via the SHARED rule. The
rule requires that we consider every rely-future state of 1, moving from each to
some guarantee-future state. We illustrate applications of SHARED by giving
tables like the following:

{jrses*1} getr, {n.jrses*1}

j s es * 1.I(dummy) ‘ n. j = es * 1.I(dummy)

At the top of the table we give the concurrent triple we are trying to prove,
which must in particular have a pre- and post-condition involving an island
assertion. Underneath, we give a row for each possible rely-future state of
the island in the precondition. Each row replaces the island assertion in its
pre- and post-conditions with its interpretation at the asserted states; the state
in the postcondition must be a guarantee move away from the one in the
precondition (given the tokens owned in the original island assertion). Here
there is only one state, “dummy”, because we used inv to construct the island.

Every row represents an additional proof obligation: the corresponding
atomic Hoare triple must be proved. So we must show

(j =5 es * t.I(dummy)) get r; (1. j =5 es * t.I(dummy))
where, recalling the definition of , we have
t.I(dummy) = 3Jn. 1,) 1% 15 > 1 * locks = false
This is easy to show: we use DEREF ($5.5.5) for the read, deriving
(r: =1 n) getr; (ret. ret =n A1 > 1)

and construct the rest of the atomic triple by using AFRAME and ACONSE-
QUENCE.
Next we have the cas in the guard of the if expression (Figure 6.1):

Figure 6.1: A proof outline for incBody,

®We could just as well have let n =
random(); the algorithm would still work
from a safety standpoint. Of course, liveness
and performance demand that we make a
more educated guess as to r’s value.

106 EXAMPLE PROOFS

:fl '>—)
{j»ses*i} cas(r,n,n+1) {ret.((ret = false 1 j s es)]))*l}

V (ret = true A j ¢ K[()

which we prove again using SHARED—but we omit the (again trivial) table,
and instead move directly to the required atomic triple:

(ret = false A j = es5)

) * 1. J(dummy))

q] > € * ,,](dummy)D CaS("n n,n+ 1) (]ret. (v (ret =true A j > K[()D

To prove this atomic triple, we begin by proving two simpler ones, which we
join with ADISJUNCTION.

FIrsT, for the case that the cas succeeds (CASTRUE):
(r, =1 n) cas(r, n,n+1) (ret. ret = true Ar; >, 1 +1)
Using the AFRAME rule, we have
(r. 1 n % 15 g n % locks > false * j > eg))

cas(r;, n,n+1)

(ret. ret = true A7y >y n+ 1% 15 g 1 % locks = false * j > e

leaving us with a postcondition in which the implementation and specifica-
tion states differ. But:

rs s 1% locks > false * j>>g e =3 7 =g 1+ 1% locks > false * j > K[()]
so, using ASPECEXEC, we have
(r: =1 n % 15 g 1 * lockg > false * j > eg))

cas(r, n,n+1)

(ret. ret = true A 7y > m+ 1% g o5 1+ 1 # locks > false * j =5 K[()])

SECOND, for the case that the cas fails (CASFALSE):
(m + nAr — m)cas(r,n,n+1) (ret. ret = false A r, =, m)

there is nothing to do but frame in the other resources:

(m+nAr > mxrg—>g m*locks g false * j > es)
cas(r, n,n+1)

(ret. ret = false A 7, >y m * g > m * locks > false * j > e

WE FINISH THE PROOF of cas by joining the two atomic triples together,
using AD1sjuNcTiON and ACONSEQUENCE. That just leaves the two arms
of the if expression (Figure 6.1). The first arm is a trivial use of RETURN
and FRAME (§5.5.4). The second arm follows from our (implicit!) assumption

6.3

WARMUP: LATE VERSUS EARLY CHOICE

about recursive invocations of the function, according to the convention laid
out in §6.1.

And so concludes the proof of a simple concurrent counter. We have, of
course, gone into considerable detail in order to fully illustrate the proof
mechanics. The next two sections (on late/early choice and red/blue flags) will
also go into a fair amount of detail, but subsequent examples (the Michael-
Scott queue and conditional CAS) will work mostly at the level of proof
outlines.

WARMUP: LATE VERSUS EARLY CHOICE

To get a bit more experience with the proof theory—and spec execution in
particular—we give a more detailed proof that lateChoice refines earlyChoice
at type ref(nat) — nat:

rand = A().let y = new false in (fork y := true);get(y[1])
Ax. x = 0;rand()

13

lateChoice

earlyChoice = Ax.letr=rand()inx := O;r

As we noted in §4.5, these functions do not close over any hidden state and
thus do not require a protocol (or even, in the terminology of this chapter, a
construction phase for the proof).

So we proceed directly to the proof outline, shown in Figure 6.2.
Because lateChoice takes a reference as an argument, we begin with an
assumption x; <¥ x; : ref(nat) which implies (§5.4.2, §5.5.3) the following
(implicitly existential) island assertion:

inv(3y, ys. <V Vs inat A Xy =y Yp ok Xs g Vs)

Figure 6.2: Proof outline for

107

refinement of earlyChoice by lateChoice

{xl <V x : ref(nat) A j > K[earlyChoiceBody]}
3y, ys. 1 =¥ ysinat A (x>, y; * Xs > ¥s5)) * j>>s K[earlyChoiceBody])
(x; =y — * x5 +>5 — * j>>s K[earlyChoiceBody])
x =0
(x; 1 0 % x5 5 — * j>s K[earlyChoiceBody]) =3
(%1 0 % x3 >3 0 % (j»g K[true] ® j = K[false]))
{xI <Y xy : ref(nat) A (j = K[true] & j ¢ K[false])}
{j »s K[true] @ j »¢ K[false]}
rand()
{ret. (ret = true Vv ret = false) * (j = K[true] & j s K[false])}

{ret. (ret = true * j ¢ K[true]) v (ret = false * j —; K[false])}
{ret. ret <V ret : bool A j = K[ret]}

{ret. (ret = true * (j = K[true] & j = K[false])) v (ret = false x (j =5 K[true] @ j = K[false]))} 3

6.4

108 EXAMPLE PROOFS

In the triple for the assignment x; := 0, we use the SHARED rule (§5.5.4) to
unpack the concrete resources governed by this simple invariant protocol.
Since the protocol has only the single dummy state, we dispense with the rely-
guarantee table and instead show the derivation of the necessary atomic triple
as a nested proof outline. The key point in the nested outline is that we use
ASpECEXEC to speculatively execute two versions of the spec—both writing
to x5, but each tossing its coin in a different way.
That just leaves the implementation’s use of rand. We assume

{emp} rand() {ret. ret = true v ret = false},

a fact that can be readily proved by direct appeal to assertion semantics. After
suitably framing this assumption with the assertion j ¢ K[true] & j >
K[false], all that is left to do is distribute the * over the disjunction, and
then use SPECEXEC—not to execute spec code, but rather to throw away those
speculations that are no longer needed.

ELIMINATION: RED FLAGS VERSUS BLUE FLAGS

Now we are ready for examples involving sophisticated techniques from
scalable concurrency (Chapter 2). We begin with elimination ($2.4.5).

THE FLAG IMPLEMENTATIONS.

redFlag 2 < blueFlag £
let flag = new true, let flag = new true,
chan = new 0, flip = A().flag := not (get flag),
flip = A().if cas(chan,1,2) then () else read = A(). get flag
if cas(flag, true, false) then () else in mkAtomic(flip, read)
if cas(flag, false, true) then () else
if cas(chan, 0,1) then
if cas(chan, 1,0) then flip() else chan := 0
else flip(),
read = A(). getflag
in (flip, read)

THE PROTOCOL.

Offered(j, K); o
Accepted(j, K); 0

THE PROTOCOL STATE INTERPRETATION.

I(Empty) 2= Q *chan~;0
I(Offered(j, K)) Q * chan ;1% j ¢ K[flips()]
I(Accepted(j, K)) Q * chan ;2 % j ¢ K[()]

13

13

Q 2 dx:bool. flag, = x * flagg = x * lock > false

Figure 6.3: Red flags versus blue flags

ELIMINATION:

For reference, both the code and the protocol for the red/blue flags
example are shown in Figure 6.3.7 One interesting aspect of the example will
emerge as we go along: the order of top-level CASes in redFlag does not matter.
In particular, any failing top-level cas leaves us with the same knowledge
going out that we had coming in. We let 8 be the transition system shown in

Figure 6.3, with the single token “e” standing for ownership of the elimination
channel 8

CONSTRUCTION Fixing arbitrary j and K, we have:

{j »s K[blueFlagBody] }
let flag, = new true in
{j »s K[blueFlagBody] * flag, > true}
let chan = new 0 in
{j »s K[blueFlagBody] * flag, +, true * chan —, 0} =3

RED FLAGS VERSUS BLUE FLAGS 109

7 We use the shorthand x : bool for x =
true vV x = false in defining the protocol
interpretation.

8 We often write e in place of {e}.

{j »s K[(flips, reads)] * flag, +; true * chan ~; 0 * flag, — true * lock > false }

[(
{j »s K[(flipg, reads)] * I(Empty) }
{j s K[(flip,, reads)] * (0, 1,Empty, @) }

This proof outline follows the same approach we have already seen for the
construction phase (§6.2); the last step, in particular, uses the NEwWISLAND
rule (§5.5.4) to move privately-owned resources into a shared island that can
be closed over by exported functions.

METHOD REFINEMENT Now we must show that flip, refines flip, (and
similarly for read, which is trivial) under the assumption (6, I, Empty, &).
Since flip, is a recursive function, we implicitly appeal to UNFOLDREC (§6.1).
The high-level proof outline is given in Figure 6.4. It is, unfortunately, not
terribly enlightening: for all but the last cas, success means that the opera-
tion is complete, while failure means that nothing—not even our asserted
knowledge—has changed.

Let P = (6, I,Empty, @) * j > K[flipBodys]:

{P} if cas(chan,1,2) then {j ¢ K[()]} () {ret.ret= () A j = K[()]}
else { P} if cas(flag, true, false) then {j ¢ K[()]} () {ret.ret=() A j s K[()]}
else { P} if cas(flag, false, true) then {j ¢ K[()]} () {ret.ret=() A j s K[()]}
else {P} if cas(chan, 0,1) then {(0, I, Offered(j, K),)}

if cas(chan,1,0)

then {P} flip() {ret. ret = () A j s K[()]}

else { P} flip() {ret.ret = () A j s K[()]}

else {(60, I, Accepted(j,K),®)} chan := 0 {ret. ret = () A ((0,1,Empty, @) * j > K[()])}

Figure 6.4: Proof outline for redFlag

We can gain more insight by examining the varied uses of the SHARED rule in
proving each cas.

110 EXAMPLE PROOFS

For the first cas, the protocol may be in any state, but the cas will only
succeed if the state is Offered:
{P} cas(chan,1,2) {ret. (ret = true * j ¢ K[()]) Vv (ret = false » P)}
j s K[flipBody, | * I(Empty) ret. ret = false * j > K[flipBody | * I(Empty)
j s K[flipBody,] * I(Offered(j’, K')) | ret. ret = true * j =¢ K[()] * I(Accepted(j',K'))
j s K[flipBody, | * I(Accepted(j’, K")) | ret. ret = false * j =3 K[flipBody] * I(Accepted(j’,K"))

This table is different from those we have seen before in two ways. First, it
has multiple rows, giving a case analysis of the possible protocol states given
the knowledge in P, i.e., that it is at least in state Empty, which means it
may be in any state. Second, and relatedly, in the second row the state in the
postcondition differs from that of the precondition, which requires checking
that we can move from Offered to Accepted while holding no tokens.

On the other hand, the protocol’s state is irrelevant to the success of the
next two cas expressions, since they attempt to perform the flip directly:

{P} cas(flag, true, false) {ret. (ret = true * j =3 K[()]) v (ret = false * P)}
j s K[flipBody, | * I(s) ‘ ret. ret = false * j =g K[flipBody,] * I(s)

{P} cas(flag, false, true) {ret. (ret = true * j ¢ K[()]) Vv (ret = false x P)}
j s K[flipBody, | * I(s) ‘ ret. ret = false * j =g K[flipBody,] * I(s)

The most interesting case is the final top-level cas. It attempts to make an
offer, which succeeds only when the starting state is Empty, in which case we
transfer control of our spec resource:

{P} cas(chan,0,1) {ret. (ret = true A (0, I, Offered(j, K),®)) Vv (ret = false A P)}
j s K[flipBody,] * I(Empty) ret. ret = true * [(Offered(j, K))
j s K[flipBody, | * I(Offered(j’,K’)) | ret. ret = false * j =5 K[flipBody | * I(Offered(j’, K"))
j s K[flipBody, | * I(Accepted(j’,K")) | ret. ret = false * j =3 K[flipBody] * I(Accepted(j’,K"))

Once the offer is made, we attempt to withdraw it. Withdrawing succeeds
only when the offer has not been accepted. Due to our ownership of the token,
Empty is not a possible state:

{(0,1,0ffered(j,K),®)} cas(chan,1,0) {ret. (ret = true * P) v (ret = false * (0, I, Accepted(j, K),e))}

I(Offered(j,K)) | ret. (ret = true A j =5 K[flipBody,]) * I(Empty)
I(Accepted(j, K)) | ret. ret = false * I(Accepted(j’, K"))
If we do not succeed in withdrawing the offer, we can conclude that the state

is at least Accepted. Due to our token ownership, that is the only state we need
to consider when subsequently clearing the offer field:

{(0, 1, Accepted(j,K),®)} chan := 0 {ret.ret= () * j > K[()])}
I(Accepted(j, K)) ‘ ret. ret = () * j =5 K[()] * I(Empty)

ELIMINATION: RED FLAGS VERSUS BLUE FLAGS 111

» FINALLY, we give detailed derivations of the most interesting atomic triples
needed for the instantiations of the SHARED rule above. Generally, the inter-
esting cases are those where the cas succeeds, or where nontrivial information
about the protocol state is discovered.

The first top-level cas succeeds in the Offered state:

(I(Offered(j’,K")) * j »5 K[flipBody,])
(chan —; 1% Q * j’ > K'[flipBody,] * j 5 K[flipBodyj]|
cas(chan, 1,2)
ret. (ret = true A chan —; 2) * Q * j' =g K'[flipBody, | * j = K[flipBody])
ret. (ret = true A chan >, 2) * dx : bool. flag, =, x * flag, =5 x * j’ »¢ K'[flipBody, | * j =5 K[flipBody]) =
ret. (ret = true A chan >, 2) * 3x : bool. flag, =, x * flag, =5 —x * j/ »¢ K'[()] * j =5 K[flipBody,]) =
[

. ret = true * chan —; 2 x 3x : bool. flag, = x * flag, =5 x * j' = K'[()] * j s K[()])

et
et
et
ret. (ret = true A chan —; 2) * 3x : bool. flag, >, x * flagg =5 x * j' 5 K'[()] * j =5 K[()])
ret
et

(
(
(
(
(
(

ret. ret = true * I(Accepted(j’, K")) * j =5 K[()])

We prove the second cas for any state s:

(I(s) * j s K[flipBodys)
(3x : bool. flag, —; x * flag, s x * Io(s) * j =5 K[flipBody,])
cas(flag, true, false)
(ret. ((ret = true * flag, +, false * flagg s true) Vv (ret = false * flag, >, false * flag, - false))
+ Iy (s) * j s K[flipBodys])
(ret. (ret = true = I(s) * j =5 K[()])
v (ret = false * I(s) * j =¢ K[flipBody,]))

The proof for cas(flag, false, true) is symmetric.

That leaves the final top-level cas, in which we make an offer:

(I(Empty) * j s K[flipBody)
(chan —; 0 * Q * j »¢ K[flipBody;]|
cas(chan, 0,1)
(ret. (ret = true A chan —; 1) * Q * j =4 K[flipBody,])
(ret. ret = true * I(Offered(j, K)))

We are now in a state where we own the token. For the inner cas, we therefore
need to consider only two possible future states—Offered and Accepted:

(I(Offered(j, K)))
(chan =, 1% Q * j > K[flipBody,])
cas(chan,1,0)
(ret. (ret = true A chan —; 0) * Q * j »¢ K[flipBodys])
(ret. ret = true x I(Empty) * j =5 K[flipBodyj]

112 EXAMPLE PROOFS

(I(Accepted(j, K)))

(chan —; 2% Q * j s K[()])
cas(chan,1,0)

(ret. (ret = false A chan —, 2) * Q * j =>¢ K[()])
(ret. ret = false * I(Accepted(j, K)))

Finally, if the inner cas fails, there is only one rely-future state: Accepted(j, K).

Thus, we know exactly what the assignment to the channel will see:

(I(Accepted(j, K)))

(Q * chan =, 2 % j = K[()])
chan := 0

(Q * chan =; 0% j ¢ K[()])
(I(Empty) * j =5 K[()])

6.5 MICHAEL AND SCOTT’S QUEUE

The examples we have worked through so far use simple (single-word) data

representations. To see spatial locality in action, we now examine a linked data

structure: the Michael-Scott queue. For reference, the code and specification

are given in Figure 6.5 and the protocol is given in Figure 6.6.°

651 The protocol

QUEUE SPECIFICATION.

CSQ: Va. (unit > ref;(a)) x (& — unit)
CGQ = A.
let head = new (null)

deq = case get head
ofn = head:=get(n[2]);
new (get(n[1]))
| null = null,

eng = Ax.letenq’ = Ac. case get(c[2])
of ¢ = enqd'(¢)
| null = ¢[2] :=new (x,null)
in case get(head)
ofn = enqg'(n)
| null = head := new (x,null)

in mkAtomic(deq, enq)

° An explanation of these details is given in
§4.2.

QUEUE IMPLEMENTATION.

MSQ: V. (unit — ref;(a)) x (a — unit)
MSQ £ A.
let head = new (new (null, null))

let n = get head

deq
in case get(n[2])
of n’ = if cas(head, n,n")
then get(n'[1]) else deq()

| null = null,

Ax.letn = new (new x,null)
lettry = Ac. case get(c[2])
of ¢ = try(c')

enq

| null = if cas(c[2], null, n)
then () else try(c)
in try(get head)

in (deq, enq)

Figure 6.5: The queues

MICHAEL AND SCOTT’S QUEUE 113

PER-NODE STATE SPACE
So = {1} u {Live(v,v") |v,v" € Val} u {Sentinel(v,v")|v,v' € Val} u {Dead(v,¢) |v € Val, £ € Loc}

PER-NODE PROTOCOL

Logically in queue

Dead(v, £)
¢

Reachable

GLOBAL PROTOCOL STATE SPACE AND INTERPRETATION

fin

S 2 Loc = §
s~s" i Ve s(8) ~os' () v s(8) =5"(8)

head; = € * £ (VO’VI) *

I(s) = DeadSeg(sp,—,€) = () + LiveSeg(sr, vy, vs, null, null)

headg =3 vs * lockg = false

for any ¢, vy, v, Vs, Sp, SL.
with s = sp w [£ — Sentinel(vg, v;)] & 51, where:

11>

DeadSeg(2, ¢, £")
DeadSeg(sp w [€ — Dead(v,)], ¢, £")

empal=2¢"
¢, (v,€') * DeadSeg(sp,t',¢")

>

13

LiveSeg(2, vi, v{', Vs, Vi) emp AV, =V Avg =l

>

LiveSeg(sy w [v; = Live(vo,v))], vi, v/, v, v) 2 Fxp,x, vl <Y Xgt a0 % vy =y X
* Vb (VO) VI,) * Vg g (xSaVé)

* LiveSeg(sL,VI',VI">V§>V§')

Figure 6.6: The protocol for MSQ

Recall that the “global” protocol for the queue is given as a product STS of
the local protocol (the “local life story”) governing individual nodes. So a
state s € S in the global STS is a function from heap locations to node states
(drawn from Sy). Viewed differently,'® s is a partial function defined on those © Punning the 1 state in Sy with “unde-
locations for which a node has at some point been “born,” i.e., locations at fined”
non- 1 states.

As discussed in $4.2, while the transition relation of the global protocol
treats each node™ independently, the interpretation of its states does not. In " j.e., each heap location.

particular, the interpretation ensures that:

o There is exactly one Sentinel node.

6.5.2

114 EXAMPLE PROOFS

o There is exactly one node with a null tail.

e A node is Live iff it is reachable from the Sentinel.

Spatial locality

Despite providing global guarantees, the interpretation in Figure 6.6 is de-
fined vialocal (but recursive!) constraints, and is designed to support spatially-
local reasoning.

Any notion of “locality” is intimately tied to a corresponding notion of
“separation”: locality demands that we distinguish resources “here” from other
resources “somewhere else;” a distinction only possible if we can separate
resources into smaller pieces (and later recombine them). Given a notion
of separation, spatial locality means that updates to resources “here” do not
require or affect knowledge about resources “somewhere else”*?

The MSQ protocol provides an abstract notion of separation & at the level
of global protocol states that is closely aligned with physical separation in
the interpretation. Using abstract separation, we can focus attention on the
abstract state of some node(s) of interest, while treating the remaining node
states as an opaque “frame.” The protocol interpretation is defined so that this
abstract way of “focusing” on a node corresponds to a physical one as well. For
example, suppose we know that the node at location ¢ is at state Dead(x, £'),
so that the global STS state is sp w [¢ — Dead(x, ¢')] for some “frame” s.
Then there is some Py such that

I(spw € Dead(x,£)]) <= Pr * DeadSeg([¢+ Dead(x,¢')],¢,¢")
or, more to the point,
Vsp. APp. I(spw €~ Dead(x,£)]) <= Ppx*€, (x,¢)

This simple lemma supports local reasoning about dead nodes: from local
abstract knowledge about such nodes (e.g., [¢ — Dead(x,¢')]), we derive
local physical knowledge—enough to support reading their contents, for
example.

To support this kind of localized reasoning in general, we next introduce
a bit of shorthand. Assuming that 8 is the global STS given in Figure 9.1, we
set

nocsy = (0,1,[nws0],92)

Thus, if we want to assert that £ is dead, we can say € o< Dead(x, £). Because
island assertions are implicitly rely-closed (Chapter 5), the assertion says that
the global state is some rely-future state of s = [£ — Dead(x, €')]. Even though
s itself sends every location other than ¢ to state 1, a rely-future state of
s might send these other locations to a future state of L—i.e., to any state
whatsoever.

In fact, the global state must be strictly in the rely-future of s: the inter-
pretation I(s) is unsatisfiable, so s itself is not a valid state for the STS. (The

> These observations are the essence of sepa-
ration logic, and can be formulated in a very
abstract way (Calcagno et al. 2007).

" Recall the pun with partial functions.

interpretation of a global state requires, in particular, that the state has exactly
one node as Sentinel, which is not true of s). So an assertion n o sy claims
not just that # is in at least state so, but also that the state of other locations
suffice to make the STS interpretation satisfiable. This is a subtle, but key
point; it enables us to draw conclusions by using some local knowledge and
the interpretation in tandem. For example, we have:

n o< Live(—,m) Am#null = n o Live(—, m) * m o Live(—,)

Thus, from abstract local knowledge about one node, we gain abstract local
knowledge about its neighbor.'# Note that the actual state of both m and n
could be, for example, Dead—a state that is in the rely-future of Live. This
simple-seeming implication is actually a key property for verifying both enq
and deq, as we will see below.

MICHAEL AND SCOTT’S QUEUE 115

4 The implication is a simple consequence
of the way that LiveSeg is defined.

Figure 6.7: Proof for enq

Let P 2= j»gK[engBody,|* 3. n > (&, null) * €, x;

Q = Ve {Px*coclive(—,—)} try(c) {ret.ret=() A j»s K[O]}
Outline for try Outline for enq
{P % c o< Live(—,—)} {j »s K[enqBody,] * (6,],2,2)}
let t = get(c[2]) let n = new (new x,null)
{P ¢ o< Live(—, 1)} {Px(0,],2,2)}
case t lettry = ...
of ¢’ = {(Px(0,],2,2)) A Q}
{P * (c o< Live(—, c") A’ # null) } let + = get head
{P * ¢ o< Live(—, c") * ¢/ o< Live(—,—)} {(P*tocLive(—,—)) AQ}
{P ¢ o< Live(—,-)} in try(1)
ty(¢) fret.ret = () A j s K[O]}

{ret.ret=() A j»s K[()]}

| null =
{P * ¢ o< Live(—, null) }
if cas(c[2], null, n)
then
{j s K[()] * ¢ o< Live(=,n) * n o< Live(—, null) }
0
{ret.ret= () A j s K[()]}

else
{P % c o Live(-,-)}
try(c)
{ret.ret=() A js K[O]}

6.5.3

116 EXAMPLE PROOFS

The proof: enq

We begin with the verification of eng, shown in Figure 6.7, which is less
subtle® than that for deq.

To prove enq correct, we first characterize its inner loop (try) as follows:
Ve. {j s K[engBody,] * 3. n >, (£, null) * £ >, x; * ¢ o< Live(—,—)}

Since try is a tail-recursive function, the precondition here acts as a loop

t.16

invariant.’® Going piece-by-piece, it says that try assumes:

e Private ownership of the spec code K[enqgBody,] for enqueuing,

o Private ownership of the node # to insert, the first component of which is
a privately owned reference to x,, and

e That the “current node” ¢ of the traversal is at least in the Live state.
The node ¢ could in reality be the Sentinel or even Dead (i.e., no longer
reachable from head), but by placing a lower-bound of Live we guarantee
that ¢ was, at some point in the past, part of the queue.

In the code for try, we have added some intermediate let-bindings to the code
given in Chapter 4, e.g., the binding for t, which helps keep the proof outline
clear and concise.

In the first step, we read the second component ¢[2] from the current node

¢, allowing us to enrich our knowledge from ¢ o Live(—, —) to ¢ o Live(—,).

How much richer is this new knowledge? It depends on ¢. If ¢ is null, we have
not learned much, since the protocol allows ¢ to move from Live(—, null) to
e.g., Live(—, x) for any x. I, on the other hand, ¢ is non-null, then we know that
the second component of ¢ will forever remain equal to ¢. (See the protocol
in Figure 6.6.)

In the next step, we perform a case analysis on ¢ that tells us which of the
above situations obtains:

e Suppose t is some non-null value; call it ¢’. The combined knowledge
¢ o Live(—,¢") and ¢’ # null is enough to deduce ¢’ o Live(—,-), as
we explained in §6.5.2. And that, in turn, is enough knowledge to satisfy
the precondition for a recursive call to try, this time starting from ¢’. To
summarize the story so far: we can safely move from one used-to-be-Live
node to the next, using only local, abstract knowledge about the individual
nodes—despite the fact that both nodes might be currently unreachable
from head.

e Suppose instead that ¢ is null. As we explained above, according to the
protocol this tells us nothing about the current value of c[2]. This is the
essential reason why the algorithm uses cas in the next step: because cas
allows us to combine instantaneous knowledge (in this case, a re-check

that ¢[2] is null) with instantaneous action (in this case, setting c[2] to n).

 Surprisingly, given its traversal of the
queue!

try(c) {ret.ret= () A j s K[()]}

'® As usual, we unroll the recursion using
UNROLLREC.

6.5.4

o Ifthe cas succeeds, then our thread is the one that moves ¢ from abstract
state Live(—, null) to Live(—, n). Making this move in the protocol
requires us to move 7 from abstract state 1 to Live(—, null),"”” which in
turn requires us to transfer ownership of # and its first component into
the shared island.

e Finally, if the cas fails, we nevertheless still know that ¢ o Live(—, -),
and we retain ownership of #n and its first component. Thus, we can
safely restart traversal from c.

{j =5 K[deqBody,] A (6,],2,2)}

let n = get head

{j »s K[deqgBody,] A 1 o< Sentinel(—, —)}
let t = get(n[2])

{n o< Sentinel(—, t) A (

incase f

t=null A j>>¢ K[null])}

® ¢ # null A j =4 K[degBodyj |

of n' =
{j s K[degBody,] A n o< Sentinel(—, n") A n" # null}
{j »s K[deqBody, | A n o< Sentinel(—, n") A n" o< Live(—,)}
if cas(head, n, n’)
then
Ixg, Xs. X <Y X o # 1, Y. Yr o1 Xp % s s X+ jo>g K[y]
{ * n o< Dead(—, n') » n’ o< Sentinel(y;, —) }
{Hyl,ys. P <Y ys trefo(a) * jr>g K[ys] * n' o Sentinel(yl,—)}
get(n'[1])
{J’I- 3ys. y1 <Y ys rrefo(@) * j g K[J’S]}
else
{j »s K[deqBody,] A (0,], 2, @)}
deq()
{3 3ys. 1 <Y s refe () * j s K[y}
| null =
(s Klnu]}
null
{ret. ret = null A j ¢ K[null]}

{)’1- 3ys. y1 =¥ ys refy (@) * g K[J’S]}

The proof: deq

The code for deq begins by simply reading head. The node read,'® #, is at least
in the sentinel state.

The next step reads the second component of #, which will ultimately
tell whether the queue “is” empty. But, of course, a concurrent queue that is
momentarily empty may gain elements in the next instant. So when the code

MICHAEL AND SCOTT’S QUEUE 117

7 Note that n must be in state 1; otherwise,
the protocol interpretation would force the
shared island to own #, which we own pri-
vately.

Figure 6.8: Proof outline for deq

'8 By the interpretation of the protocol, we
know there must be such a node.

118 EXAMPLE PROOEFS

reads n[2] into t—Dbut before it inspects the value of t—we perform a subtle
maneuver in the logic: we “inspect” the value of ¢ within the logic (using
speculative choice), and in the case that t is null we speculatively execute the
spec. Tt is crucial to do so at this juncture, because by the time the code itself
discovers that the value t is null, the value of #[2] may have changed—and
the contents of the queue on the specification side will have changed with it.

Assuming that ¢ is not null, we can deduce that it points to a node n’ that
is at least in the Live state.”® But the knowledge we have accumulated so far
about n and n’ gives only a lower bound on their abstract states. So in the
next step, the code performs a cas, which atomically re-checks that n is still
the sentinel, and at the same time updates head to point to n’:

e If successful, n will be Dead, n’ will be the new Sentinel, and we will have
gained ownership of the first component of n. We then package up that
first component in a ref island, and return it.

o Otherwise, we drop essentially all our knowledge on the floor, and retry.

If on the other hand t is null, there is little to show: we have already
speculatively executed the specification, which must have returned null—the
same value returned by the implementation.

" Using speculative choice @ is not strictly
necessary: we could have used vanilla dis-
junction instead, because the added condi-
tions on ¢ ensure that only one branch of the
speculation is ever in play.

> This is yet another application of the
lemma given in §6.5.2.

MICHAEL AND SCOTT’S QUEUE 119

CONDITIONAL COUNTER SPECIFICATION. CONDITIONAL COUNTER IMPLEMENTATION.
counterg = counter; =

let ¢ = new 0, f = new false let ¢ = new inj; 0, f = new false

let setFlag(b) = f = b let setFlag(b) = f := b

let get() = getc let complete(x,n) =

let cinc() = ¢:=get c +if get f then lelse 0 if get f then cas(c, x,inj, (n+1))

in mkAtomic(setFlag, get, cinc) else cas(c, x,inj, n)

letrec get() = let x = get ¢ in case x of
injn=mn

| inj, n = complete(x, n);get()
letrec cinc() = let x = get ¢ in case x of
injy n = let y =inj, nin
if cas(c, x, y) then complete(y, n); ()
else cinc()
| inj, n = complete(x, n);cinc()
in (setFlag, get, cinc)

PER-CELL PROTOCOL.

Upd(d, {0});0
Upd(d, {0,1});0
d Upd(d, {1});0

GLOBAL PROTOCOL AND INTERPRETATION.
d==nj,K Bc{0,1} A=ZLoc Sy = {L,Upd(d,B),Done(d),Gone,Const(n),Dead} S = Loc fin So

I(s)

1>

3b : bool. f; = b * f; =4 b * locks = false

+ 316, 5(€) € {Const(~), Upd(—,)} inkConst(fe,m) = Lo be uiniy 1 o
linkUpd(€.,n, j,K,B) s(€:)=Upd(n, j,K,B) linkUpd (€., 1, j, K, B) = ¢+ € * £ oy injy n

*
linkConst(€,, n) s(€.) = Const(n) ¢ =5 1% j 5 KcincBody,]

€ryinjy nx js K[()] * @ esosnx jrsK0)] if0eB

* ,
s(€)=Done(n,j,K) ® ¢ (n+1)xj—»s K[()] ifleB

* s(f):Gonee Poinjy X * S(é’):Deade = inj; -

Figure 6.9: Conditional increment, a
simplification of CCAS

6.6

6.6.1

120 EXAMPLE PROOFS

CONDITIONAL CAS

We are now in a position to tackle, in detail, a rather complex scalable
concurrent algorithm: Harris et al.’s conditional CAS,** which performs a
compare-and-set on one word of memory, but only succeeds when some
other word (the control flag) is non-zero at the same instant. This data
structure is the workhorse that enables Harris ef al. to build their remarkable
lock-free multi-word CAS from single-word CAS.

As with the Michael-Scott queue, we have boiled down conditional CAS to
its essence, retaining its key verification challenges while removing extrane-
ous detail. Thus, we study lock-free conditional increment on a counter, with
a fixed control flag per instance of the counter; see the specification counter
in Figure 6.9. These simplifications eliminate the need to track administrative
information about the operation we are trying to perform but do not change
the algorithm itself, so adapting our proof of conditional increment to full
CCAS is a straightforward exercise.

The protocol

To explain our implementation, counter;, we begin with its representation
and the protocol that governs it. The control flag f is represented using a
simple boolean reference; all of the action is in the counter ¢, which has
type ref(nat + nat). A value inj, n represents an “inactive” counter with
logical value n. A value inj, n, in contrast, means that the counter is
undergoing a conditional increment, and had the logical value #n when the
increment began. Because inj, n records the original value, a concurrent
thread attempting another operation on the data structure can help finish

the in-progress increment.>*

Helping is what makes the algorithm formally
nonblocking (obstruction-free in particular; see §2.5.2): at any point in an
execution, if a thread operating on the data structure is run in isolation, it
will eventually finish its operation. This property precludes the use of locks,
since a thread that does not hold the lock will, in isolation, forever wait by
trying to acquire it.

The question is how to perform a conditional increment without using
any locks. Remarkably, the algorithm simply reads the flag f, and then—in a
separate step—updates the counter ¢ with a cas; see the complete function. It
is possible, therefore, for one thread performing a conditional increment to
read f as true, at which point another thread sets f to false; the original thread
then proceeds with incrementing the counter, even though the control flag is
false! Proving that counter, refines counters despite this blatant race condition
will require all the features of our model, working in concert.

AN INITIAL IDEA is that when the physical value of the counter is inj, #, its
logical value is ambiguous: it is either n or n + 1. This idea will only work if
we can associate such logical values with feasible executions of the spec’s cinc

' Timo Harris et al. (2002), “A practical
multi-word compare-and-swap operation”,
and Fraser and Tim Harris (2007),
“Concurrent programming without locks”

> To help yourself, first help others (to get
out of your way).

http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://dx.doi.org/10.1145/1233307.1233309

code, since “logical” value really means the spec’s value. The difficulty is in
choosing when to take spec steps. If we wait to execute the spec code until a
successful cas in complete, we may be too late: as the interleaving above shows,
the flag may have changed by then. But we cannot execute the spec when we
read the flag, either: the cas that follows it may fail, in which case some other
thread must have executed the spec.

The way out of this conundrum is for threads to interact via a speculative
protocol, shown in Figure 6.9. Recall that injections into sum types are heap-
allocated, so every value ¢ takes on has an identity: its location. The protocol
gives the life story for every possible location in the heap as a potential value
of ¢, with the usual constraint that all but finitely many locations are in the
unborn (1) state. The first step of the protocol reflects the choice latent in the
sum type:

o The location location may be a quiescent inj; #, represented initially by
Const(n).

o Alternatively, the location may be an active increment operation inj, n,
represented initially by Upd(d, @). The logical descriptor d gives the old
value n of the counter, together with the thread id j and spec evaluation
context K of the thread attempting the increment. The latter information
is necessary because thread j temporarily donates its spec to the protocol,
permitting helping threads to execute the spec on its behalf. Following the
pattern laid out in Section 4.4, in return for donating its spec, thread j
receives a token which will later permit it, and only it, to recover its spec.
As usual, we depict the token with a bullet.

The life story for a quiescent inj, # is quite mundane: either it is the current
value pointed to by ¢, or it is Dead.

An active cell inj, n leads a much more exciting life. In the first phase
of life, Upd(d, B), the cell records which branches B € {0,1} of the complete
code have been entered by a thread. Initially, no thread has executed complete,
so the set is empty. If a thread subsequently reads that f = true in the first
step of executing complete, it moves to the set {1}, since it is now committed
to the branch that adds 1 to the initial value n. Crucially, this step coincides
with a speculative run of the specification; the un-run spec is also retained, in
case some other thread commits to the 0 branch. The branch-accumulation
process continues until some thread (perhaps not the original instigator of
the increment) actually succeeds in performing its cas in complete. At that
point, the increment is Done, and its inj, # cell is effectively dead, but not yet
Gone: in the end, the thread that instigated the original increment reclaims
its spec, whose execution is guaranteed to be finished.

CONDITIONAL CAS

121

6.6.2

122 EXAMPLE PROOES

The proof

We now formally justify that counter, refines counters by giving a concrete
interpretation to the protocol and providing a Hoare-style proof outline for
complete and cinc. The outline for get is then a straightforward exercise.

To formalize the protocol, we first give the set of states Sy for an individual
life story; see Figure 6.9. The states S for the data structure are then a
product of individual ST states indexed by location, with all but finitely many
locations required to be in state 1. The set of tokens A for the product STS is
just the set of locations, i.e., there is one token per location (and hence per
individual life story). The transition relation ~ on the product STS lifts the
one for individual life stories:

s~s' 2V s(8)=5"(€) vs(€) ~s'(¢)

If F, is the free-token function for an individual STS, we can then define the
product STS as follows:

0 = (S,A,~ As{€]Fo(s(€)) = {o}})

The interpretation I for states of the product STS given in Figure 6.9 is
fairly straightforward. The implementation and specification flag values must
always match. There must exist a unique location €. (“3!€.”) in a “live” state
of Const or Upd. This unique live location will be the one currently pointed to
by c. In the Upd state, it also owns speculative spec resources according to the
branch set B. Finally, Done nodes retain a finished spec, while Dead and Gone
nodes are simply garbage inj, (-) and inj, (—) nodes, respectively.

CONSTRUCTION As usual, the implementation counter; begins by allocat-
ing some shared, hidden data for its representation. We elide the straightfor-
ward proof outline for the construction phase, and just give its precondition,

j =5 K[counters]
and concrete postcondition,
3x. ¢; =y x % x > inj, 0 % f; > false
* j ¢ K[(setFlagg, get, cincs) | * ¢ =5 0 * f; > false * locks — false

To prepare to prove method refinement, we need to move these private
resources into a new shared island governed by the protocol in Figure 6.9. We
first use CONSEQUENCE to rewrite the postcondition in terms of the protocol
with a single live cell x, i.e., at state [x — Const(0)]:

Jx.I([x — Const(0)]) * j =5 K[(setFlag,, get,, cincs)]

We are thus in a position to apply the NEwISLAND rule to move these
resources into an island:

3x. (0,1, [x = Const(0)], @) * j »s K[(setFlag,, get,, cincg) |

METHOD REFINEMENT We must then show, in the context of this ex-
tended island, that each of the implementation procedures refines the cor-
responding specification procedure. We give the detailed proof for cing, i.e.,

{j »s K[cincBody,] * (0,1,3, D)} cincBody, {ret.ret= () A j>»s K[()]}

In the precondition, we weaken our knowledge about the island to simply
saying that it is in a rely-future state of & (where every location maps to 1),
since this is all we need to know.

The locality of the local life stories is manifested in our ability to make
isolated, abstract assertions about a particular location governed by the data
structure. Because every location is in some rely-future state of L, we can
focus on a location x of interest by asserting that the product STS is in a
rely-future state of [x — s], where sy € Sy.>3 For readability, we employ the
following shorthand for making such local assertions about the island, with
and without the token for the location in focus:

xo<sg = (0,1 [x~s0],9) xocegsg = (6,1, [xs0],{x})

Thus empowered, we can glean some additional insight about the algorithm:
that the complete function satisfies the triple

{x o< Upd(n, j, K,)} complete(x,n) {ret. x o< Done(n, j,K)}

In reading this triple, it is crucial to remember that assertions are closed under
rely moves—so x o< Upd(n, j, K, @) means that the location x was once a live,
in-progress update. The interesting thing about the triple is that, regardless of
the exact initial state of x, on exit we know that x is at least Done—and there’s
no going back.

The proof outline for complete is as follows:

let complete(x,n) = {x o< Upd(n, j,K,)}

CONDITIONAL CAS 123

> And so every other location is in a rely-
future state of L, i.e., in an arbitrary state.

if get f; then {x o< Upd(n, j,K,{1})} cas(c;, x,inj; (n+1)) {x o< Done(n, j,K)}
else {x o< Upd(n, j,K,{0})} cas(c,x,inj, n) {x o< Done(n, j,K)}

According to the proof outline, after reading the value of the flag, the location
x is in an appropriately speculative state. To prove that fact, we must consider
the rely-future states of Upd(#, j, K, @), and show that for each such state we
can reach (via a guarantee move) a rely-future state of Upd(#, j, K, {1}) or
Upd(n, j, K,{0}), depending on the value read from the flag. For example, if
the initial state of the island is s ¥ [x — so] and we read that the flag is true,
we take a guarantee move to s W [x — s; | as follows:*

If 50 is then s is If 50 is then s is
Upd(d, @) Upd(d,{1}) Upd(d,{1}) Upd(d,{1})
Upd(d,{0}) Upd(d,{0,1}) Upd(d,{0,1}) Upd(d,{0,1})
Done(d) Done(d) Gone Gone

>+ This table is just a condensed version of
the usual one for a use of the SHARED rule,
although here we are only considering the
case where the read returned true. The full
table extends this one symmetrically for
reading a false flag.

124 EXAMPLE PROOES

If the initial state for location x already included the necessary speculation
(or was Done or Gone), there is nothing to show; otherwise, changing the state
requires speculative execution of the spec using ASPECEXEC. The fact that the
rest of the island’s state s is treated as an unexamined frame here is the most
direct reflection of protocol locality.

We perform a similar case analysis for both of the cas steps, but there we
start with the knowledge that the appropriate speculation has already been
performed—which is exactly what we need if the cas succeeds. If, on the other
hand, the cas fails, it must be the case that x is at least Done: if it were still in
an Upd state, the cas would have succeeded.

{j »s K[cincBody,] * (0,1,,2)}
let x = get ¢, in
{] s K[cincBody, | * (x o< Const(—) Vv x o< Upd(-, —))}
case x
of injy n =
{j s K[cincBody,] * x o< Const(n)}
let y =inj, nin
{j s K[cincBody,] * x o< Const(n) * y — inj, n}
if cas(cp, X, y)
then
{x o< Dead(n) A y o<q Upd(n, j, K, @)}
{y o< Upd(n, j, K, @)}
complete(y, n);
{y ocs Done(n, j,K)}
0
{ret.ret= () A j =5 K[()] A y o< Gone}
{ret.ret=() A j»s K[()]}

else
{j »s K[cincBody,] * (0,1, >, 2)}
cinc()
{ret.ret= () A j=>s K[()]}
| inj, n =
{j s K[cincBody,] * x o< Upd(n,—,—,—)}

complete(x, 1);

{j s K[cincBody,] * x o< Done(n,—,—)}
{j > K[cincBody,] * (6,1, >,)}

cinc()

{ret.ret= () A j s K[()]}

WITH complete OUT OF THE WAY, THE PROOF OF Cinc IS RELATIVELY EASY.
The proof outline is in Figure 6.10.> When entering the procedure, all that
is known is that the island exists, and that the spec is owned. The thread first

examines ¢, to see if the counter is quiescent, which is the interesting case.

Figure 6.10: Proof outline for cinc

> The steps labeled with .". indicate uses of
the rule of consequence to weaken a post-
condition.

CONDITIONAL CAS 125

If the subsequent cas succeeds in installing an active descriptor inj, n, that
descriptor is the new live node (in state Upd(n, j, K, @))—and the thread,
being responsible for this transition, gains ownership of the descriptor’s token.
The resulting assertion y o<, Upd(n, j, K, @) is equivalent to

3i. i (y o< Upd(n, j,K,2)) # i 0>y o<u Upd(n, /K,)

which means that we can use i — y ocq Upd(n, j, K,) as a frame in an
application of the frame rule to the triple for complete(y, n). This gives us
the framed postcondition

Ji. i (y o< Done(n,j,K)) * i (y o<, Upd(n,j,K,@))

which is equivalent to y o<, Done(n, j, K). Since our thread still owns the
token, we know the state is exactly Done(#, j, K), and in the next step (where
we return the requisite unit value) we trade the token in return for our spec—

which some thread has executed.

7.1

7.1.1

Related work:
understanding concurrency

We have presented a model and logic for a high-level language with con- “The whole thing that makes a mathemati-
cian’s life worthwhile is that he gets the grudg-

currency that enables direct refinement proofs for scalable concurrent al- "
ing admiration of three or four colleagues.

gorithms, via a notion of local protocol that encompasses the fundamental
phenomena of role-playing, cooperation, and nondeterminism. In this —Donald E. Knuth

section, we survey the most closely related work along each of these axes.

HIGH-LEVEL LANGUAGE

There is an enormous literature on reasoning about programs in high-level
languages, so we can only mention the most relevant precursors to our work.
As far as we are aware, there are no prior proof methods that handle higher-
order languages, shared-state concurrency, and local state.

Representation independence and data abstraction

ohn Reynolds famously asserted! that ! Reynolds (1983), “Types, abstraction and
Y Y Y P
parametric polymorphism”
Type structure is a syntactic discipline for enforcing levels of abstraction.

and formalized this assertion through an “abstraction” theorem, which was
later renamed to representation independence by John Mitchell.> The basic > Mitchell (1986), “Representation
idea is very simple: a language enforces an abstraction if “benign” changes to independence and data abstraction”
the information hidden behind the abstraction cannot alter the behavior of its
clients. In other words, client behavior is independent of the representation
of the abstraction.
To formalize this idea, Reynolds adopted a relational view of semantics,
which makes it easy to compare programs that differ only in the implemen-
tation of some abstraction. Representation independence is then a theorem
about a language saying that if two implementations of an abstraction are
appropriately related, the behavior of a program using one implementation is
likewise related to the behavior using the other implementation. In particular,
if the program returns some concrete output, e.g., a natural number, it will
return the same output in both cases. The formalization was an early instance
of a (denotational) logical relation, and the central mantra of “related inputs
produce related outputs” persists in current work in the area.

127

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://dx.doi.org/10.1145/512644.512669
http://dx.doi.org/10.1145/512644.512669

7.1.2

7.1.2.1

128 RELATED WORK: UNDERSTANDING CONCURRENCY

In a language with the ability to introduce new abstractions—one with
existential types, say, or with closures over mutable state—representation
independence enables the reasoning technique of data abstraction, of which
our approach to reasoning about concurrent data structures is one example.
However, as we discussed in §3.3 and §3.4, we enable the client to reason not
just in terms of simpler data, but also using a coarser grain of concurrent
interaction.

A key takeaway point here is that representation independence and the
data abstraction principle it enables are properties of high-level languages.
In fact, enforcing abstraction boundaries could be taken as a necessary
condition for being a high-level language. As we discussed in Chapter 3, such
linguistic hiding mechanisms play an important role in real implementations
of concurrent data structures, which motivated our semantic treatment in a
high-level calculus like FE..

Local state

The early treatment of linguistic hiding mechanisms focused primarily on
existential types and on languages without mutable state. But of course many
data structures in practice rely on local mutable state, i.e., state that is hidden
behind an abstraction boundary.

Kripke logical relations

Andrew Pitts pioneered an operational approach to logical relations,? and
together with Ian Stark gave a logical relation for reasoning about functions
with hidden state.# The language they studied included first-class functions
and dynamically allocated references, but the references were limited to
base type only (no “higher-order state”). Pitts and Stark use a Kripke-style
logical relation, i.e., one parameterized by a “possible world” and with an
attendant notion of “future” worlds. In their model (a binary logical relation),
aworld is a relation on heaps, giving some invariant relationship between the
heaps of two implementations of an abstraction—and thereby enabling data
abstraction at the heap level. A world can be extended through a relational
form of separating conjunction, i.e., an additional relational invariant can be
added so long as the new invariant governs disjoint pieces of the heaps. Thus,
while worlds are flat relations, they are extended in an island-like fashion.
Many extensions of the Pitts-Stark model subsequently appeared. Ahmed
et al. in particular showed how to scale the technique to a higher-order store
and incorporated existential types.> The same paper also included an explicit
notion of island—one in which the heap invariant can evolve over time.
Unfortunately, this island evolution was described in a somewhat complex
way, by giving islands “populations” and “laws.” Follow-up work” showed
how the evolution of invariants can in fact be understood through simple

3 Pitts (2002); Pitts (2005)

4 Pitts and Stark (1998), “Operational
reasoning for functions with local state”

> Ahmed et al. (2009), “State-dependent
representation independence”

¢It is folklore that this is equivalent to
adding ghost state and so-called “history”
invariants.

7 Dreyer, Neis, and Birkedal (2010), “The
impact of higher-order state and control
effects on local relational reasoning”

http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566

7.1.2.2

7.1.3

state-transition systems, which were the impetus for our local protocols in
Chapter 4.8

All of these logical relations provide semantic models through which one
can reason about e.g., contextual equivalence, but reasoning “in the model”
is sometimes too low-level (involving arithmetic on step-indices) or too
unstructured. Plotkin and Abadi (1993) gave a logic in which one can define
and reason about logical relations proof-theoretically.” Subsequently, Dreyer
et al. (2009) showed how to build a similar logic in the presence of step
indexing with proofrules that largely eliminate the need for step arithmetic.*
Follow-up work extended these ideas to a language with local state, proposing
a logic called LADR in which one can define and reason about the logical
relation of Ahmed et al. (2009)." These logics had a substantial influence on
the logic presented in Chapter 5: we include a later modality and our island
assertions resemble similar assertions in Dreyer, Neis, Rossberg, et al. (2010).
There are some important differences, however. First, we kept our logic first-
order (no quantification over predicates), which prevents us from defining
the logical relation inside the logic; instead, we treat the logical relation as
a particular assertion. Second, while Dreyer, Neis, Rossberg, et al. (2010)
supports Hoare-style reasoning, we go further in defining our computation
relation (<%) in terms of Hoare triples, which significantly streamlines the
logic.

Simulations with local state

Although our work descends from research on logical relations, we would be
remiss to not also mention the related work in the competing framework of
(bi)simulations. Sumii and Pierce (2005) showed how to adapt simulation-
style reasoning to existential types,”> which Koutavas and Wand (2006)
extended to an untyped language with general references.’® These techniques

»
>

were later generalized to “environmental bisimulations,” in which a bisimu-
lation between expressions is parameterized by the knowledge of the envi-
ronment.'# The use of the environment parameter in this last generalization
often resembles the possible worlds technique on the logical relation side. See
Dreyer et al. (2012) for a more detailed comparison.

Simulations, of course, also have a long history in reasoning about concur-
rency. However, as we said above, our model is the first to handle higher-order
languages, shared-state concurrency, and local state. We will discuss the most

closely-related simulation technique, RGSim, below.

Shared-state concurrency

Birkedal et al. recently developed the first logical-relations model for a higher-
order concurrent language similar to the one we consider here.”® Their
aim was to show the soundness of a sophisticated Lucassen-and-Gifford-
style'® type-and-effect system, and in particular to prove the soundness of

HIGH-LEVEL LANGUAGE 129

® The work also showed how the presence or
absence of various language features can be
understood by the presence or absence of
certain kinds of transitions in the STS.

® Plotkin and Abadi (1993), “A logic for
parametric polymorphism”

' The logic incorporates the “later” modal-
ity first studied in Appel et al. (2007).

" Dreyer, Neis, Rossberg, et al. (2010), “A
relational modal logic for higher-order
stateful ADTs”

2 Sumii and Pierce (2005), “A bisimulation
for type abstraction and recursion”

3 Koutavas and Wand (2006), “Small
bisimulations for reasoning about higher-
order imperative programs”

' Sangiorgi et al. (2007), “Environmental
Bisimulations for Higher-Order
Languages”

5 Birkedal et al. (2012), “A concurrent
logical relation”

¢ Lucassen and Gifford (1988),
“Polymorphic effect systems”

http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1047659.1040311
http://dx.doi.org/10.1145/1047659.1040311
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1109/LICS.2007.17
http://dx.doi.org/10.1109/LICS.2007.17
http://dx.doi.org/10.1109/LICS.2007.17
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://dx.doi.org/10.1145/73560.73564

7.2

7.2.1

130 RELATED WORK: UNDERSTANDING CONCURRENCY

a Parallelization Theorem for disjoint concurrency expressed by the effect
system (when the Bernstein conditions are satisfied). The worlds used in the
logical relation capture the all-or-nothing approach to interference implied by
the type-and-effect system. As a result, the model has rather limited support
for reasoning about fine-grained data structures: it can only prove correctness
of algorithms that can withstand arbitrary interference.

DIRECT REFINEMENT PROOFS
Linearizability

Herlihy and Wing’s seminal notion of linearizability'” has long been the gold
standard of correctness for scalable concurrency, but as Filipovi¢ et al. ar-
gue,'® what clients really want is a contextual refinement property. Filipovi¢
et al. go on to show that, under certain (strong) assumptions about a pro-
gramming language, linearizability implies contextual refinement for that
language.’®

More recently, Gotsman and Yang generalized both linearizability and
this result (the so-called abstraction theorem) to include potential ownership
transfer of memory between data structures and their clients.*® While it is
possible to compose this abstraction theorem with a proof of linearizability
to prove refinement, there are several advantages to our approach of proving
refinement directly:

e First and foremost, it is a simpler approach: there is no need to take
a detour through linearizability, or perform the (nontrivial!) proof that
linearizability implies refinement. As it turns out, linearizability is neither
the right proof technique (one would rather use something like protocols
and thread-local reasoning) nor the right specification (clients really want
refinement).

e We can treat refinement as an assertion in our logic, which means that we
can compose proofs of refinement when reasoning about compound data
structures, and do so while working within a single logic.

e Working with refinement makes it easier to leverage recent work for
reasoning about hidden state, e.g., Dreyer et al.’s STS-based logical rela-
tions Dreyer, Neis, and Birkedal 2010.

e Refinement seamlessly scales to the higher-order case, which would oth-
erwise require extending the definition of linearizability to the higher-
order case. We believe that this scalability is crucial for faithfully reasoning
about algorithms that use higher-order features, e.g., Herlihy’s universal
construction® or the recently proposed flat combining construction.*

e Finally, it should in principle allow us to combine reasoning about fine-
grained concurrency with other kinds of relational reasoning, e.g., rela-
tional parametricity.>3

7 Herlihy and Wing (1990),
“Linearizability: a correctness condition for
concurrent objects”

8 Filipovi¢ et al. (2010), “Abstraction for
Concurrent Objects”

9 Under certain additional conditions, lin-
earizability is also complete for contextual
refinement.

** Gotsman and Yang (2012),
“Linearizability with Ownership Transfer”

** Herlihy and Shavit (2008), “The Art of
Multiprocessor Programming”

> Hendler et al. (2010), “Flat combining
and the synchronization-parallelism
tradeoff”

* Reynolds (1983), “Types, abstraction and
parametric polymorphism”

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

7.2.2

7.2.3

73

Denotational techniques

Turon and Wand developed the first logic for reasoning directly about con-
textual refinement for scalable concurrent data structures.* Their model is
based on ideas from rely-guarantee and separation logic and was developed
for a simple first-order language, using an extension of Brookes’s trace-
based denotational semantics.”> While it is capable of proving refinement
for simple data structures like Treiber’s stack, it does not easily scale to
more sophisticated algorithms with hard-to-pinpoint linearization points
(e.g., those involving cooperation or temporally-dependent linearization).

RGSim

More recently, Liang et al. proposed RGSim,?® an inter-language simulation
relation for verifying program transformations in a concurrent setting. The
simulation relation is designed for compositional, concurrent reasoning: it
is parameterized by rely and guarantee relations characterizing potential
interference. Liang et al. use their method to prove that some simple, but
realistic, data structures are simulated by their spec. While the original paper
on RGSim did not relate simulation to refinement or linearizability, new
(currently unpublished) work has done s0.”” We discuss this latter work,
which also incorporates reasoning about cooperation, in $7.5.

LOCAL PROTOCOLS
The hindsight approach

O’Hearn et al.’s work on Linearizability with hindsight®® clearly articulates
the need for local protocols in reasoning about scalable concurrency, and
demonstrates how a certain mixture of local and global constraints leads to
insightful proofs about lock-free traversals. At the heart of the work is the re-
markable Hindsight Lemma, which justifies conclusions about reachability in
the past based on information in the present. Since O’Hearn et al. are focused
on providing proofs for a particular class of algorithms, they do not formalize
a general notion of protocol, but instead focus on a collection of invariants
specific to the traversals they study. We have focused, in contrast, on giving
a simple but general account of local protocols that suffices for temporally-
local reasoning about a range of quite different data structures. It remains to
be seen, however, whether our techniques yield a satisfying temporally-local
correctness proof for the kinds of traversals O'Hearn et al. study, or whether
(as O’Hearn et al. argue) these traversals are best understood non-locally.

LOCAL PROTOCOLS 131

>+ Turon and Wand (2011), “A separation
logic for refining concurrent objects”

> Brookes (1996), “Full Abstraction for a
Shared-Variable Parallel Language”

*¢ Liang et al. (2012), “A rely-guarantee-
based simulation for verifying concurrent
program transformations”

*7 Liang and Feng (2013), “Modular
Verification of Linearizability with Non-
Fixed Linearization Points”

8 O’Hearn et al. (2010), “Verifying
linearizability with hindsight”

http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/1835698.1835722
http://dx.doi.org/10.1145/1835698.1835722

7.3.2

132 RELATED WORK: UNDERSTANDING CONCURRENCY

Concurrent abstract predicates

The notion of protocol most closely related to ours is Dinsdale-Young et al.’s
Concurrent abstract predicates (CAP).>® CAP extends separation logic with
shared, hidden regions similar to our islands. These regions are governed by
a set of abstract predicates,3® which can be used to make localized assertions
about the state of the region. In addition, CAP provides a notion of named
actions which characterize the possible changes to the region. Crucially,
actions are treated as a kind of resource which can be gained, lost, or split
up (in a fractional permissions style), and executing an action can result in
a change to the available actions. It is incumbent upon users of the logic to
show that their abstract predicates and actions cohere, by showing that every
abstract predicate is “self-stable” (remains true after any available action is
executed).

While CAP’s notion of protocol is very expressive, it is also somewhat
“low-level” compared to our STS-based protocols, which would require a
somewhat unwieldy encoding to express in CAP. In addition, our protocols
make a clear separation between knowledge bounding the state of the protocol
(treated as a copyable assertion) and rights to change the state (treated as a
linear resource: tokens), which are mixed in CAP. Another major difference
is that CAP exposes the internal protocol of a data structure as part of the
specification seen by a client—which means that the spec for a given data
structure often depends on how the client is envisioned to use it. Additional
specs (and additional correctness proofs) may be necessary for other clients.
By contrast, we take a coarse-grained data structure as an all-purpose spec; if
clients then want to use that data structure according to some sophisticated
internal protocol, they are free to do so. Finally, our protocols support
speculation and spec code as a resource, neither of which are supported by
CAP.

Very recent work has sought to overcome some of the shortcomings of
CAP by, in part, moving to a higher-order logic.3' The key idea is to avoid
overspecialization in specifications by quantifying over the pre- and post-
conditions a client might want to use. Through a clever use of ghost state and
fractional permissions, these client-side assertions are linked to the abstract
state of the data structure being verified, and can thus track atomic changes
to that data structure. The downside is that the model theory supporting this
higher-order extension is quite tricky, and at present requires restrictions on
instantiation to rule out certain kinds of self-reference. In addition, because
the approach is not known to be sound for refinement, clients can make use
of HOCAP specifications only if they also work within the HOCAP logic.
With refinement, by contrast, the specification is given in a logic-independent
way, i.e., solely in terms of the operational semantics of a language, which
means that clients are free to use any logic of their choice when reasoning
about their code. Finally, it is as yet unclear whether the HOCAP approach

> Dinsdale-Young et al. (2010),
“Concurrent Abstract Predicates”

3 First introduced in Parkinson and Bier-
man (2005).

3! Svendsen et al. (2013), “Modular
Reasoning about Separation of Concurrent
Data Structures”

http://www.springerlink.com/index/184241T463712776.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf

7:3:3

can scale to handle cooperation and changes to the branching structure of
nondeterminism.

Views and other fictions of separation

In the last year, there has been an explosion of interest in a new, highly
abstract way to express the knowledge and rights of program components:
through a (partial, commutative) monoid. The idea is that each element
of the monoid captures a “piece” of abstract knowledge that a component
(say, a thread) might have—and this piece of knowledge constrains changes
that other components can make, since the knowledge is not allowed to be
violated.3* Formally, this is expressed by giving a concrete interpretation | - |
to the “global supply” of monoid elements (the product of each component’s
knowledge), and then insisting that all actions obey an abstract frame condi-
tion. Namely: if a command C claims to go from local knowledge m to m’, it
must satisfy
Vmp. [C](|m-mg]) € |m' - mg]

That is, the new global state of the monoid m'-mp must still contain the frame
mp from the original global state m - mp. A command cannot invalidate the
abstract knowledge of its environment.

The result is fictional separation logic:33 using monoid elements as asser-
tions, we get an abstract notion of separation (via the monoid product) that
may be fictional in that it does not coincide with physical separation. Put
differently, the map |—| that gives a physical interpretation to the global
abstract state need not be a homomorphism, so in general

[m-m'] # |m]x|m’]

As a simple example, a monotonic counter can be represented using a monoid
of natural numbers with max as the product; if the counter is at location € then
the interpretation is just

n]=€n

Notice that
|[n-m| = € max(n,m) = €>nxl—>m = |n|*|m]|

By asserting the monoid element 7, a component claims that the value of the
counter is at least n; after all, the other components will contain some addi-
tional knowledge, say np, but n - np = max(n, ng) > n. Similarly, the frame
condition will ensure that the physical value of the counter monotonically
increases.

While fictional separation logic began in a sequential setting, it has already
been adapted to concurrent settings, both to give a compositional account of
ghost state3* and to provide an abstract framework (“Views”) for concurrent
program logics and type systems, with a single soundness proof that can be
instantiated with arbitrary choices of monoids.?® The Views framework has

LOCAL PROTOCOLS 133

32 Jensen and Birkedal (2012), “Fictional
Separation Logic”

3 Jensen and Birkedal (2012), “Fictional
Separation Logic”

3+ Ley-Wild and Nanevski (2013),
“Subjective Auxiliary State for Coarse-
Grained Concurrency”

» Dinsdale-Young et al. (2013), “Views:
Compositional Reasoning for Concurrent
Programs”

http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104

7.4

75

7.5.1

134 RELATED WORK: UNDERSTANDING CONCURRENCY

even been instantiated with CAP, which means that CAP’s notion of protocol
can be understood as a particular choice of monoid.

In joint work with Krishnaswami, Dreyer and Garg, we showed that the
central ideas of fictional separation logic can be applied in the setting of
a logical relation for a sequential language, where we use linguistic hiding
mechanisms to introduce new monoids.3® The logical relation uses a possible-
worlds model in which each island consists of a different monoid equipped
with an interpretation (like | -] above). We thus expect that we could re-
do the work of Chapter 5 using monoids instead of STSs, by encoding our
token-based STSs as monoids. It is an open question whether the converse
is true—i.e., whether STSs with tokens can express arbitrary monoids with
frame conditions. In any case, for all of the algorithms we have examined,
expressing the relevant protocol as an STS with tokens is invariably simpler
and more intuitive than doing so with monoids, which is what led us to stick
with our STS-based worlds. Other aspects of our model—direct refinement
proofs, high-level languages, cooperation and speculation—have not yet been
incorporated into the Views approach.

ROLE-PLAYING

The classic treatment of role-playing in shared-state concurrency is Jones’s
rely-guarantee reasoning,’” in which threads guarantee to make only certain
updates, so long as they can rely on their environment to make only certain
(possibly different) updates. More recent work has combined rely-guarantee
and separation logic (SAGL and RGSep3®), in some cases even supporting
a frame rule over the rely and guarantee constraints themselves (LRG*).
This line of work culminated in Dodds et al.’s deny-guarantee reasoning*°—
the precursor to CAP—which was designed to facilitate a more dynamic
form of rely-guarantee to account for non-well-bracketed thread lifetimes.
In the deny-guarantee framework, actions are classified into those that both
a thread and its environment can perform, those that neither can perform,
and those that only one or the other can perform. The classification of an
action is manifested in terms of two-dimensional fractional permissions (the
dimensions being “deny” and “guarantee”), which can be split and combined
dynamically. Our STSs express dynamic evolution of roles in an arguably
more direct and visual way, through tokens.

COOPERATION
RGSep
Vafeiadis’s thesis#' set a high-water mark in verification of the most sophis-

ticated concurrent data structures (such as CCAS). Building on his RGSep
logic, Vafeiadis established an informal methodology for proving linearizabil-

3¢ Krishnaswami et al. (2012), “Superficially
substructural types”

37 Jones (1983), “Tentative steps toward
a development method for interfering
programs”

3% Feng et al. (2007); Vafeiadis and Parkinson
(2007)

* Feng (2009), “Local rely-guarantee
reasoning”

4 Dodds et al. (2009), “Deny-guarantee
reasoning”

Vafeiadis (2008), “Modular fine-grained
concurrency verification”

http://dx.doi.org/10.1145/2364527.2364536
http://dx.doi.org/10.1145/2364527.2364536
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1145/1360443.1360452
http://dx.doi.org/10.1145/1360443.1360452

7.5.2

7:5:3

ity by employing several kinds of ghost state (including prophecy variables
and “one-shot” resources, the latter representing linearization points). By
cleverly storing and communicating this ghost state to another thread, one
can perform thread-local verification and yet account for cooperation: the
other thread “fires” the single shot of the one-shot ghost resource. While
this account of cooperation seems intuitively reasonable, it lacks any formal
metatheory justifying its use in linearizability or refinement proofs. Our
computational resources generalize Vafeiadis’s “one-shot” ghost state, since
they can (and do) run computations for an arbitrary number of steps, and
we have justified their use in refinement proofs—showing, in fact, that the
technique of logical relations can be expressed in a “unary” (Hoare logic) style
by using these computational resources.

RGSim

Concurrently with our work, Liang and Feng have extended their RGSim
framework to account for cooperation.#* The new simulation method is
parameterized by a “pending thread inference map” ®, which plays a role
somewhat akin to our worlds. For us, worlds impose a relation between the
current protocol state, the current implementation heap, and the current,
speculative spec resources. By contrast, ® imposes a relation between the
current implementation heap and the current spec thread pool. To recover
something like our protocols, one instead introduces ghost state into the
implementation heap, much as Vafeiadis does; as a result, ® can be used
to do thread-local reasoning about cooperation. However, there are several
important differences from our approach:

e There is no notion of composition on thread inference maps, which take
the perspective of the global implementation heap and global pool of spec
threads. Thus thread inference maps do not work as resources that can be
owned, split up, transferred and recombined.

e The assertions that are used in pre- and post-conditions cannot talk
directly about the thread inference map; they must control it indirectly,
via ghost state.

o The simulation approach does not support speculation or high-level lan-
guage features like higher-order functions or polymorphism.

e Finally, it requires encoding protocols via traditional ghost state and
rely/guarantee, rather than through standalone, visual protocols.

Reduction techniques

Groves and Colvin propose® a radically different approach for dealing with
cooperation, based on Lipton’s method*# of reduction. Reduction, in a sense,
“undoes” the effects of concurrency by showing that interleaved actions

COOPERATION 135

Liang and Feng (2013), “Modular
Verification of Linearizability with Non-
Fixed Linearization Points”

4 Groves and Colvin (2009), “Trace-based
derivation of a scalable lock-free stack
algorithm”

Lipton (1975), “Reduction: a method of
proving properties of parallel programs”

http://dx.doi.org/10.1007/s00165-008-0092-5
http://dx.doi.org/10.1007/s00165-008-0092-5
http://dx.doi.org/10.1007/s00165-008-0092-5

136 RELATED WORK: UNDERSTANDING CONCURRENCY

commute with one another: if a thread performs action a and then b and
a is a “right-mover” (a; ¢ £ c; a for all environment actions ¢) then we can
instead imagine the thread executes (a; b), i.e., executes a and b together in
one atomic step. Groves and Colvin are able to derive an elimination stack
from its spec by a series of transformations including atomicity refinement
and data refinement. The key to handling cooperation is working not just
with individual actions, but with traces, so that a given refinement step can
map a trace with a single action by one thread (say, accepting an offer to push)
to a trace with two contiguous steps (say, a push and a pop) attributed to two
different threads. Elmas et al. also developed a similar method® for proving
linearizability using reduction and abstraction (the converse to refinement)
and while they do not study cooperation explicitly, it is likely that their
method could be adapted to cope with it too, if it was likewise reformulated
using traces.

Groves and Colvin’s approach is somewhat like reasoning directly about
linearizability, since it is focused on proving the reorderability of steps within
a trace with the aim of producing a sequential interleaving in the end. The
downside is that the approach offers none of the kinds of locality we have
emphasized:

o Itlacks temporallocality because it is based on traces recording a complete
method execution interleaved with arbitrary action sequences performed
by other threads.

o Itlacks thread locality because interleaved actions are drawn directly from
the code of other executing threads, rather than an abstraction of their
possible interference (say, a rely constraint or a protocol). This point is
somewhat mitigated by the use of abstraction, especially for Elmas et al.’s
calculus of atomic actions,*® which allows code to be abstracted while
delaying the proof that the abstraction is valid. It is unclear, however, how
these abstraction techniques compare to rely/guarantee reasoning or local
protocols.

o It lacks spatial locality in that the commutativity checks require consider-
ing “interference” from environment code even when that code is access-
ing a completely different part of the heap. Granted, such circumstances
make commutativity easy to show, but with a spacially local account of
interference the checks are unnecessary in the first place.

Finally, in a reduction-based proof there is rarely an articulation of the
protocol governing shared state. We believe that such an artifact is valuable in
its own right as a way of understanding the basic mechanics of an algorithm
separately from its implementation.

+ Elmas et al. (2010), “Simplifying
Linearizability Proofs with Reduction
and Abstraction”

46 Elmas et al. (2009), “A calculus of atomic
actions”

http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1145/1480881.1480885

7.6

7.6.1

NONDETERMINISM
The linear time/branching time spectrum

Reasoning about time is a fraught issue, because in the presence of nonde-
terminism there is not necessarily a fixed notion of “the future” There is,
in fact, a whole spectrum of possible ways to understand nondeterminism
and temporal reasoning, elegantly summarized in Glabbeek (1990). The two
extreme points in the spectrum are linear time and branching time:

e IN THE LINEAR-TIME VIEW, all nondeterminism is resolved in one shot, at
the beginning of program execution—so after a program begins running,
there is a coherent notion of “the future” This view of time works well with
a trace semantics: by taking the meaning of a program to be a set of traces,
one commits to the view that all nondeterminism is resolved through one
choice, namely, the choice of trace. From the perspective of a particular
point in a particular trace, “the future” is just the remaining suffix of the
trace.

e IN THE BRANCHING-TIME VIEW, one distinguishes between a program
that makes a nondeterministic choice now versus one that makes the
choice later. These distinctions often go hand-in-hand with a distinction
between internal nondeterminism (over which the environment has no
control) or external nondeterminism (usually called external choice) in
which the environment has some say. Thus, for example, the following two
“programs” are distinguished according to a branching-time model:

. VN
0 S

The program on the left first interacts with the environment along channel
a, and is then willing communicate along either b or c—whichever the
environment chooses.#” On the other hand, the program on the right
communicates along a, but also makes an internal choice about whether
to next attempt communication on b or on c. These two programs have
the same set of traces, at least in a naive trace semantics. Semantically, the
branching-time view is usually associated with (bi)simulation rather than
traces; simulation requires that choices which are available at any point in
an implementation’s execution are also still available in a corresponding
spec execution.

There are strong arguments that the branching-time view is too fine-grained:
in many settings, it is not possible to write a program context which can

NONDETERMINISM 137

4 In terms of reagents or CML events, this is
just a choice between communication along
two channels.

7.6.2

138 RELATED WORK: UNDERSTANDING CONCURRENCY

observe such differences.#® This is typically true when, for example, defining
contextual equivalence (or refinement) in terms of observing the final value
produced, as we do. This is the essential reason why speculation—which de-
stroys sensitivity to branching structure—is valid in our model: the definition
of contextual refinement for F%; is similarly branching-insensitive, in part
because Fl; has no notion of external choice.

Forward, backward, and hybrid simulation

Forward simulation (the usual kind of simulation) is well-known to be
sensitive to branching, which in many cases means it distinguishes too many
programs. On the other hand, forward simulation is appealingly local, since
it considers only one step of a program at a time (as opposed to e.g, trace
semantics). To retain temporally-local reasoning but permit differences in
nondeterminism (as in the late/early choice example), it suffices to use a
combination of forward and backward simulation*® or, equivalently, history
and prophecy variables.>® Lynch and Vaandrager showed that there are also
hybrids of forward and backward simulations, which relate a single state in
one system to a set of states in the other—much like our speculation. In fact,
although it was not stated explicitly, Herlihy and Wing’s original paper on
linearizability proposed using something like hybrid simulation to deal with
indeterminite linearization points.>

Our technique goes further, though, in combining this temporally-local
form of reasoning with thread-local reasoning: hybrid simulations work at
the level of complete systems, whereas our threadpool simulations can be
composed into larger threadpool simulations. Composability allows us to
combine thread-private uses of speculation with shared uses of speculation in
protocols, which is critical for proving soundness with respect to contextual
refinement.

48 See Bloom et al. (1995) and Nain and Vardi
(2007).

Lynch and Vaandrager (1995), “Forward
and Backward Simulations: Part I: Untimed
Systems”

5° Abadi and Lamport (1991), “The
existence of refinement mappings”

>' Herlihy and Wing (1990),

“Linearizability: a correctness condition for

concurrent objects”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972

Part III

EXPRESSING SCALABLE CONCURRENCY

Join patterns

Synopsts This chapter introduces join patterns and Russo (2007)’s joins
API for C!. It shows how join patterns can solve a wide range of synchroniza-
tion problems, including many of the problems solved by JUC’s primitives."
The full API is given in Appendix D.

OVERVIEW

The subtlety of scalable concurrent algorithms should, by now, be clear. In
practice design and implementation is generally left up to the experts, who
build extensive libraries of scalable primitives for application programmers
to use. Inevitably, though, programmers are faced with new problems not
directly addressed by the primitives. The primitives must then be composed
into a solution—and doing so correctly and scalably can be as difficult as
designing a new primitive.

Take the classic Dining Philosophers problem,* in which philosophers
sitting around a table must coordinate their use of the chopstick sitting
between each one; such competition over limited resources appears in many
guises in real systems. The problem has been thoroughly studied, and there
are solutions using primitives like semaphores that perform reasonably well.
There are also many natural “solutions” that do not perform well—or do not
perform at all. Naive solutions may suffer from deadlock, if for example each
philosopher picks up the chopstick to their left, and then finds the one to
their right taken. Correct solutions built on top of library primitives may still
scale poorly with the number of philosophers (threads). For example, using a
single global lock to coordinate philosophers is correct, but will force non-
adjacent philosophers to take turns through the lock, adding unnecessary
sequentialization. Avoiding these pitfalls takes experience and care.

In this chapter, we demonstrate that Fournet and Gonthier’s join calculus’
can provide the basis for a declarative and scalable synchronization library.
By declarative, we mean that the programmer needs only to write down the
constraints for a synchronization problem,* and the library will automatically
derive a correct solution. By scalable, we mean that the derived solutions
deliver robust, competitive performance both as the number of processors or
cores increase, and as the complexity of the synchronization problem grows.

Figure 8.1 shows a solution to Dining Philosophers using our library, which
is a drop-in replacement for Russo’s C! Joins library.5 The library is based on

“Programming is the art of writing essays
in crystal clear prose and making them exe-
cutable”

—Per Brinch Hansen

*Our versions lack some features of the
real library, such as timeouts and cancella-
tion, but these should be straightforward to
add (§9.6).

> Dijkstra (1971), “Hierarchical ordering of
sequential processes”

3 Fournet and Gonthier (1996), “The
reflexive CHAM and the join-calculus”

* We will not attempt for formalize the pre-
cise class of “synchronizations” that can be
solved using join patterns, but the exam-
ples in this chapter give some indication
of the range of sharing (§2.2.2) and tim-
ing (§2.2.3) problems that can be declara-
tively addressed.

> Russo (2007), “The Joins Concurrency
Library”

141

http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1007/978-3-540-69611-7_17

142 JOIN PATTERNS

var j = Join.Create();
Synchronous.Channel[] hungry; j.Init(out hungry, n);

Asynchronous.Channel[] chopstick; j.Init(out chopstick, n);

for (int 1 = 0; i < n; i++) {
var left = chopstick[i];
var right = chopstick[(i+1l) % n];

// define one join pattern per philosopher
j-When(hungry[i]).And(left).And(right).Do(() = {
eat();
left(); right(); // return the chopsticks
i

the message-passing primitives of the join calculus. For Dining Philosophers,
we use two arrays of channels (hungry and chopstick) to carry value-less
messages; being empty, these messages represent unadorned events. The
declarative aspect of this example is the join pattern starting with j .when. The
declaration says that when events are available on the channels hungry[il,
left, and right, they may be simultaneously and atomically consumed. When
the pattern fires, the philosopher, having obtained exclusive access to two
chopsticks, eats and then returns the chopsticks. In neither the join pattern
nor its body is the order of the chopsticks important. The remaining details
of Russo’s API are explained in $§8.2.

Most implementations of join patterns, including Russo’s, use coarse-
grained locks to achieve atomicity, resulting in poor scalability (as we show
experimentally in §9.8). Our contribution is a new implementation of the join
calculus that uses ideas from fine-grained concurrency to achieve scalability
on par with custom-built synchronization primitives. We present that imple-
mentation in Chapter 9.

This brief chapter provides a review of the join calculus, and of Russos
library API in particular. We recall how join patterns can be used to solve
a wide range of coordination problems (§8.2), as is well-established in the
literature.® The examples provide basic implementations of some of the JUC
primitives mentioned in the introduction (Chapter 1). In each case, the
Joins-based solution is as straightforward to write as the one for dining
philosophers.

Figure 8.1: Dining Philosophers,
declaratively

¢ Fournet and Gonthier 1996; Fournet and
Gonthier 2002; Benton et al. 2004

8.2

THE JOIN CALCULUS AND RUSSO’S API

THE JOIN CALCULUS AND RUSSO’S API

The join calculus takes a message-passing approach to concurrency where
messages are sent over channels and channels are themselves first-class values
that can be sent as messages. What makes the calculus interesting is the way
messages are received. Programs do not actively request to receive messages
from a channel. Instead, they employ join patterns (also called chords’) to
declaratively specify reactions to message arrivals. The power of join patterns
lies in their ability to respond atomically to messages arriving simultaneously
on several different channels.

Suppose, for example, that we have two channels Put and Get, used by
producers and consumers of data. When a producer and a consumer message
are available, we would like to receive both simultaneously, and transfer the
produced value to the consumer. Using Russo’s API, we write:

class Buffer<T> {

public readonly Asynchronous.Channel<T> Put; // T

message type

public readonly Synchronous<T>.Channel Get; // T = reply type
public Buffer() {
Join j = Join.Create(); // allocate a Join object

j.Init(out Put); // bind its channels
j.Init(out Get);
j .When(Get) .And(Put) .Do // register chord

(t = { return t; });

This simple example introduces several aspects of the APL.

First, there are multiple kinds of channels: Put is an asynchronous channel
that carries messages of type T, while Get is a synchronous channel that
yields replies of type T but takes no argument. A sender never blocks on an
asynchronous channel, even if the message cannot immediately be received
through a join pattern. For the Buffer class, that means that a single producer
may send many Put messages, even if none of them are immediately con-
sumed. Because Get is a synchronous channel, on the other hand, senders will
block until or unless a pattern involving it is enabled. Synchronous channels
also return a reply to message senders; the reply is given as the return value
of join patterns.

Join patterns are declared using the when method. The single join pattern
in Buffer stipulates that when one Get request and one Put message are avail-
able, they should both be consumed. After specifying the involved channels
through When and And, the Do method is used to give the body of the join
pattern. The body is a piece of code to be executed whenever the pattern is
matched and relevant messages consumed. It is given as a delegate® taking as
arguments the contents of the messages. In Buffer, the two channels Get and

7 Benton et al. (2004), “Modern
concurrency abstractions for C#”

8 CPs first-class functions

143

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

8.3

144 JOIN PATTERNS

Put yield only one argument, because Get messages take no argument. The
body of the pattern simply returns the argument t (from Put), which then
becomes the reply to the Get message. Altogether, each time the pattern is
matched, one Get and one Put message are consumed, and the argument is
transferred from Put to the sender of Get as a reply.

Channels are represented as delegates, so that messages are sent by simply
invoking a channel as a function. From a client’s point of view, Put and Get
look just like methods of Buffer. If buf is an an instance of Buffer, a producer
thread can post a value t by calling buf.Put(t), and a consumer thread can
request a value by calling buf.Get ().

Finally, each channel must be associated with an instance of the Join
class.? Such instances are created using the static factory method Join. Create,
which optionally takes the maximum number of required channels. Channels
are bound using the Init method of the Join class, which initializes them
using an out-parameter. These details are not important for the overall
design, and are elided from subsequent examples. The full API—including
the determination of types for join pattern bodies—is given in Appendix D.

SOLVING SYNCHRONIZATION PROBLEMS WITH JOINS

As we have seen, when a single pattern mentions several channels, it forces
synchronization:

Asynchronous.Channel<A> Fst;

Asynchronous.Channel Snd;

Synchronous<Pair<A,B>>.Channel Both;

// create j and init channels (elided)

j .When(Both) .And(Fst).And(Snd).Do((a,b) = new Pair<A,B>(a,b));

The above pattern will consume messages Fst(a), Snd(b) and Both() atomi-
cally, when all three are available. Only the first two messages carry arguments,
so the body of the pattern takes two arguments. Its return value, a pair,
becomes the return value of the call to Both().

On the other hand, several patterns may mention the same channel,
expressing choice:

Asynchronous.Channel<A> Fst;
Asynchronous.Channel Snd;
Synchronous<Sum<A,B>>.Channel Either;

// create j and init channels (elided)
j.When(Either).And(Fst).Do(a = new Left<A,B>(a));
j.When(Either).And(Snd).Do(b = new Right<A,B>(b));

Each pattern can fulfill a request on Either (), by consuming a message Fst (a)
or a message Snd(b), and wrapping the value in a variant of a disjoint sum.
Using what we have seen, we can build a simple (non-recursive) Lock:

°This requirement retains compatibility
with Russo’s original Joins library; we also
use it for the stack allocation optimization
described in §9.6.

SOLVING SYNCHRONIZATION PROBLEMS WITH JOINS 145

class Lock {
public readonly Synchronous.Channel Acquire;
public readonly Asynchronous.Channel Release;
public Lock() {
// create j and init channels (elided)
j .When(Acquire).And(Release).Do(() = { });
Release(); // initially free

Asin the dining philosophers example, we use void-argument, void-returning
channels as signals. The Release messages are tokens that indicate that the
lock is free to be acquired; it is initially free. Clients must follow the protocol
of calling Acquire() followed by Release() to obtain and relinquish the lock.
Protocol violations will not be detected by this simple implementation. How-
ever, when clients follow the protocol, the code will maintain the invariant
that at most one Release() token is pending on the queues and thus at most
one client can acquire the lock.
With a slight generalization, we obtain a semaphore:*°

class Semaphore {
public readonly Synchronous.Channel Acquire;
public readonly Asynchronous.Channel Release;
public Semaphore(int n) {
// create j and init channels (elided)
j.When(Acquire).And(Release).Do(() = { });
for (; n > 0; n--) Release(); // initially n free

A semaphore allows at most # clients to Acquire the resource and proceed;
further acquisitions must wait until another client calls Release(). We ar-
range this by priming the basic Lock implementation with # initial Release()
tokens.

' Dijkstra (1965), “EWD123: Cooperating
Sequential Processes”

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

146 JOIN PATTERNS

We can also generalize Buffer to a synchronous channel that exchanges
data between threads:

class Exchanger<A, B> {

readonly Synchronous<Pair<A, B>>.Channel<A> left;

readonly Synchronous<Pair<A, B>>.Channel right;

public B Left(A a) { return left(a).Snd; }

public A Right(B b) { return right(b).Fst; }

public Exchanger() {
// create j and init channels (elided)
j.When(left).And(right).Do((a,b) = new Pair<A,B>(a,b));

Dropping message values, we can also implement an n-way barrier that
causes n threads to wait until all have arrived:

class SymmetricBarrier {
public readonly Synchronous.Channel Arrive;
public SymmetricBarrier(int n) {
// create j and init channels (elided)
var pat = j.When(Arrive);
for (int i = 1; i < n; i++) pat = pat.And(Arrive);
pat.Do(() = { });

This example is unusual in that its sole join pattern mentions a single channel
n times: the pattern is nonlinear. This repetition means that the pattern will
not be enabled until the requisite # threads have arrived at the barrier, and
our use of a single channel means that the threads need not distinguish them-
selves by invoking distinct channels (hence “symmetric”). On the other hand,
if the coordination problem did call for separating threads into groups," it is
easy to do so. We can construct a barrier requiring n threads of one kind and
m threads of another, simply by using two channels.

We can also implement a tree-structured variant of an asymmetric barrier,
which breaks a single potentially large n-way coordination problem into
O(n) two-way problems. Such tree-structured barriers (or more generally,
combiners) have been studied in the literature;'* the point here is just that
adding tree-structured coordination is straightforward using join patterns.
As we show in §9.8, the tree-structured variant performs substantially better
than the flat barrier, although both variants easily outperform the NET
Barrier class (a standard sense-reversing barrier).

“eg, “gender” is useful in a parallel ge-
netic algorithm (William N. Scherer, III et
al. 2005)

> See Herlihy and Shavit 2008 for a survey

SOLVING SYNCHRONIZATION PROBLEMS WITH JOINS

class TreeBarrier {
public readonly Synchronous.Channel[] Arrive;
private readonly Join j; // create j, init chans ...
public TreeBarrier(int n) {Wire(0, n-1, () = {});}
private void Wire(int low, int high, Action Done) {
if (low == high) {
j-When(Arrive[low]).Do(Done);
} else if (low + 1 == high) {
j.When(Arrive[low]).And(Arrive[high]).Do(Done);
else { // low + 1 < high
Synchronous.Channel Left, Right; // init chans
j .When(Left) .And(Right) .Do(Done);
int mid = (low + high) / 2;
Wire(low, mid, () = Left());
Wire(mid + 1, high, () = Right());

Finally, we can implement a simple reader-writer lock, using private
asynchronous channels (idle and shared) to track the internal state of a
synchronization primitive:'

class ReaderWriterLock {
private readonly Asynchronous.Channel idle;
private readonly Asynchronous.Channel<int> shared;
public readonly Synchronous.Channel AcqR, AcqWw,
RelR, RelW;
public ReaderWriterLock() {
// create j and init channels (elided)
j .When(AcqR) .And(idle).Do(() = shared(1));
j .-When(AcgR) .And(shared) .Do(n = shared(n+1));
j .When(RelR) .And(shared) .Do(n = {
if (n == 1) idle(); else shared(n-1);
b
j.When(AcgW) .And(idle).Do(() = { });
j.-When(RelW) .Do(() = idle());
idle(); // initially free

While we have focused on the simplest synchronization primitives as a
way of illustrating Joins, join patterns can be used to declaratively implement
more complex concurrency patterns, from Larus and Parks-style cohort-
scheduling,'* to Erlang-style agents or active objects," to stencil computations

3 Benton et al. (2004), “Modern
concurrency abstractions for C#”

4 Benton et al. 2004
s Benton et al. 2004

147

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

148 JOIN PATTERNS

with systolic synchronization,' as well as classic synchronization puzzles.”” 6 Russo 2008
7 Benton 2003

9.1

Implementing join patterns

Synopsis This chapter walks through the implementation of scalable join
patterns, including excerpts of the core C! library code (§9.3 and §9.4) and
optimizations (§9.5). It validates our scalability claims experimentally on
seven different coordination problems (§9.8). For each coordination problem
we evaluate a joins-based implementation running in both Russo’s lock-based
library and our new scalable library, and compare these results to the perfor-
mance of direct, custom-built solutions. In all cases, the new library scales
significantly better than Russos, and competitively with—sometimes better
than—the custom-built solutions, though it suffers from higher constant-
time overheads in some cases.

OVERVIEW

In the previous chapter we saw, through a range of examples, how the join
calculus allows programmers to solve synchronization problems by merely
writing down the relevant constraints. Now we turn to our contribution: an
implementation that solves these constraints in a scalable way.

The problem

The chief challenge in implementing the join calculus is providing atomicity
when firing patterns: messages must be noticed and withdrawn from multiple
collections simultaneously. A simple way to ensure atomicity, of course, is to
use alock (§2.4), and this is what most implementations do (see Chapter 12)."
For example, Russo’s original library associates a single lock with each Join
object. Each sender must acquire the lock and, while holding it, enqueue their
message and determine whether any patterns are thereby enabled.

But Russos library goes further, putting significant effort into shortening
the critical section: it uses bitmasks summarizing message availability to
accelerate pattern matching,> represents void asynchronous channels as coun-
ters, and permits “message stealing” to increase throughput—all the tricks
from Benton et al. (2004).

Unfortunately, even with relatively short critical sections, coarse-grained
locking inevitably limits scalability (§2.4). The scalability problems with locks
are a major obstacle to using the Joins library to implement custom, low-
level synchronization primitives. In addition to the general memory traffic

“While formerly it had been the task of the pro-
grams to instruct our machines, it had now
become the task of the machines to execute
our programs.”

—Edsger W. Dijkstra, “EWDgs52: Science
fiction and science reality in computing”

'Some implementations use STM (Shavit
and Touitou 1995), which we also discuss in
Chapter 12.

> Le Fessant and Maranget (1998),
“Compiling Join Patterns”

149

http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html

9.1.2

150 IMPLEMENTING JOIN PATTERNS

problems caused by locks, coarse-grained locking for joins unnecessarily
serializes the process of matching and firing chords: at most one thread can
be performing that work at a time. In cases like the exchanger and Dining
Philosophers, a much greater degree of concurrency is both possible and
desirable.

In short, for joins to be viable as a user-extensible synchronization library,
we need an implementation that matches and fires chords in parallel while
minimizing costly interprocessor communication, i.e., we need scalable join
patterns.

Our approach

In order to permit highly-concurrent access to the collection of messages
available on a given channel, we use lock-free bags to represent channels.?
The result is that, for example, two threads can be simultaneously adding
separate messages to the same channel bag, while a third examines a message
already stored in the bag—without any of the threads waiting on any other,
and in many cases without any memory bus traffic. In choosing a bag rather
than, say, a queue, we sacrifice message ordering guarantees to achieve greater
concurrency: FIFO ordering imposes a sequential bottleneck on queues.
The original join calculus did not provide any ordering guarantees, and
relaxed ordering is typical in implementations.* The choice of ordering is
not, however, fundamental to our algorithm; ordered channels are easy to
provide (§9.6). None of our examples rely on ordering.

Lock-free bags allow messages to be added and inspected concurrently,
but they do not solve the central problem of atomically consuming a pattern’s
worth of messages. To provide atomic matching, we equip messages with a
Status field of the following type:

enum Stat { PENDING, CLAIMED, CONSUMED };
Statuses are determined according to the following protocol:

e Each message is PENDING to begin with, meaning that it is available for
matching and firing.

e Matching consists of finding sufficiently many PENDING messages, then
using CAS to try to change them one by one to from PENDING to CLAIMED.

o If matching is successful, each message can be marked CONSUMED. If it is
unsuccessful, each CLAIMED message is reverted to PENDING.

Messages marked CONSUMED are logically deleted, but need not be physically
removed from the bag until a later, more convenient moment.

Using the techniques of Chapter 4, we can visualize the per-message
protocol as follows as shown in Figure 9.1. The local protocol uses a single

«_»

token, denoted as usual with “e”, which represents ownership of the message.

* The bag implementation we used for our
measurements is, unfortunately, a closed-
source implementation based on Microsoft
intellectual property, but it is loosely based
on the Michael-Scott queue (Michael and
Scott 1998) and thus does not take full ad-
vantage of the orderless bag semantics. Sub-
sequent to our implementation, several lock-
free bag implementations have appeared in
the literature (Sundell et al. 2011; David Dice
and Otenko 2011).

4 Fournet and Gonthier 1996; Russo 2007;
Benton et al. 2004

Physically in bag
A

- N~
v

Logically in bag Logically removed

Part of this protocol should look familiar: the token-controlled loop between

the Pending and Claimed states is isomorphic to the simple lock protocol

in §4.3. Indeed, the status field does act as a kind of fine-grained lock, one tied

to individual messages rather than an entire instance of Join. But if we fail to

“acquire” a message, we do not immediately spinwait or block. Instead, we can

continue looking through the relevant bag of messages for another message

to claim—or, more generally, for another join pattern to match (§9.3).

There are three reasons the above is just an “overview” and not the full

algorithm:

Knowing when to terminate the protocol with the result of “no pattern
matched” turns out to be rather subtle: because the message bags are not
locked, new potential matches can occur at any time. Terminating the
protocol is important for returning control to an asynchronous sender,
or deciding to block a synchronous sender. But terminating too early can
result in dropped (undetected, but enabled) matches, which can lead to
deadlock. The full algorithm, including its termination condition, is given
in §9.3.

Patterns involving synchronous channels add further complexity: if an
asynchronous message causes such a pattern to be fired, it must alert a syn-
chronous waiter, which must in turn execute the pattern body. Likewise,
if there are multiple synchronous senders in a given pattern, they must
be coordinated so that only one executes the body and communicates the
results to the others. We cover these details in §9.4.

Two “optimizations” of the protocol turn out to be crucial for achieving
scalability: lazy queueing and message stealing. The details of these opti-
mizations are spelled out in §9.5, while their ramifications on scalability
are examined empirically in §9.8.

REPRESENTATION

Before delving into the C! implementation of scalable join patterns, we briefly

survey the interfaces to the key data structures it uses; see Figure 9.2.

REPRESENTATION

Figure 9.1: Per-message protocol

151

152 IMPLEMENTING JOIN PATTERNS

// Msg implements:

Chan Chan { get; };

Stat Status { get; set; };

bool TryClaim(); // CAS from PENDING to CLAIMED
Signal Signal { get; };

Match ShouldFire { get; set; };

object Result { get; set; };

// Chan<A> implements:
Chord[] Chords { get; };
bool IsSync { get; };
Msg AddPending(A a);

Msg FindPending(out bool sawClaims);

// Match implements:

Chord Chord { get; };

Msg[] Claims { get; };
// Chord implements:

Chan[] Chans; { get; };

Msg[] TryClaim(Msg msg, ref bool retry);

Messages are represented as instances of the Msg class, which, in addition
to carrying the message payload, includes a Chan property® tying it to the
channel in which it was created, and the Status field discussed above.®
The remaining Msg properties (Signal, ShouldFire and Result) are used for
blocking on synchronous channels, and are discussed in §9.4.

The Chan<A> class implements a lock-free bag of messages of type A. Its
Chords property gives, as an array, all of the chords that mention the channel,
while the IsSync property records whether the channel is synchronous. The
key operations on a channel are:

e AddPending, which takes a message payload and atomically adds a Msg<A>
with PENDING status to the bag and returns it.

e FindPending attempts to locate and return—but not remove—some mes-
sage with PENDING status. Its precise semantics is subtle, and is closely
connected to the status protocol shown in Figure 9.1. There are three
possible outcomes of a call to FindPending:

“Yes”™: if FindPending returns a (non-null) message, that message was
atomically observed to have status PENDING. Of course, by the time
control is returned to the caller, the status may have been altered by

Figure 9.2: Interfaces to the key data
structures

>The get and set keywords are used to
specify the existence of “getters” and “setters”
for properties in .NET interfaces. Properties
externally look like fields, but they can be
read-only, write-only, or read-write. Inter-
nally, setting or getting a property invokes
the corresponding getter or setter method.

¢ The Chan property is just a convenience for
the presentation in this paper. It is avoided
in the real implementation for the sake of
space.

9.3

THE CORE ALGORITHM: RESOLVING A MESSAGE 153

a concurrent thread (see Figure 9.1, and notice that no thread owns the
token in the PENDING status).

“MAYBE”: if FindPending returns null and its out-parameter’ sawClaims
is true, all that can be concluded is that some message was observed
with a CLAIMED status (see Figure 9.1, and notice that a message with
CLAIMED status might be reverted to PENDING by another thread at any
time).

“No”: if FindPending returns null and its out-parameter sawClaims is
false, then there was some atomic instant during its execution at which
all messages in the bag were marked CONSUMED (see Figure 9.1, and notice
that a message with CONSUMED status can never be reverted to PENDING).

There is no explicit method for removing a message. As we mentioned earlier,
a message can be logically removed from the bag by marking it as CONSUMED
(leaving the bag implementation to physically delete it when convenient).

Match is a simple, immutable class used to record the data making up a
matched pattern: a chord, and an array of CLAIMED messages® sufficient to fire
it.

Finally, the Chord class represents a join pattern, which is simply a (hetero-
geneous) array of channels. The class includes a TryClaim method for trying
to claim a given message (presumed to be on a channel that is part of the
chord) together with enough other messages to satisfy the join pattern. Its
implementation is given in the next section.

THE CORE ALGORITHM: RESOLVING A MESSAGE

We have already discussed the key safety property for a Joins implementation:
pattern matching and message consumption should be atomic. In addition,
an implementation should ensure at least the following liveness property
(assuming a fair scheduler):

If a chord can fire, eventually some chord is fired.®?

Our strategy is to drive the firing of chords by the concurrent arrival of each
message: each sender must “resolve” its own message. We consider a message
resolved if it has been added to the appropriate channel bag, and one of the
following holds:

1. It is marked CLAIMED by the sending thread, along with sufficiently many
other messages to fire a chord; or

2. It is marked CONSUMED by another thread, and hence was used to fire a
chord; or

3. No pattern can be matched using only the message and messages that
arrived prior to it.

7 A method parameter marked out in C
is passed as a reference that is considered
uninitialized and can be updated by the
method (with visible effect for the caller).

® This array is heterogeneous: it contains mes-
sages of varying types. In situations like
this, we introduce an additional interface
(here Msg without a type parameter) that
represents, essentially, an existential pack-
age quantifying over the difference in types.
We will gloss over this point from here on.
See Kennedy and Russo (2005) for a detailed
explanation.

® Notice that this property does not guaran-
tee fairness; see §9.7.

154 IMPLEMENTING JOIN PATTERNS

Ensuring that each message is eventually resolved is tricky, because message
bags and statuses are constantly, concurrently in flux. In particular, just as one
thread determines that its message msg does not enable any chord, another
message from another thread may arrive that enables a chord involving msg.

THE KEY IDEA is that each sender need only take responsibility for chords
involving its messages and the messages that arrived prior to it; if a later
sender enables a chord, that later sender is responsible for it. But given the
highly concurrent nature of message bags, what does it mean for one message
to arrive before another?

There is no need to provide a direct way of asking this question. Instead,
we rely on the atomicity of the bag implementation (in the sense of §3.4).
Atomicity means that we can think of calls to AddPending and FindPending
(along with CASes to Status) as being executed atomically, in some global
sequential order. In particular, all messages—even those added to distinct
bags—can be semantically ordered by “arrival,” i.e., the time of their insertion.
The bag interface does not provide a way to observe this ordering directly, but
FindPending is guaranteed to respect it. For example, consider a thread that
inserts a message into one bag, and then looks for a message in a different
bag:

Msg ml = bagl.AddPending(x);
bool sawClaims;

Msg m2 = bag2.FindPending(out sawClaims);

Suppose that m2 = null and sawClaims = false, in other words that the
call to FindPending on bag2 says that there were (atomically) no PENDING
messages. By the time that call returns, bag2 might in fact contain some
PENDING messages—but they can only be messages that arrived after m1 did.
Thus, atomicity is the foundation for our idea of “message responsibility”:
the “instantaneous time” at which we insert a message to send is the pivot
point determining which other messages we must consider when looking for
a pattern that the message enables.

Figure 9.3 gives our implementation of message resolution. The Resolve
method takes a message msg that has already been added to the appropriate
channel’s bag and loops until the message has been resolved. It first attempts
to “claim” a chord involving msg, successively trying each chord in which
msg’s channel is involved (lines 5-9). The Chord class’s TryClaim method
either returns an array of messages (which includes msg) that have all been
CLAIMED by the current thread, or null if claiming failed. In the latter case, the
retry by-reference'® parameter is set to true if any of the involved message
bags contained a message CLAIMED by another thread; otherwise, retry is
unchanged by the chord’s TryClaim method.

Cumulatively, the retry flag records whether an externally-CLAIMED mes-
sage was seen in any failing chord. We must track such CLAIMED messages be-

© A by-reference parameter in C! must
be initialized prior to method invocation;
changes made to the parameter within the
method are visible to the caller.

O 00 N o U~ W N R

e e e
A W N P O

THE CORE ALGORITHM: RESOLVING A MESSAGE 155

Match Resolve(Msg msg) {
var backoff = new Backoff();
while (true) {
bool retry = false;
foreach (var chord in msg.Chan.Chords) {
Msg[] claims = chord.TryClaim(msg, ref retry);
if (claims !'= null)
return new Match(chord, claims);
}
if (!'retry || msg.Status == Stat.CONSUMED)
return null;
backoff.Once();
}
}

cause they are unstable, in the sense that they may be reverted to PENDING (Fig-
ure 9.1), possibly enabling a chord for which the sender is still responsible.

The first way a message can be resolved—by claiming it and enough
other messages to make up a chord—corresponds to the return on line 8.
The second two ways correspond to the return on line 11. If none of the
three resolution conditions hold, we must try again. We perform exponential
backoff (line 12) in this case, because repeated retrying can only be caused
by contention over messages. Resolution may fail to terminate, but only if
the system as a whole is making progress (according to our liveness property
above); see §9.7 for a proof sketch.

Figure 9.4 gives the implementation of the TryClaim for the Chord class,"
which works in two phases:

e In the first phase (lines 8-17), TryClaim tries to locate sufficiently many
PENDING messages to fire the chord. It is required to claim msg in particular.
If it is unable to find enough messages, it exits (line 15) without having
written anything to shared memory, which bodes well for its cache coher-
ence behavior (§2.3.1). Channels are always listed in chords in a consistent,
global order, which is needed to guarantee liveness (§9.7).

e Otherwise, the TryClaim enters the second phase (lines 20-28), wherein
it attempts to claim each message. The message-level TryClaim method
performs a CAS on the Status field, ensuring that only one thread will
succeed in claiming a given message. If at any point we fail to claim a
message, we roll back all of the messages claimed so far (lines 23-24). The
implementation ensures that the Chans arrays for each chord are ordered
consistently, so that in any race at least one thread entering the second
phase will complete the phase successfully (§9.7).

Figure 9.3: Resolving a message

" The partial keyword in C! provides a way
of splitting a class definition up into several
pieces.

O 00 N o U~ W N R

W W W NN N N NNNNNNHRBRERBRR R B B B B B
N B ® © ® N 0 U & W N P © © 00 N O U & W N R ©

9.4

156 IMPLEMENTING JOIN PATTERNS

partial class Chord {
Chan[] Chans; // the channels making up this chord

Msg[] TryClaim(Msg msg, ref bool retry) {
var msgs = new Msg[Chans.length]; // cached

// locate enough pending messages to fire chord
for (int i = 0; i < Chans.Length; i++) {
if (Chans[i] == msg.Chan) {
msgs[i] = msg;
} else {
bool sawClaims;
msgs[i] = Chans[i].FindPending(out sawClaims);
retry = retry || sawClaims;
if (msgs[i] == null) return null;

// try to claim the messages we found
for (int i = 0; i < Chans.Length; i++) {
if (!'msgs[i].TryClaim()) {
// another thread won the race; revert
for (int j = 0; j < i; j++)
msgs[j].Status = Stat.PENDING;
retry = true;

return null;

return msgs; // success: each message CLAIMED

The code in Figure 9.4 is a simplified version of our implementation that does
not handle patterns with repeated channels, and does not stack-allocate or
recycle message arrays. These differences are discussed in §9.6.

SENDING A MESSAGE: FIRING, BLOCKING AND RENDEZVOUS

Message resolution does not depend on the (a)synchrony of a channel, but the
rest of the message-sending process does. In particular, when a message on
an asynchronous channel is resolved with “no pattern matched,” the sending

Figure 9.4: Racing to claim a chord
involving msg

SENDING A MESSAGE: FIRING, BLOCKING AND RENDEZVOUS

process is finished; but on a synchronous channel, the sender must wait until
a pattern is matched and the message is consumed, so that it can calculate the
reply to return.

To further complicate matters, chords can contain arbitrary mixtures of
the two types of channel, so the protocols for sending on each type are
intertwined. A key aspect of these protocols is determining which thread
executed the body of a matched pattern:

e The body of an asynchronous chord (i.e., one involving no synchronous
channels) is executed by a newly-spawned thread; its return type must be

void.

e The body of a synchronous chord (i.e., one involving at least one syn-
chronous channel) is executed by exactly one of the threads that sent a
message on one of the involved synchronous channels.

These requirements are part of the semantics of the Joins library.

The code for sending messages is shown in Figure 9.5, with separate entry
points SyncSend and AsyncSend. The actions taken while sending depend, in
part, on the result of message resolution:

Send We CLAIMED They CONSUMED No match
Sync Fire (14) Wait for result (6) | Block (6)
(AC) Spawn (32)

(SC) Wake (35-41)

Async Return (28) Return (28)

where AC and SC stand for asynchronous chord and synchronous chord
respectively.

FIRST WE FOLLOW THE PATH OF A SYNCHRONOUS MESSAGE, which begins by
adding and resolving the message (lines 2-3). If the message was resolved
by claiming it and enough additional messages to fire a chord, all relevant
messages are immediately consumed (line 11). Otherwise, either another
thread has CONSUMED the message, or no match was possible. In either case,
the synchronous sender must wait (line 6).

Each synchronous message has a Signal associated with it. Signals pro-
vide methods Block and Set, allowing synchronous senders to block'* and be
woken. Calling Set triggers the signal:

o Ifathread hasalready called Block, it is then awoken and the signal is reset.

o Otherwise, the next call to Block will immediately return (instead of
waiting), again resetting the signal.

We ensure that Block and Set are each called by at most one thread; the Signal
implementation then ensures that waking only occurs as a result of triggering
the signal (no “spurious wakeups”).

> Block spinwaits a bit first; see §9.6

157

O 00 N o U B~ W N

N N N N B B B 2 R e HE B R e
w N B O VW 00 N O Ul A~ W N B O

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

158

IMPLEMENTING JOIN PATTERNS

Msg msg = chan.AddPending(a);

Match mat = Resolve(msg);

if (mat == null) {
msg.Signal.Block();
mat = msg.ShouldFire;
if (mat == null)
return msg.Result;
} else {

ConsumeAll(mat.Claims);

var r = mat.Fire();

R SyncSend<R, A>(Chan<A> chan, A a) {

//
//

/7
//
//
//
//
//
//

//

make our message visible

and then resolve it

msg CONSUMED, or no match
wait for pattern match
non-null if woken by async
is this a rendezvous?

return chord body’s result
we resolved msg by claiming,

so consume the messages

execute the chord body

// rendezvous with any other sync senders (they will be waiting)

for (int 1 = 0; i < mat.Chord.Chans.Length; i++) {
if (mat.Chord.Chans[i].IsSync & mat.Claims[i] != msg) {

mat.Claims[i] .Result = r;

mat.Claims[i].Signal.Set();

}

return (R)r;

//
//

transfer result to sender

and wake it up

Msg msg = chan.AddPending(a);

Match mat = Resolve(msg);

if (mat == null) return;

ConsumeAll (mat.Claims);

if (mat.Chord.IsAsync) {

new Thread(mat.Fire).Start();

} else {

void AsyncSend<A>(Chan<A> chan, A a) {

//
//

//
//

//
//
//

make our message visible

and then resolve it

msg CONSUMED, or no match
resolved by CLAIMING

asynchronous chord:
fire in a new thread

synchronous chord:

// wake up the first synchronous caller

for (int i = 0; i < mat.Chord.Chans.Length; i++) {
if (mat.Chord.Chans[i].IsSync) {

mat.Claims[i].ShouldFire
mat.Claims[i].Signal.Set();

return;

mat;

// tell it what to consume

// and wake it up

Figure 9.5: Sending a message

9.5

There are two ways a blocked, synchronous sender can be woken: by
an asynchronous sender or by another synchronous sender (which we call
“rendezvous”). In the former case, the (initially null) ShouldFire field will
contain a Match object whose body the synchronous caller is responsible for
executing on behalf of the asynchronous sender (line 14). In the latter case,
ShouldFire remains null, but the Result field will contain the result of a
chord body as executed by another synchronous sender, which is immediately
returned (line 9).

We regroup at line 14, in which the synchronous sender actually executes
the chord body. It could have arrived at this line in two ways: either by
matching a chord itself, or else by being woken by an asynchronous sender.
In either case, after executing the body, it must then wake up any other
synchronous senders involved in the chord and inform them of the result (the
other side of rendezvous, lines 16-21). For simplicity, we ignore the possibility
that the chord body raises an exception, but proper handling is easy to add
and is addressed by the benchmarked implementation.

Now WE CONSIDER SENDING AN ASYNCHRONOUS MESSAGE. Just as before, we
begin by adding and resolving the message to send (lines 25-26). If either
the message was CONSUMED by another thread (in which case that thread is
responsible for firing the chord) or no pattern is matchable (in which case
the message is left for another thread to consume later), we immediately exit
(line 28).

On the other hand, if we resolved the message by claiming it and enough
other messages to fire a chord, we proceed by consuming all involved
messages (line 29). If the chord is asynchronous (its pattern involves only
asynchronous channels) we spawn a new thread to execute the chord body
asynchronously (line 32). Otherwise at least one of the messages we just
consumed belongs to a synchronous sender that is now blocked. Although
multiple synchronous callers can be combined in a single chord, exactly one
of them is chosen to execute the chord; afterwards it will share the result
with (and wake up) all the others (rendezvous). After picking a synchronous
sender to wake (lines 35-41), we tell it which chord to fire with which messages

(line 37).
KEY OPTIMIZATIONS

While the implementation outlined above is already much more scalable than
alock-based implementation, it needs a bit more work to be competitive with
hand-built synchronization constructs. In this section, we describe three key
optimizations whose benefit is shown experimentally in §9.8.

KEY OPTIMIZATIONS

159

9.5.1

9.5.2

160 IMPLEMENTING JOIN PATTERNS

Lazy message creation

It is not always necessary to allocate a message or add it to a bag in order
to send it. For example, in the Lock class (Chapter 8), when sending an
Acquire message we could first check to see whether a corresponding Release
message is available, and if so, immediately claim and consume it without
ever touching the Acquire bag. This shortcut saves both on allocation and
potentially on interprocessor communication.

To implement such a shortcut in general, we add an optimistic “fast
path” for sending a message that attempts to immediately find only the other
messages needed to fire a chord. If no chord can be matched in this way, the
code reverts to the “slow path,” i.e., the regular implementation of sending
messages as described above. The implementation is straightforward, so we
omit it."3

As an aside, this optimization appears closely connected to the idea of
“dual data structures” described in §2.4.6. Consider sending on a synchronous
channel with this optimization. We can view that action as a kind of operation
that is “partial,” in the sense that it can only be completed if one of the relevant
join patterns is enabled. If so, the operation is carried out immediately by
changing the state of some fine-grained concurrent data structure. Otherwise,
the request to perform the operation is recorded (in the form of a message on
the synchronous channel), just as it would be in a dual data structure. We
discuss this point further in Chapter 12.

Specialized channel representation

Consider that a void, asynchronous channel (e.g. Lock.Release) is just a
bag of indistinguishable tokens.'* Sophisticated lock-based implementations
of join patterns typically optimize the representation of such channels to a
simple counter, neatly avoiding the cost of allocation for messages that are
just used as signals.”> We have implemented a similar optimization, adapted
to suit our scalable protocol.

The main challenge in employing the counter representation is that, in our
protocol, it must be possible to tentatively decrement the counter (the analog
of claiming a message), in such a way that other threads do not incorrectly
assume the message has actually been consumed. Our approach is to rep-
resent void, asynchronous message bags as a word sized pair of half-words,
separately counting claimed and pending messages. Implementations of, for
example, Chan.AddPending and Msg.TryClaim are specialized to atomically
update the shared-state word by CASing in a classic optimistic loop ($2.4.2).
For example, we can claim a “message” as shown in Figure 9.6.

More importantly, Chan.FindPending no longer needs to traverse a data
structure but can merely atomically read the bag’s encoded state once, setting
sawClaimed if the claimed count is non-zero.

® Our reagents implementation in Chap-
ter 11 does give the details of a similar opti-
mization; see §11.5.2.

'* A void synchronous channel, on the other
hand, is a bag of distinct signals for waiting
senders.

> Benton et al. (2004); Fournet et al. (2003)

bool TryClaimToken() {
while (true) {
uint startState = chan.state; // shared channel state
ushort claimed;
ushort pending = Decode(startState, out claimed);
if (pending > 0) {
var nextState = Encode(claimed + 1, pending - 1);
if CAS(ref chan.state, startState, nextState) return true;
} else {

return false;

While the counter representation avoids allocation, it does lead to more
contention over the same shared state (compared with a proper bag). It also
introduces the possibility of overflow, which we ignore here. Nevertheless, we
have found it to be beneficial in practice (§9.8), especially for non-singleton
resources like Semaphore.Release messages.

Message stealing

In the implementation described in §9.4, when an asynchronous sender
matches a synchronous chord, it consumes all the relevant messages, and then
wakes up one of the synchronous senders to execute the chord body. If the
synchronous sender is actually blocked—so that waking requires a context
switch—significant time may elapse before the chord is actually fired.

Since we do not provide a fairness guarantee, we can instead permit
“stealing”: we can wake up one synchronous caller, but roll back the rest of
the messages to PENDING status, putting them back up for grabs by currently-
active threads—including the thread that just sent the asynchronous message.
In low-traffic cases, messages are unlikely to be stolen; in high-traffic cases,
stealing is likely to lead to better throughput. This strategy is similar to
the one taken in Polyphonic C*,'® as well as the “barging” allowed by the
java.util.concurrent synchronizer framework."”

Some care must be taken to ensure our key liveness property still holds:
when an asynchronous message wakes a synchronous sender, it moves from
a safely resolved state (CLAIMED as part of a chord) to an unresolved state
(PENDING). There is no guarantee that the woken synchronous sender will be
able to fire a chord involving the original asynchronous message (see Benton
et al. (2004) for an example). Yet AsyncSend simply returns to its caller. We
must somehow ensure that the original asynchronous message is successfully

KEY OPTIMIZATIONS

Figure 9.6: Claiming a “PENDING”
asynchronous message on a void
channel represented using counters

16 Benton et al. (2004), “Modern
concurrency abstractions for C#”

7 Lea (2005), “The java.util.concurrent
synchronizer framework”

161

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1016/j.scico.2005.03.007

162 IMPLEMENTING JOIN PATTERNS

Physically in bag
A

v v
Logically in bag Logically removed

resolved. Thus, when a synchronous sender is woken, we record the asyn-
chronous message that woke it, transferring responsibility for re-resolving
the message.

To track message responsibility, we revise the message status protocol by
introducing a new state, WOKEN; see Figure 9.7. A synchronous message is
marked WOKEN if an asynchronous sender is transferring responsibility, and
CONSUMED if a synchronous sender is going to fire a chord involving it. In both
cases, the signal is set after the status is changed; in the latter case, it is set
after the chord body has actually executed and the return value is available.
Resolve is revised to return null at any point that the message is seen at status
WOKEN (as well as CONSUMED).

As the protocol in Figure 9.7 shows, the WOKEN status ensures that a blocked
synchronous caller is woken only once, which is important both to ensure
correct use of the associated Signal, and to ensure that the synchronous
sender will only be responsible for one waking asynchronous message. Only
the thread that created a message (and is blocked waiting for it to enable a
chord) is allowed to clear the WOKEN status: the additional token “m”, which
the sending thread gains ownership of when it originally creates the message,
must be momentarily given up in order to move from WOKEN to PENDING in the
protocol.

The new code for an asynchronous sender notifying a synchronous waiter
is shown in Figure 9.8. Most of the paths through the code work as they
did before. However, when the asynchronous message is CLAIMED as part of a
synchronous chord (line 10), that chord is not immediately CONSUMED. Instead
the asynchronous sender chooses one of the synchronous messages in the
chord to wake up. And instead of informing that synchronous sender of the
entire CLAIMED chord, it merely informs'® the sender of the asynchronous
message that woke it up (line 15), transferring responsibility for sending msg.
While the synchronous sender’s message is moved to the WOKEN status, all
of the other CLAIMED messages—including the original msg—are reverted to

Figure 9.7: Per-message protocol,
revised to support stealing

¥ Via a new field, WakeMsg, of type Msg.

O 00 N o U~ W N R

N N N N B B B 2 R e HE B R e
W N P O VW 0 N OO U~ W N R o

void AsyncSendWithStealing<A>(Chan<A> chan, A a) {
Msg msg = chan.AddPending(a); // make our message visible
Match mat = Resolve(msg); // and then resolve it
if (mat == null) { // msg CONSUMED, or no match
return; // so our work is done
} else if (mat.Chord.IsAsync) { // CLAIMED asynchronous chord:
ConsumeAll(mat.Claims); // consume it, and
new Thread(mat.Fire).Start(); // fire in a new thread
} else { // CLAIMED synchronous chord:
bool foundSleeper = false;
for (int i = 0; i < mat.Chord.Chans.Length; i++) {
if (m.Chord.Chans[i].IsSync & !foundSleeper) {
foundSleeper = true; // the first sync sender:
m.Claims[i].WakeMsg = msg; // hand over msg
m.Claims[i].Status = Stat.WOKEN; // set wakeup type
m.Claims[i].Signal.Set(); // wake it up
} else {
m.Claims[i].Status = Stat.PENDING; // relinquish other claims
}
}
}
}

PENDING (line 19), which allows them to be stolen before the synchronous
sender wakes up.

Figure 9.9 gives the revised code for sending a synchronous message in the
presence of stealing. A synchronous sender loops until its message is resolved
by claiming a chord (exit on line 10), or by another thread consuming it (exit
on line 17). In each iteration of the loop, the sender blocks (line 14); even if its
message has already been CONSUMED as part of a synchronous rendezvous, it
must wait for the signal to get its return value. In the case that the synchronous
sender is woken by an asynchronous message (lines 19-20), it records the
waking message and ultimately tries once more to resolve its own message.
We perform exponential backoft every time this happens, since continually
being awoken only to find messages stolen indicates high traffic.

After every resolution of the synchronous sender’s message msg, the sender
retries sending the last asynchronous message that woke it, if any (lines
11-12, 29-30). Doing so fulfills the liveness requirements outlined above:
the synchronous sender takes responsibility for sending the asynchronous
message that woke it. The RetryAsync method is similar to AsyncSend, but
uses an already-added message rather than adding a new one. It is crucial
to call RetryAsync only when holding no claims on messages—otherwise,

KEY OPTIMIZATIONS 163

Figure 9.8: Sending an asynchronous
message, as revised to support stealing

© 00 N o U B~ W N

B D W W W W W W W W W WNNNNNNNDNNDNNNKRRBRRER B R B B B
P ® © ©® N O U & W N P ® © © N 0 U & W N R ©@ © ®©® N O U & W N R ©

164 IMPLEMENTING JOIN PATTERNS

R SyncSendWithStealing<R, A>(Chan<A> chan, A a) {

Msg wakeMsg = null; // last async msg to wake us
Match mat = null;

var backoff = new Backoff(); // accumulate exp. backoff
Msg msg = chan.AddPending(a); // make our message visible
while (true) { // until CLAIMED or CONSUMED
mat = Resolve(msg); // (re)resolve msg
if (mat !'= null) break; // claimed a chord; exit
if (wakeMsg != null) // responsible for async msg?
RetryAsync(wakeMsg) ; // retry sending it
msg.Signal.Block(); // wait for pattern match

if (msg.Status == Stat.CONSUMED) { // synchronous rendezvous:

return msg.Result; // return body’s result

} else { // async wakeup (WOKEN):
wakeMsg = msg.WakeMsg; // take responsibility
msg.Status = Stat.PENDING; // get ready to retry

}

backoff.Once(); // let others see PENDING msg

// we resolved msg by claiming it and the rest of a chord:

ConsumeAll(mat.claims); // so consume the chord
if (wakeMsg != null) // retry last async waker,
RetryAsync(wakeMsg) ; // *afterx consuming msg
var r = mat.Fire(); // execute the chord body

// rendezvous with any other sync senders (they will be waiting)
for (int i = 0; i < mat.Chord.Chans.Length; i++) {
if (mat.Chord.Chans[i].IsSync && mat.Claims[i] !'= msg) {
mat.Claims[i] .Result = r; // transfer result to sender

mat.Claims[i].Signal.Set(); // and wake it up

}

return (R)r;

Figure 9.9: Sending a synchronous
message while coping with stealing

9.6

9.7

RetryAsync might loop, forever waiting for those claims to be reverted or
consumed. On the other hand, it is fine to retry the message even if it has
already been successfully consumed as part of a chord;'® RetryAsync will
simply exit in this case.

PRAGMATICS AND EXTENSIONS

There are a few smaller differences between the presented code and the actual
implementation, which:

e Avoids boxing (allocation) and downcasts whenever possible.>®

e Does not allocate a fresh message array every time TryClaim is called. The
implementation stack-allocates an array*' in SyncSend and AsyncSend, and
reuses this array for every call to TryClaim.

e Handles nonlinear patterns, in which a single channel appears multiple
times.

An important pragmatic point is that the Signatl class first performs some
spinwaiting before blocking. Spinning is performed on a memory location
associated with the signal, so each spinning thread will wait on a distinct
memory location whose value will only be changed when the thread should
be woken, an implementation strategy long known to perform well on
cache-coherent architectures (§2.4.6). The amount of spinning performed is
determined adaptively on a per-thread, per-channel basis.

It should be straightforward to add timeouts and nonblocking attempts
for synchronous sends** to our implementation, because we can always use
cas to consume a message we have previously added to a bag to cancel an in-
progress send—which will, of course, fail if the send has already succeeded.

Finally, to add channels with ordering constraints one needs only use a
queue or stack rather than a bag for storing messages. Switching from bags
to fair queues and disabling message stealing yields per-channel fairness for
joins. In Dining Philosophers, for example, queues would guarantee that
requests from waiting philosophers are fulfilled before those of philosophers
that have just eaten. Such guarantees come at the cost of decreased parallelism,
since they entail sequential matching of join patterns. At an extreme, pro-
grammers can enforce a round-robin scheme for matching patterns using an
additional internal channel.*3

CORRECTNESS

The most appropriate specification for our algorithm is something like the
process-algebraic formulation of the join calculus,>* perhaps treated as a
canonical atomic spec (§3.4). In that specification, multiple messages are
consumed—and a chord is fired—in a single step. We have not yet carried out
a rigorous proof that our implementation satisfies this specification. We have,

PRAGMATICS AND EXTENSIONS 165

“ It will often be the case that the asyn-
chronous message is CONSUMED on line 27, for
example.

*° On .NET, additional polymorphism (be-
yond what the code showed) can help avoid
uses of object.

*! Stack-allocated arrays are not directly pro-
vided by .NET, so we use a custom value type
built by polymorphic recursion.

> That is, a way to send a synchronous mes-
sage only when it is immediately matches a
join pattern.

3 Russo (2008), “Join Patterns for Visual
Basic”

24 Fournet and Gonthier (1996), “The
reflexive CHAM and the join-calculus”

http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1145/237721.237805

166 IMPLEMENTING JOIN PATTERNS

however, identified what we believe are the key lemmas—one safety property,
one liveness property—characterizing the Resolve method:

Lemma 4 (Resolution Safety). Assume that msg has been inserted into a
channel. If a subsequent call to Resolve (msg) returns, then msg is in a resolved
state; moreover, the return value correctly reflects how the message was
resolved.

Lemma 5 (Resolution Liveness). Assume that threads are scheduled fairly.
If a sender is attempting to resolve a message, eventually some message is
resolved by its sender.

Recall that there are three ways a message can be resolved: it and a pattern’s
worth of messages can be marked CLAIMED by the calling thread; it can be
marked CONSUMED by another thread; and it can be in an arbitrary status when
it is determined that there are not enough messages sent prior to it to fire a
chord.

Safety for the first two cases is fairly easy to show (Figure 9.1):

e Once a message is CLAIMED by a thread, the next change to its status is by
that thread.

e Once a message is CONSUMED, its status never changes.

These facts mean that interference cannot “unresolve” a message that has been
resolved in those two ways. The other fact we need to show is that the retry
flag is only fatse if, indeed, no pattern is matched using only the message and
messages that arrived before it. Here we use the assumptions about bags (§9.2),
together with the facts about the status flags just given.

Now we turn to the liveness property. Notice that a call to Resolve fails
to return only if retry is repeatedly true. This can only happen as a result
of messages being CLAIMED. We can prove, using the consistent ordering of
channels during the claiming process, that if any thread reaches the claiming
process (lines 19-28 of Figure 9.4), some thread succeeds in claiming a
pattern’s worth of messages. The argument goes: claiming by one thread
can fail only if claiming/consuming by another thread has succeeded, which
means that the other thread has managed to claim a message on a higher-
ranked channel. Since there are only finitely-many channels, some thread
must eventually succeed in claiming the last message it needs to match a
pattern.

Using both the safety and liveness property for Resolve, we expect the
following overall liveness property to hold:

Conj 1. Assume that threads are scheduled fairly. If a chord can be fired,
eventually some chord is fired.

The key point here is that if a chord can be fired, then in particular some
message, together with its predecessors, does match a pattern, which rules
out the possibility that the message is resolved with no pattern matchable.

9.8

9.8.1

PERFORMANCE

We close our discussion of join patterns with an experimental study of
our implementation. The result is clear: the implementation scales well and,
with the optimizations of §9.5, performs competitively with purpose-built
synchronization constructs.

Methodology

Scalable concurrent algorithms are usually evaluated by targetted microbench-
marking, with focus on contention effects and fine-grained parallel speedup.>
To evaluate our implementation, we constructed a series of microbenchmarks
for seven classic coordination problems: dining philosophers, producers/-
consumers, mutual exclusion, semaphores, barriers, rendezvous, and reader-
writer locking.

Our solutions for these problems are fully described in Chapter 8. They
cover a spectrum of shapes and sizes of join patterns. In some cases (pro-
ducer/consumer, locks, semaphores, rendezvous) the size and number of join
patterns stays fixed as we increase the number of processors, while in others
a single pattern grows in size (barriers) or there are an increasing number of
fixed-size patterns (philosophers).

Each benchmark follows standard practice for evaluating synchronization
primitives: we repeatedly synchronize, for a total of k synchronizations
between n threads. We use k > 100,000 and average over three trials for all
benchmarks. To test interaction with thread scheduling and preemption, we
let n range up to 96—twice the 48 cores in our benchmarking machine.

Each benchmark has two variants for measuring different aspects of
synchronization:

PARALLEL SPEEDUP In the first variant, we simulate doing a small amount
of work between synchronization episodes (and during the critical section,
when appropriate). By performing some work, we can gauge to what
extent a synchronization primitive inhibits or enables parallel speedup. By
keeping the amount of work small, we gauge in particular speedup for fine-
grained parallelism, which presents the most challenging case for scalable

coordination.

PURE SYNCHRONIZATION In the second variant, we synchronize in a
tight loop, yielding the cost of synchronization in the limiting case where
the actual work is negligible. In addition to providing some data on
constant-time overheads, this variant serves as a counterpoint to the
previous one: it ensures that scalability problems were not hidden by doing
too much work between synchronization episodes. Rather than looking
for speedup, we are checking for slowdown.

To simulate work, we use .NET’s Thread.SpinWait method, which spins in
a tight loop for a specified number of times (and ensures that the spinning

PERFORMANCE 167

» Mellor-Crummey and Scott (1991);
Michael and Scott (1996); Herlihy,
Luchangco, Moir, and W.N. N Scherer, III
(2003); William N. Scherer, III and Scott
(2004); Hendler et al. (2004); Fraser and
Tim Harris (2007); Cederman and Tsigas
(2010); Hendler et al. (2010)

(bigger is better)

iterations/10 ys

Throughput:

168

35

1.8

IMPLEMENTING JOIN PATTERNS

Philosophers (with work)

e
o W
RS > RCLLITTTS
Rt i Riaas K
g) .
cc‘ '—_““u“‘ =S-Join
A -] i
“\‘ PN L J oin
cc » ~ Dijkstra
< S wjo CL
z - *S-Jwfo (S

6 12

18 24 30 36 42 48 54 60 66 72 78 84 90 96

Lock (with work)

==S-Join
= 'L-Join
= .NET
= .NET-spin
5. wjo C,S
T T T T T T T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Rendezvous (with work)
A
-~ I\,-' LL) R
5
2 o, \ —S-Join
St tte, - = ‘L-Join
OWEy
}"—J -+ Exchanger
#S-JwloL
’
4
T T T T T T T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
RWLock (50/50, with work)
==S-Join
= 'L-Join
< .NET
= NET-Slim
“#S-Jwjo C
1 1 T T 1T 1T 1T T 1T 1T T 171
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Threads

0.8

0.6

0.4

0.2

4.0
35
3.0
25

2.0

05

0.0

1.8
1.6
1.4
12

0.8
0.6
0.4
0.2

Producer/consumer (with work)

A\
/N

/T~

-

/ .
[T

//

o, T
27 ~ sunts 0
2431708

6

T 1 1T 1T T 1T 1T T T 1T T 1.1
12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Semaphore (with work)

m

SNe—

T T ST
%0, 0" . o
" C &~
ORI
A CRR

\1
PCLLLLLTTTIN

S

B

6

T T T T T T T T T T T T 1
12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Barrier (with work)

55 0
“nnst

e,
v

6

T T T T T T T T T T T T 1
12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

RWLock (75/25, with work)

‘0

N
37) OO
o, AALTTIRS (
R\ . RZITTIN

~
~
~
~
~
~
~
=
D

*\‘A

e
-
il I

= e L

6

T 1 1 1T T 1T 1T 1T T 1T T 11
12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

(on 48-core machine)

==S-Join

= L-Join
==*.NET-queue
= NET-bag
*S-JwloL

==S-Join

= 'LJoin
*=.NET-Slim
== NET
S-Jwfo C

==S-Join-Tree
=L-Join

= .NET
& S-Join

==S-Join
=LJoin

= .NET
= NET-Slim
#*S-J wjo C

Figure 9.10: Speedup on simulated

fine-grained workloads

(bigger is better)

iterations/10 ys

Throughput:

Philosophers (no work)

35
x
30 % k)
§oz ST
25 = S ey
,"' ‘~“"’ ‘~‘§~ :’ ““ ‘\\ . £\) (3 ‘
20 e, & % Q N ==S-Join
-~ '¢ " .
b = 'L-Join
15 - = Dijkstra
/v\/ =5JwjoCS
10 /
Olllllllllllllﬁ
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Lock (no work)
35
5 |||r""
L]
."‘."'""'"uulu..
25 T v,
'¢
20 ‘sl =S-join
= 'L-Join
15 “.NET
= .NET-spin
10 \
5
o N R B S Ry B e s e m m |
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Rendezvous (no work)
20
18 -
16 %
L
2 \ T —S-Join
10 —| = "o, — = 'L-Join
8 3 \"f ‘e, / * Exchanger
Nl — =Siuiot
6 Lo
4
2 ===
O T T T T T T T T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
RWLock (50/50, no work)
12
==S-Join
= 'L-Join
< .NET
== NET-Slim
o9 T T 1T T 1 17 T 1T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Threads

35

PERFORMANCE

Producer/consumer (no work)

\

169

25 1%
u\ =—S-Join
UL/
2 TS = +L-Join
] LN |||u,,“.“ ““...,..ullnllnnu.,"‘ -‘.NETqueue
5 S "7 = NET-bag
*S-JwloL
o T T T T 1T 1T T T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Semaphore (no work)
18
L
16 "«,'
" ul,‘ —~- — LT
"O,“\“"ln||l||l||ll““
” —S-Join
10 = 'LJoin
8 <= .NET-Slim
/\ = NET
6 B #S-Jwjo C
raS
4 ~ T
— \ — [
2
o T T T T T T T T T T T T T
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Barrier (no work)
16
14
" :-/\/\
10 € \\ =—S-Join-Tree
8 = = L-Join
./-_‘\ \ - NET
° E \-\I—I—I_\ =S
4 -'o" \\
e
2 T T TTITTTTYT AT
O T T T T T T T T T T T T T 1
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
RWLock (75/25, no work)
12
10 \
8
\ ==S-Join
6 = L-Join
\ = .NET
4 PR, = NET-Slim
’¢
~~
) Nll D L L LR R R AR N NIV IR ARSI IITI I
oTT T T T T T T T T T T T T 11
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

(on 48-core machine)

Figure 9.11: Pure synchronization

performance

9.8.2

170 IMPLEMENTING JOIN PATTERNS

will not be optimized away). To make the workload a bit more realistic—
and to avoid “lucky” schedules—we randomize the number of spins between
each synchronization, which over 100,000 iterations will yield a normal
distribution of total work with very small standard deviation. We ensure that
the same random seeds are provided across trials and compared algorithms,
so we always compare the same amount of total work. The mean spin counts
are determined per-benchmark and given in the next section.
For each problem we compare performance between:

e a join-based solution using our fully-optimized implementation (S-Join,
for “scalable joins”),

e ajoin-based solution using Russo’s library (L-Join, for “lock-based joins”),

e at least one purpose-built solution from the literature or .NET libraries
(label varies), and

o when relevant, our implementation with some or all optimizations re-
moved to demonstrate the effect of the optimization (e.g., S-J w/o S,C for
dropping the Stealing and Counter optimizations; S-J w/o L for dropping
the Lazy message creation optimization).

We detail the purpose-built solutions below.

Two benchmarks (rendezvous and barriers) required extending Russo’s
library to support multiple synchronous channels in a pattern; in these cases,
and only in these cases, we use a modified version of the library.

Our benchmarking machine has four AMD “Magny-Cours” Opteron 6100
Series 1.7GHz processors, with 12 cores each (for a total of 48 cores), 32GB
RAM, and runs Windows Server 2008 R2 Datacenter. All benchmarks were
run under the 64-bit CLR.

Benchmarks

The results for all benchmarks appear in Figure 9.10 (for parallel speedup)
and Figure 9.11 (for pure synchronization). The axes are consistent across all
graphs: the x-axis measures the number of threads, and the y-axis measures
throughput (as iterations performed every 10us). Larger y values reflect better
performance.

For measuring parallel speedup, we used the following mean spin counts
for simulated work:

Benchmark In crit. section | Out of crit. section
Philosophers 25 5,000
Prod/Cons N/A | producer 5,000

consumer 500
Lock 50 200
Semaphore 25 100
Rendezvous N/A 5,000
Barrier N/A 10,000
RWLock 50 200

With too little simulated work, there is no hope of speedup; with too much,
the parallelism becomes coarse-grained and thus insensitive to the perfor-
mance of synchronization. These counts were chosen to be high enough
that at least one implementation showed speedup, and low enough to yield
significant performance differences.

The particulars of the benchmarks are as follows, where 7 is the number
of threads and k the total number of iterations (so each thread performs k/n
iterations):

PHILOSOPHERS Each of the n threads is a philosopher; the threads are
arranged around a table. An iteration consists of acquiring and then releasing
the appropriate chopsticks. We compare against Dijkstra’s original solution,
using alock per chopstick, acquiring these locks in a fixed order, and releasing
them in the reverse order.

PRODUCER/CONSUMER We let n/2 threads be producers and n/2 be
consumers. Producers repeatedly generate trivial output and need not wait
for consumers, while consumers repeatedly take and throw away that output.
We compare against the NET 4 BlockignCollection class, which transforms
a nonblocking collection into one that blocks when attempting to extract an
element from an empty collection. We wrap the BlockingCollection around
the .NET 4 ConcurrentQueue class (a variant of Michael and Scott’s classic
lock-free queue) and ConcurrentBag.

LOCK Aniteration consists of acquiring and then releasing a single, global
lock. We compare against both the built-in .NET lock (a highly-optimized
part of the CLR implementation itself) and System.Threading.SpinLock
(implemented in .NET).

SEMAPHORE We let the initial semaphore count be n/2. An iteration
consists of acquiring and then releasing the semaphore. We compare to two
.NET semaphores: the Semaphore class, which wraps kernel semaphores, and
SemaphoreSlim, a faster, pure .NET implementation of semaphores.

RENDEZzVOUS The n threads perform a total of k synchronous exchanges
as quickly as possible. Unfortunately, .NET 4 does not provide a built-in

PERFORMANCE

171

9.8.3

172 IMPLEMENTING JOIN PATTERNS

library for rendezvous, so we ported Scherer et al’s exchanger*® from Java;
this is the exchanger included in java.util.concurrent.

BARRIERS An iteration consists of passing through the barrier. We show
results for both the tree and the flat versions of the join-based barrier. We
compare against the NET 4 Barrier class, a standard sense-reversing barrier.

RWLOCK An iteration consists of (1) choosing at random whether to be
a reader or writer and (2) acquiring, and then releasing, the appropriate
lock. We give results for 50-50 and 75-25 splits between reader and writers.
We compare against two .NET implementations: the ReaderWriterLock class,
which wraps the kernel RWLocks, and the ReaderWriterLock-Slim class,
which is a pure NET implementation.

Analysis

The results of Figure 9.10 demonstrate that our scalable join patterns are
competitive with—and can often beat—state of the art custom libraries.
Application-programmers can solve coordination problems in the simple,
declarative style we have presented here, and expect excellent scalability, even
for fine-grained parallelism.

In evaluating benchmark performance, we are most interested in the slope
of the throughput graph, which measures scalability with the number of cores
(up to 48) and then scheduler robustness (from 48 to 96). In the parallel
speedup benchmarks, both in terms of scalability (high slope) and absolute
throughput, we see the following breakdown:

S-Join clear winner | Producer/consumer,
Semaphore, Barrier

S-Join competitive | Philosophers, Lock,
Rendezvous, RWLock 50/50

NET clear winner RWLock 75/25

The .NET concurrency library could benefit from replacing some of its
primitives with ones based on the joins implementation we have shown—the
main exception being locks. With some low-level optimization, it should be
feasible to build an entire scalable synchronization library around joins.

The performance of our implementation is mostly robust as we oversub-
scribe the machine. The Barrier benchmark is a notable exception, but this is
due to the structure of the problem: every involved thread must pass through
the barrier at every iteration, so at n > 48 threads, a context switch is required
for every iteration. Context switches are very expensive in comparison to the
small amount of work we are simulating.

Not all is rosy, of course: the pure synchronization benchmarks show that
scalable join patterns suffer from constant-time overheads in some cases,
especially for locks. The table below approximates the overhead of pure

26 William N. Scherer, 111 et al. (2005),
“A scalable elimination-based exchange
channel”

synchronization in our implementation compared to the best NET solution,
by dividing the scalable join pure synchronization time by the best NET pure
synchronization time:

Overhead compared to best custom .NET solution

Phil | Pr/Co | Lock | Sema | Rend | Barr | RWL
6 5.2 0.7 6.5 2.9 0.7 1.5 4.2
12 5.2 0.9 7.4 4.0 1.7 0.3 3.9
24 1.9 0.9 6.6 3.0 1.1 0.2 1.8
48 1.6 1.2 7.4 2.3 1.0 0.2 1.4

(n threads; smaller is better)

Overheads are most pronounced for benchmarks that use .NET’s built-in
locks (Philosophers, Lock). This is not surprising: .NET locks are mature
and highly engineered, and are not themselves implemented as .NET code.
Notice, too, that in Figure 9.11 the overhead of the spinlock (which is imple-
mented within .NET) is much closer to that of scalable join patterns. In the
philosophers benchmark, we are able to compensate for our higher constant
factors by achieving better parallel speedup, even in the pure-synchronization
version of the benchmark.

One way to decrease overhead, we conjecture, would be to provide com-
piler support for join patterns. Our library-based implementation spends
some of its time traversing data structures representing user-written pat-
terns. In a compiler-based implementation, these runtime traversals could
be unrolled, eliminating a number of memory accesses and conditional
control flow. Removing that overhead could put scalable joins within striking
distance of the absolute performance of .NET locks. On the other hand, such
an implementation would probably not allow the dynamic construction of
patterns that we use to implement barriers.

In the end, constant overhead is trumped by scalability: for those bench-
marks where the constant overhead is high, our implementation nevertheless
shows strong parallel speedup when simulating work. The constant overheads
are dwarfed by even the small amount of work we simulate. Finally, even
for the pure synchronization benchmarks, our implementation provides
competitive scalability, in some cases extracting speedup despite the lack of
simulated work.

EFFECT OF OPTIMIZATIONS Each of the three optimizations discussed
in §9.5 is important for achieving competitive throughput. Stealing tends
to be most helpful for those problems where threads compete for limited
resources (Philosophers, Locks), because it minimizes the time between
resource release and acquisition, favoring threads that are in the right place
at the right time.”” Lazy message creation improves constant factors across
the board, in some cases (Producer/Consumer, Rendezvous) also aiding
scalability. Finally, the counter representation provides a considerable boost
for benchmarks, like Semaphore, in which the relevant channel often has
multiple pending messages.

PERFORMANCE 173

*7'This is essentially the same observation
Doug Lea made about barging for abstract
synchronizers (Lea 2005).

174 IMPLEMENTING JOIN PATTERNS

PERFORMANCE OF LOCK-BASED JOINS Russo’s lock-based implementa-
tion of joins is consistently—often dramatically—the poorest performer for
both parallel speedup and pure synchronization. On the one hand, this result
is not surprising: the overserialization induced by coarse-grained locking is
a well-known problem ($2.4). On the other hand, Russo’s implementation is
quite sophisticated in the effort it makes to shorten critical sections. The im-
plementation includes all the optimizations proposed for PoLypHONIC C#28,
including a form of stealing, a counter representation for void-async channels
(simpler than ours, since it is lock-protected), and bitmasks summarizing the
state of messages queues for fast matching. Despite this sophistication, it is
clear that lock-based joins do not scale.

We consider STM-based join implementations in §12.2.2.

28 Benton et al. (2004), “Modern
concurrency abstractions for C#”

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

10

Reagents

Synopsis This chapter presents the design of reagents, both in terms of “Opposites are not contradictory but
philosophical rationale (§10.1) and as motivated by a series of examples (§10.2, complementary”

§10.5). The chapter shows in particular how to write all of the algorithms de- —Niels Bohr
scribed in Chapter 2 concisely and at a higher-than-usual level of abstraction.

It also demonstrates how the join calculus can be faithfully embedded into

the reagent combinators (§10.3). The full API is given in Appendix E.

10.1 OVERVIEW

In the preceding two chapters, we saw that message-passing primitives—
in the guise of join patterns—can be used to declaratively express scalable
synchronization. In this chapter, we dig deeper and wider. We show how
join patterns can themselves be built from more fundamental ingredients,
and how, by supplementing those ingredients with shared state, we can
support scalable data structures as well. The key is to embrace both sides of
several apparent oppositions: isolation versus interaction, disjunction versus
conjunction, and activity versus passivity. The result is a new abstraction—
reagents—built up through combinators encompassing these dualities.
Reagents are a new instance of an old idea: representing computations
as data. The computations being represented are scalable concurrent oper-
ations, so a value of type Reagent[A,B] represents a function from A to
B that internally updates shared state, synchronizes with other threads, or
both. Because the computations are data, however, they can be combined in
ways that go beyond simple function composition. Each way of combining
reagents corresponds to a way of combining their internal interactions with
concurrent data structures. Existing reagents—for example, those built by a
concurrency expert—can be composed by library users, without those users
knowing their internal implementation. This way of balancing abstraction
and composition was pioneered with Concurrent ML,' and is now associated ' Reppy (1992), “Higher-order

with monads® and arrows.? Our contribution is giving a set of combinators concurrency

> Peyton Jones and Wadler (1993),
“Imperative functional programming”
with a clear cost semantics and implementation story (given in Chapter 11). * Hughes (2000), “Generalising monads to

arrows”

appropriate for expressing and composing scalable concurrent algorithms,

175

http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://dx.doi.org/10.1145/158511.158524
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

10.1.1

176 REAGENTS

Isolation versus interaction

We begin by revisiting the “warring paradigms” of shared-state and message-
passing concurrency. Chapter 2 argued that there is no semantic difference
between the two approaches to concurrent programming, because each can
easily be “programmed up” as syntactic sugar in the other. But there are
differences in programming style and implementation pragmatics:
[The] choice of synchronization and communication mechanisms are the most
important aspects of concurrent language design. . . . Shared-memory languages
rely on the imperative features of the sequential sub-language for interprocess
communication, and provide separate synchronization primitives to control access
to the shared state. Message-passing languages provide a single unified mechanism
for both synchronization and communication. Note that the distinction between
shared-memory and message-passing languages has to do with the style of process
interaction; many message-passing languages, including CML, are implemented
in shared address spaces.

—John Reppy, “Concurrent programming in ML”

While there are some problems with taking the above quote as a definition
of shared-state and message-passing concurrency,* it draws attention to an
important difference in the typical programming style associated with the
paradigms. Shared-state concurrent programming is often focused on isola-
tion,> ensuring that updates to shared state appear to take place atomically
(in a non-overlapping fashion; §2.2.4, §3.4). Synchronous message passing is
just the opposite: it demands interaction, requiring that sends and receives do
overlap. Both phenomena have a long history:

In 1965, Dijkstra demonstrated that mutual exclusion of events is a fundamental

programming concept. In 1975, [Hoare] showed that the opposite idea, the coinci-

dence of events, is just as important! This strikes me as the most profound idea
incorporated in CSP.

—Per Brinch Hansen, “The invention of concurrent programming”

Chapter 2 also argued that the challenge of concurrent programming is
managing sharing and timing. In our view, isolation and interaction are
both fundamental tools for addressing this challenge—and (given expres-
sivity §2.2.1) there is no reason to make only one of them available to the
exclusion of the other. More than that: although they appear to be opposed,
isolation and interaction can profitably be combined. For example, elimina-
tion backoft (§2.4.5) alternates between attempting an isolated update to a
data structure (usually using cas) and interaction with a partner with which
an operation can be eliminated.

The most primitive reagents provide pure isolated access to shared state
or pure interaction through channels. As we show in §10.2.3, the elimination
stack algorithm can then be elegantly expressed by combining two simpler
reagents: one for performing an atomic update to the stack, and one for
elimination against another thread. The combination is expressed as a choice,
which we describe next.

*For example, as we mentioned in Chap-
ter 2, traditionally shared-state constructs
like Brinch Hansen-style monitors and STM
tightly weld synchronization to communica-
tion. On the other hand, in practice chan-
nels often offer asynchronous interfaces
even for receiving, by supporting a “tenta-
tive” receive operation or a callback inter-
face.

5 i.e., mutual exclusion

http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://oberon2005.oberoncore.ru/paper/bh2002.pdf

10.1.2

10.1.3

Disjunction versus conjunction

“Composable concurrency abstractions!” has been the rallying cry of work on
software transactional memory (STM),® Concurrent ML (CML),” and many
others. As it happens, though, there is another duality latent in proposals for
composition:

e With STM, programmers can sequence multiple reads/updates with shared
state into a larger atomic block. STM-style sequencing is a kind of conjunc-
tion, because all of the underlying commands are executed by the resulting
atomic step.

e With CML, programmers can take the choice of multiple “events,” each
encompassing potential interaction through synchronous channels. CML-
style choice is a kind of disjunction, because one of the interactions is
executed by the resulting CML event.

We have, in fact, already seen both forms of composition at work together
with join patterns. Each chord represents a conjunction of interactions across
a collection of channels, while the collection of chords mentioning a given
channel represent a disjunction, since a message will participate in exactly one
of them.® Some STM implementations, most notably Haskell’s,® also provide
a choice operation that can be used to combine atomic transactions.

Choice and sequencing are the basic ways of combining reagents, and
arbitrary such combinations are permitted.®

Activity versus passivity

Reagents are much like functions: they are inert values that must be invoked
to be useful. Reagents offer two means of invocation: active and passive.

In chemistry, a reagent is a participant in a reaction, and reagents are
subdivided into reactants, which are consumed during reaction, and catalysts,
which enable reactions but are not consumed by them. Similarly for us:"

o Invoking a reagent as a reactant is akin to calling it as a function: its internal
operations are performed once, yielding a result or blocking until it is
possible to do so. This is a single “reaction””

¢ Invoking a reagent as a catalyst instead makes it passively available as
a participant in reactions. Because catalysts are not “used up,” they can
participate in many reactions in parallel.

The distinction is much like the one between sending and receiving messages
in the join calculus: sending a message is an active process, while receiving
messages is done through passive join patterns, which are permanently
present.

OVERVIEW 177

¢ Shavit and Touitou (1995), “Software
transactional memory”

7 Reppy (1992), “Higher-order
concurrency”

¥ Join patterns are, in a sense, written in dis-
junctive normal form (disjunctions of con-
junctions). See §10.3.

° Tim Harris et al. (2005), “Composable
memory transactions”

'° There are some important caveats when
using certain low-level reagent techniques.
See §10.4 and $§10.5.

" Chemical metaphors in concurrent pro-
gramming go back to the Chemical Abstract
Machine (Berry and Boudol 1992), a precur-
sor to the join calculus.

http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952

178 REAGENTS

10.2 THE HIGH-LEVEL COMBINATORS

We now introduce the basic reagent building blocks as a Scala library, and use
them to build a series of increasingly complex concurrent algorithms. By the
end of the section, we will have seen how to implement all of the algorithms
described in Chapter 2, and several more besides.

Figure 10.1: The high-level reagent API

// Isolated updates on refs (shared state)
(in Scala)

upd: Ref[A] = (A x B — A x C) = Reagent[B,C]

// Interaction on channels (message passing)

swap: Endpoint[A,B] = Reagent[A,B]

// Composition

+ : Reagent[A,B] x Reagent[A,B] = Reagent[A,B]

>> : Reagent[A,B] x Reagent[B,C] = Reagent[A,C]

* 1 Reagent[A,B] x Reagent[A,C] = Reagent[A, B x (]

// Lifting pure functions
lift: (A — B) = Reagent[A,B]

// Post-commit actions
postCommit: (A = Unit) = Reagent[A,A]

// Invoking a reagent:
dissolve: Reagent[Unit,Unit] = Unit // as a catalyst
react: Reagent[A,B] = A = B // as a reactant,

// same as the ! method

1021 Atomic updates on Refs

Memory is shared between reagents using the type Ref[A] of atomically- : Refl[A

updatable references. The upd combinator (Figure 10.1) builds a Reagent[B, C] AxB)=(AxC

that atomically updates a Ref[A]; it takes an update function (of type oo
AxB — Ax (), which tells how to transform a snapshot of the reference cell B

7\
and some input into an updated value for the cell and some output. Using £ k)\
upd, we can express Treiber’s stack in a readable and concise way, as shown in A LA
Figure 10.2.
Scala has a notion of partial functions (denoted with the arrow —) whose
domain be queried via an isDefinedAt predicate. Anonymous partial func-

tions can be written as a series of cases enclosed in braces; the domain is then

THE HIGH-LEVEL COMBINATORS 179

any value matching at least one of the cases. For push and tryPop the case
analysis is exhaustive, so the update functions are in fact total.">

class TreiberStack[A] {
private val head = new Ref[List[A]](Nil)
val push: Reagent[A, Unit] = upd(head) {
case (xs, X) = (x::xs, ())
}
val tryPop: Reagent[Unit, Option[A]] = upd(head) {
case (x::xs, ()) = (xs, Some(x))

case (Nil, ()) = (Nil, None)

Being reagents, push and tryPop are inert values. They can be invoked as re-
actants using the ! method, which is pronounced “react” For a Reagent[A, B]
the ! method takes an A and returns a B.”> When we invoke these reagents, we
are really executing an optimistic retry loop (as in the “hand-written” version
in $2.4.3) with built-in exponential backoff (§2.4.4); reagents systematize and
internalize common patterns of scalable concurrency. But by exposing push
and tryPop as reagents rather than methods, we enable further composition
and tailoring by clients (using e.g., the combiners in §10.2.3, §10.2.4).

While tryPop’s update function is total—it handles both empty and
nonempty stacks—we can write a variant that drops the empty case:

val pop: Reagent[Unit, A] = upd(head) { case (x::xs, ()) = (xs, x) }

Now our update function is partial. Et voild: invoking pop will block the
calling thread unless or until the stack is nonempty.

Along similar lines, it is easy to write a semaphore as a concurrent
counter:'4

class Counter {

private val c = new Ref[Int](0)

val inc = upd(c) { case (i, ()) = (i+l1, i) }
upd(c) { case (i, ()) if (i > 0) = (i-1, i) }

val tryDec = upd(c) {

val dec

case (i, ()) if (i == 0) = (0, None)

case (i, ()) = (i-1, Some(i))

The inc and dec reagents provide the usual mechanism for acquiring and
releasing resources from a semaphore. The tryDec reagent, on the other hand,
makes it possible to tentatively acquire a resource; the return value indicates

Unit is akin to void: it is a type with a
single member, written ().

Figure 10.2: Treiber’s stack, using
reagents

" Scala permits infix notation for methods,
s0 we can use a TreiberStack s by writing
s.push ! 42.

" Cf. §2.4.2 and §8.3.

10.2.2

180 REAGENTS

whether one was available. It’s worth taking a moment to compare the Counter
implementation to the TreiberStack—after all, a counter is isomorphic to a
stack containing only unit values. Expressing these data structures at a high
level, using reagents, makes the connection easy to see.

REAGENTS CAN FAIL TO REACT in one of two ways: transiently or persistently.

e TRANSIENT FAILURES arise when a reagent loses a race to CAS a location;
they can only be caused by active interference from another thread. A
reagent that has failed transiently will internally retry, rather than block,
following the concurrency patterns laid out in Chapter 2.

e PERSISTENT FAILURES arise when a reagent places requirements on its
environment—such as the requirement, with pop above, that the head
reference yield a nonempty list. Such failures are persistent in the sense
that only activity by another thread can enable the reagent to proceed.
When faced with a persistent failure, a reagent should block until signaled
that the underlying state has changed." Blocking and signaling are entirely
handled by the reagent implementation; there is therefore no risk of lost
wakeups.

Any reagent that makes visible changes to state (by updating a reference
or communicating on a channel) is subject to transient failures, which will
silently cause a retry. The possibility and handling of persistent failures varies
based on the combinator, so we describe the blocking behavior of each
combinator as we encounter it.

The upd(f) reagent fails persistently only for those inputs on which f is
undefined; a reaction involving such an update is blocked until the underlying
reference changes.

Synchronization: interaction within a reaction

With reagents, updates to shared memory are isolated, so they cannot be used
for interaction in which the parties are mutually aware. Reagents interact
instead through synchronous swap channels, which consist of two complemen-
tary endpoints. The function mkChan[A,B] returns a pair of type

Endpoint[A,B] x Endpoint[B,A]

The combinator for communication is swap (see Figure 10.1), which lifts
an Endpoint[A,B] to a Reagent[A,B]. When two reagents communicate on
opposite endpoints, they provide messages of complementary type (A and
B, for example) and receive each other’s messages. On the other hand, if no
complementary message is available, swap will block until a reaction can take
place—a persistent failure.

There is no deep design principle behind the use of symmetric swap
channels instead of the more common asymmetric channels. They are instead

% See §2.2.3.

Endpoint[A,B

/swa \\
A P B

Endpoint[B,A

10.2.3

motivated by the simple observation that an asymmetric—but synchronous—
channel must already do all of the work that a swap channel does. In particular,
threads blocked trying to receive from the channel must be queued; a swap
channel just enables the queue to carry values as well as thread identities.
Conversely, traditional channels can be recovered by choosing one end of a
swap channel to carry Unit values:

val (sendEP, recvEP) = mkChan[A,Unit]
val send: Reagent[A, Unit] = swap(sendEP)

val recv: Reagent[Unit, A] = swap(recvEP)

As with our version of join patterns, swap channels do not provide
ordering guarantees: they are bags.'® The motivation is the same as for join
patterns: unordered channels provide greater potential for parallelism and
less contention over centralized data.

Neither of these two choices are fundamental to the design of reagents.

Disjunction of reagents: choice

If r and s are two reagents of the same type, their choice r + s will behave
like one of them, nondeterministically, when invoked. The choice is “mildly”
left-biased: it will only attempt the right reagent on the left one failed, but
unlike “truly” left-biased choice, the right-hand reagent is tried even when the
left-hand one failed only transiently.”” For the choice itself, failure depends
on the underlying reagents. A choice fails persistently only when both of
its underlying reagents have failed persistently. If either fails transiently, the
choice reagent has failed transiently and should therefore retry.

The most straightforward use of choice is waiting on several signals
simultaneously, but consuming only one of them once one is available. For
example, if c and d are endpoints of the same type, then swap(c) + swap(d)
is a reagent that will accept exactly one message, either from c or from d. If
neither endpoint has a message available, the reagent will block until one of
them does.

A more interesting use of choice is adding backoff strategies (§2.4.4, §2.4.5).
For example, we can build an elimination backoft stack as follows:

class EliminationStack[A] {
private val s = new TreiberStack[A]
private val (elimPop, elimPush) = mkChan[Unit,A]
val push: Reagent[A,Unit] = s.push + swap(elimPush)
val pop: Reagent[Unit,A] = s.pop + swap(elimPop)

This simple pair of composite reagents give rise to a protocol of surprising

complexity. Here is the chain of events when invoking push:'8

THE HIGH-LEVEL COMBINATORS 181

' In this respect, our channels are two-sided
exchangers (William N. Scherer, III et al.
2005).

ST
e —>

7 The orElse combinator in Haskell's STM
is an example of “true” left-bias (Tim Harris
et al. 2005).

' The pop protocol is nearly symmetric, ex-
cept that pop can block; see below.

182 REAGENTS

1. Because of the mild left-bias of choice, when push is invoked it will first
attempt to push onto the underlying Treiber stack.

2. If the underlying push fails (transiently, due to a lost CAS race), push will
then attempt to synchronize with a concurrent popper:

(a) Following the strategy of lazy message creation (§9.5.1), push will
first attempt to locate and consume a message waiting on the elimPop
endpoint.

(b) Failing that, push will create a message on the elimPush endpoint.

3. Because the underlying s.push only transiently failed, push will not block.
It will instead spinwait briefly for another thread to accept its message
along elimPush; the length of the wait grows exponentially, as part of the
exponential backofflogic. Once the waiting time is up, the communication
attempt is canceled, and the whole reagent is retried.

The protocol is a close facsimile of the elimination backoff strategy given
in §2.4.5, but it emerges naturally from the reagent library implementation
elaborated in Chapter 11.

Implementation details aside, we can reason about the blocking behavior
of EliminationStack based on the failure semantics of choice. We deduce
that push never blocks because the underlying s. push can only fail transiently,
never persistently. On the other hand, pop can block because s.pop can fail
persistently (on an empty stack) and swap(elimPop) can fail persistently (if
there are no offers from pushers). Conversely, a blocked invocation of pop
can be woken either by a normal push unto the underlying stack or through
elimination.

THE ELIMINATION STACK EMBODIES SEVERAL ASPECTS OF REAGENTS. First
of all, it shows how reagents empower their clients through composition:
as a client of TreiberStack, the EliminationStack is able to add a layer of
additional functionality by using choice. Both semantic details (e.g., blocking
behavior) and implementation details (e.g., backoff strategy) are seamlessly
composed in the client. The other side of composability is abstraction:
EliminationStack need not know or care about the precise implementation
of TreiberStack. To make this abstraction more apparent (and also more
useful), we can define a generic elimination stack, one that layers elimination
as a mixin on top of any reagent-based stack:

10.2.4

trait ConcurrentStack[A] {
val push: Reagent[A,Unit]

val pop: Reagent[Unit,A]

class WithElimination[A](s:

extends ConcurrentStack[A] {

ConcurrentStack[A])

private val (elimPop, elimPush) = mkChan[Unit,A]
val push = s.push + swap(elimPush)

val pop = s.pop + swap(elimPop)

Because the result of applying WithElimination is just another stack, it is
possible to layer applications:

new WithElimination(new WithElimination(new TreiberStack[A]))

which approximates the array of elimination backoff channels.”
Elimination also demonstrates that isolation and interaction, far from
being opposed, are in fact a potent combination.

CHOICE CAN BE EMPLOYED IN OTHER GENERIC WAYS AS WELL. For example,
although we do not include it as an “official” combinator, it is easy to
support a reagent for timeout that persistently fails until a certain amount
of time has elapsed. A potentially-blocking reagent can then be (generically)
embedded in a choice with a timeout, limiting the duration of blocking.
Along similar lines, explicit cancellation of a potentially-blocking reagent
can be programmed up by (roughly®®) taking a choice with a swap reagent
for a channel of cancellation events. Both timeouts and cancellations are
important features for industrial-strength libraries like JUC and TBB, where
they sometimes necessitate code duplication. With reagents, it is not even
necessary for such support to be built into a library: a client can layer it on
after the fact, tailoring the library to their own needs.

Conjunction of reagents: sequencing and pairing

Choice offers a kind of disjunction on reagents. There are also two ways of
conjoining two reagents, so that the composed reagent has the effect of both
underlying reagents, atomically:
¢ End-to-end composition, via sequencing:

if r: Reagent[A,B] and s: Reagent[B,C] then r >> s: Reagent[A,C].
e Side-by-side composition, via pairing:

if r: Reagent[A,B] and s: Reagent[A,C] thenr x s: Reagent[A,BxC].

THE HIGH-LEVEL COMBINATORS 183

¥ Layering elimination in this way is not
terribly useful in conjunction with our rep-
resentation of channels as concurrent bags,
but it could be with other types of channels.
See §13.2.

** Robust cancellation should inform the
canceler whether the underlying reagent
succeeded prior the cancellation attempt.
This additional functionality can be pro-
grammed using the postCommit combinator
described in §10.2.6.

 — —
H=®

10.2.5

184 REAGENTS

These combinators differ only in information flow. Each guarantees that
the atomic actions of both underlying reagents become a single atomic
action for the composition. For example, if s1 and s2 are both stacks, then
sl.pop >> s2.push is a reagent that will atomically transfer an element from
the top of one to the top of the other. The reagent will block if s1 is empty.
Similarly, s1.pop * s2.pop will pop, in one atomic action, the top elements
of both stacks, or block if either is empty.

Here we again see the benefits of the reagent abstraction. Both of the
example combinations just mentioned work regardless of how the underlying
stacks are implemented. If both stacks use elimination backoft, the conjoined
operations will potentially use elimination on both simultaneously. This
behavior is entirely emergent: it does not require any code on the part of the
stack author, and it does not require the stack client to know anything about
the implementation. Reagents can be composed in unanticipated ways.

Conjunctions provide a solution to the Dining Philosophers problem:*'
to consume two resources atomically, one simply conjoins two reagents that
each consume a single resource. For example, if ¢ and d are endpoints of type
Unit to A and B respectively, then swap(c) * swap(d) is a reagent that receives
messages on both endpoints simultaneously and atomically. There is no risk
of introducing a deadlock through inconsistent acquisition ordering, because
the reagents implementation is responsible for the ultimate acquisition order,
and will ensure that this order is globally consistent.

The failure behavior of conjunctions is dual to that of disjunctions: if either
conjunct fails persistently, the entire conjunction fails persistently.

The implementation details for conjunctions are discussed later (Chap-
ter 11), but a key point is that the performance cost is pay as you go. Single
atomic reagents like push and pop execute a single CAS—just like the standard
nonblocking algorithms they are meant to implement—even though these
operations can be combined into larger atomic operations. The cost of con-
junction is only incurred when a conjoined reagent is actually used. This is a
crucial difference from STM, which generally incurs overheads regardless of
the size of the atomic blocks.**

Catalysts: passive reagents

The ! operator invokes a reagent as a reactant: the invocation lasts for a single
reaction, and any messages the reagent sends are consumed by the reaction.
But sometimes it is useful for invocations to persist beyond a single reaction,
i.e., to act as catalysts. For example, zip creates a catalyst that merges input
from two endpoints and sends the resulting pairs to a third:*

def zip(inl: Endpoint[Unit, A],
in2: Endpoint[Unit, B],
out: Endpoint[AxB, Unit]) =
dissolve((swap(inl) * swap(in2)) >> swap(out))

*' Cf. Chapter 8.

** See Chapter 12 for more discussion.

*3 Cf. the join pattern for pairing in §8.3.

The dissolve function takes a Reagent[Unit, Unit] and introduces it as
a catalyst.”* Operationally, in this example, that just means sending unit-
carrying messages along inl and in2 that are marked as “catalyzing,” and
hence are not consumed during reaction. The upshot is that senders along
in1 will see the catalyzing messages, look for messages along in2 to pair with,
and ultimately send messages along out (and symmetrically).

Catalysts are, of course, not limited to message passing. The zip example
above could be rephrased in terms of arbitrary reagents rather than just
endpoints:

THE HIGH-LEVEL COMBINATORS 185

>+ For simplicity, we have not given a way to
cancel catalysts after they have been intro-
duced, but cancellation is easy to add.

def zipR(inl: Reagent[Unit, A],
in2: Reagent[Unit, B],
out: Reagent[AxB, Unit]) = dissolve((inl * in2) >> out)

As these examples suggest, one important use of catalysts is directing (in this
case, by “fusing” together) the flow of information through channels or other
reagents.

Following the same progression we saw in Chapter 8, we can also define a
“dual” to zipR, namely, an arbiter:

def arbiter(inl: Reagent[Unit, A],
in2: Reagent[Unit, B],
out: Reagent[A+B, Unit]) =
dissolve(((inl >> lift(inl)) + (in2 >> lift(inr))) >> out)

Here we employ the 1ift combinator to treat a Scala partial function as a kind
of “pure” reagent that does not access shared state or interact on channels.?
By using >> and 1ift together, we can wrap arbitrary transformations around
the input or output of a reagent.

When a choice is consumed as a reactant, exactly one of its branches is
used. But as a catalyst, a choice is not consumed, and so both of its branches
may be used repeatedly in reactions with other reagents. Consequently, there
is no semantic reason to dissolve a choice of reagents; dissolving them
individually is equivalent:

* Nothing guarantees that the lifted func-
tion actually is pure in this sense, which
opens the door to side-effects that are in-
visible to the reagent library. We will take
advantage of this fact later on ($10.5).

def arbiter’(inl: Reagent[Unit, A],
in2: Reagent[Unit, B],

out: Reagent[A+B, Unit]) = {
dissolve(inl >> lift(inl) >> out)
dissolve(in2 >> lift(inr) >> out)

Catalysts could instead be expressed using an active thread that repeatedly
invokes a reagent as a reactant. But allowing direct expression through
dissolve is more efficient (since it does not tie up a thread) and allows greater
parallelism (since, as with the zip example above, multiple reagents can react
with it in parallel). The influence of the join calculus here is evident.

10.2.6

10.3

186 REAGENTS

Post-commit actions

Reagents support “post commit actions”, which comprise code to be run
(for effect) after a reaction, e.g. code to signal or spawn another thread after
an operation completes. The postCommit combinator (Figure 10.1) takes a
function from A to Unit and produces a Reagent[A,A]. The post-commit
action will be recorded along with the input of type A, which is passed along
unchanged. Once the reaction completes, the action will be invoked on the
stored input. The combinator is meant to be used in sequence with other
combinators that will produce the appropriate input. For example, the reagent
pop >> postCommit(println) will printthe popped element from a stack after
the pop has completed.

TRANSLATING JOIN PATTERNS

Throughout the discussion of reagents, we have emphasized connections to
and inspiration from the join calculus (and, in particular, the implementation
in Chapter 9). Now we are in a position to make the connection more clear
by (loosely®®) translating join patterns into reagents.

The basic idea is that a join pattern ¢;(x;) & -+ & ¢,(x,) > b can be
interpreted directly as a catalyst.>” The join operator & is interpreted as a
conjunction #, the channel names c¢; as swap instances, and the body b as a
post-commit action. Altogether, the reagent corresponding to the pattern is

[ei(x1) & - & cp(x,) > b]

~ (swap(cy) * -+ = swap(c,)) >> postCommit((xy,...,x,) = b)

A set of join patterns governing a set of channels can all be written in this way
and dissolved as catalysts, which is equivalent to dissolving the choice of all
the patterns.

While the above translation captures the general idea, it only works for the
special case in which:

e all the channels in the join pattern are synchronous, and
o none of the channels expect a reply, i.e., their reply types are all Unit.

Asynchronous channels can be coded up using reagents,?® so to include one
in a join pattern it is only necessary to use a reagent for receiving from
such a channel® in place of swap on a synchronous channel. For a purely
asynchronous chord, the body b can be wrapped with a thread spawn.

Handling replies on synchronous channels is, unfortunately, more difficult.
Probably the best approach is the one outlined in Fournet and Gonthier
(2002), in which a “reply continuation” is passed as an additional component
of messages along synchronous channels. The body b must then be wrapped
to send its return value along this channel. That said, many of the circum-
stances that would require a synchronous reply in the pure join calculus can
be handled in a more direct way through reagents.

> There are a number of technical is-
sues involved in a Russo-style API for
join patterns—e.g., not including parame-
ters from Unit-carrying channels—which
we gloss over here.

*7 We are using the original notation for join
patterns, in which each pattern channels c;
with names x; for the messages along those
channels, and a body b in which the names
x; are bound (Fournet and Gonthier 1996).

*% e.g., TreiberStack (§10.2.1) or
MSQueue (§10.6).

» e.g., pop (§10.2.1).

10.4

The translation can be carried out in the setting of a library using implicits
in Scala, or through advanced use of generics3® in C!. The broader point here
is to show how join patterns can be understood in terms of reagent combina-
tors. It should be noted, however, that not all aspects of the joins implementa-
tion are recovered through this encoding. For example, the message stealing
optimization (§9.5.3) is not included in the reagent implementation, and
would be difficult to add. On the other hand, lazy message creation (§9.5.1)
is included for reagents (Chapter 11), and the specialization of asynchronous
Unit channels to counters is directly expressible via reagents.

ATOMICITY GUARANTEES

Because conjunction distributes over disjunction, every reagent built using
the core combinators (Figure 10.1) can be viewed as a disjunction of conjunc-
tions, where each conjunction contains some combination of updates and
swaps. For such a reagent, reactions atomically execute all of the conjuncts
within exactly one of the disjuncts. This STM-like guarantee works well for
data structures that do not require traversal (§10.2.1) and for pure synchro-
nization (e.g., join patterns). It is, however, too strong for algorithms which
need read (or traverse) shared memory without requiring those reads to be
“visible,” i.e., , to participate in an atomic transaction. The next section will
introduce computed reagents which allow invisible reads and writes, trading
weaker guarantees for better performance. Nevertheless, the visible reads,
writes, and synchronizations of these reagents are included in the above
atomicity guarantee, and thus even computed reagents are composable.

When reagents attempt to interact through message passing, their atomic-
ity becomes intertwined: they must react together in a single atomic step, or
not. This requirement raises an important but subtle question: what should
happen when isolation and interaction conflict? Consider two reagents that
interact over a channel, but also each update the same shared reference.
Atomicity demands that both reagents involved in the reaction commit
together in one step, but isolation for references demands that the updates
be performed in separate atomic steps!

This is an interesting semantic question for which, at present, we do
not have a satisfying answer. One hopes that with sufficient application-
programming experience using reagents, an answer will emerge.

In the meantime, for both simplicity and performance, we consider such
situations to be illegal, and throw an exception when they arise; luckily, they
are dynamically detectable. In practice, this rules out only compositions
of certain operations within the same data structure, which are much less
common than compositions across data structures. It is also straightforward
to adopt an alternative approach, e.g. the one taken by Communicating
Transactions (discussed in Chapter 12), which treats isolation/interaction
conflicts as transient failures rather than as programming errors.

ATOMICITY GUARANTEES

32 See Russo (2007) for details.

187

10.5

10.5.1

10.5.2

188 REAGENTS

LOW-LEVEL AND COMPUTATIONAL COMBINATORS

// Low-level shared state combinators
read: Ref[A] = Reagent[Unit, A]
cas: Ref[A] x A x A = Reagent[Unit, Unit]

// Computational combinators

computed: (A — Reagent[Unit, B]) = Reagent[A,B]

Computed reagents

The combinators introduced in $§10.2 are powerful, but they impose a strict
phase separation: reagents are constructed prior to, and independently from,
the data that flows through them. Phase separation is useful because it allows
reagent execution to be optimized based on complete knowledge of the
computation to be performed (see Chapter 11). But in many cases the choice
of computation to be performed depends on the input or other dynamic
data. The computed combinator (Figure 10.3) expresses such cases. It takes a
partial function from A to Reagent [Unit,B] and yields a Reagent[A,B]. When
the reagent computed(f) is invoked, it is given an argument value of type A,
to which it applies the partial function f. If f is not defined for that input,
the computed reagent issues a persistent (blocking) failure, similarly to the
upd function. Otherwise, the application of f will yield another, dynamically-
computed reagent, which is then invoked with (), the unit value.

In functional programming terms, the core reagent combinators of §10.2
can be viewed in terms of arrows,3' which are abstract, composable compu-
tations whose structure is statically evident. With the addition of computed,
reagents can also be viewed in terms of monads,3* which extend arrows with
dynamic determination of computational structure.

Shared state: read and cas

Although the upd combinator is convenient, it is sometimes necessary to work
with shared state with a greater degree of control—especially when program-
ming with computed reagents. To this end, we include two combinators, read
and cas (see Figure 10.1), for working directly on Ref values. Together with
the computed combinator described in §10.5.1, read and cas suffice to build
upd:

o The read combinator is straightforward: if r has type Ref[A], then read(r)
has type Reagent[Unit, A] and, when invoked, returns a snapshot of r.

Figure 10.3: The low-level and
computational combinators

3 Hughes (2000), “Generalising monads to
arrows”

3> Peyton Jones and Wadler (1993),
“Imperative functional programming”

http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1145/158511.158524

10.5.3

10.6

e The cas combinator takes a Ref[A] and two A arguments, giving the
expected and updated values, respectively. Unlike its counterpart for Fly,
the cas reagent does not yield a boolean result: a failure to CAS is transient
failure of the whole reagent, and therefore results in a retry.

Tentative reagents

Because choice is left-biased, it can be used together with the remaining
combinators to express tentative reagents: if r is a Reagent[A,B] then r? is
a Reagent[A,Option[B]] defined by:

(r >> 1ift(Some)) + lift(_ = None)

The tentative r? first tries r (wrapping its output with Some if successful) and,
only on failure, tries 1ift(_ = None), which always succeeds. This allows a
reaction to be attempted, without retrying or blocking it when it fails.

THE MICHAEL-SCOTT QUEUE

We close this chapter with a small case study: Michael and Scott (1996)’s
lock-free queue (§4.2). Our implementation strategy readily scales to more
complicated examples, such as concurrent skiplists or the lazy, lock-free
set algorithm.33 In all of these cases, we reap the usual benefits: a concise,
composable and extensible exposition of the algorithm.

Unlike a stack, in which all activity focuses on the head, queues have two
loci of updates. That means, in particular, that the Refs used by its reagents
may vary depending on the current state of the queue, which requires us to
compute the necessary read, write, and update reagents. In addition, in order
to enqueue a node we may traverse some of the data structure, looking for
the tail—but the whole point of the algorithm is that this traversal does not
need to be part of a large atomic transaction. Rather, once we believe we have
located the tail, a single CAS will both perform our update and ensure that
the node is still the tail.

A key question arises: what happens when reagents that perform invisible
traversals are combined?

The answer is perhaps the most compelling aspect of reagent composi-
tion. Each invisible traversal produces, as its result, some small but visible
reagent poised to perform an atomic operation—an operation that will both
validate the traversal and enact an update. Sequencing two such traversals
will compute (and sequence) two visible, validating reagents—a very small
atomic transaction compared to, say, what STM would produce with even
one traversal. Forthcoming commodity hardware, e.g., Intel's HASWELL, is
designed to support small transactions directly and efficiently.

HERE IS A BRIEE REVIEW OF THE MICHAEL-SCOTT ALGORITHM.>4 The queue

THE MICHAEL-SCOTT QUEUE 189

3 Herlihy and Shavit (2008), “The Art of
Multiprocessor Programming”

34 See §4.2 for a detailed account.

190 REAGENTS

is represented as a mutable linked list, with a sentinel node at the head (front)
of the queue. The head pointer always points to the current sentinel node;
nodes are dequeued by a CAS to this pointer, just like Treiber stacks (but
lagged by one node). The true tail of the queue is the unique node, reachable
from the head pointer, with a null next pointer; thanks to the sentinel, such
a node is guaranteed to exist. If the queue is empty, the same node will
be the head (sentinel) and tail. Finally, as an optimization for enqueing,
a “tail” pointer is maintained with the invariant that the true tail node is
always reachable from it. The “tail” pointer may lag behind the true tail node,
however, which allows the algorithm to work using only single-word CAS
instructions.?

class MSQueue[A] {
private case class Node(data: A, next: Ref[Nodel)
private val initialSentinel = new Node(null)
private val head = new Ref(initialSentinel)

private val tail = new Ref(initialSentinel)

val tryDeq: Reagent[Unit, Option[A]] = upd(head) {
case (Node(_, Ref(n@Node(x, -))), ()) = (n, Some(x))
case (emp, ()) = (emp, None)
}
private def findAndEng(n: Node): Reagent[Unit,Unit] =
read(tail) ! () match {
case ov@Node(_, r@Ref(null)) = // found true tail
cas(r, null, n) >> postCommit { cas(tail, ov, n)? ! () }
case ov@Node(_, Ref(nv)) = // not the true tail
cas(tail, ov, nv)? ! (); findAndEnq(n)
}
val enq: Reagent[A, Unit] = computed {
(x: A) = findAndEnqg(new Node(x, new Ref(null)))

Our reagent-based implementation of the Michael-Scott queue is shown
in Figure 10.4. The node representation is given as an inner case class. In Scala,
case classes provide two features we take advantage of. First, the parameters
to their constructors (here data and next) are automatically added as final
fields to the class, which are initialized to the constructor argument values.
Second, they extend pattern matching through case so that instances can be
deconstructed. A pattern like case Node(d, n) matches any instance of the
node class, binding d to its data field and n to its next field.

The tryDeq reagent is very similar to the tryPop reagent in TreiberStack,
modulo the sentinel node. The reagent pattern matches on the sentinel node,

% Otherwise, it would have to link in a node
and update the tail pointer in one step.

Figure 10.4: The Michael-Scott queue,
using reagents

ignoring its data field by using _, the wildcard. The next field is then matched
to a nested pattern, Ref (n@Node(x, _)). This pattern immediately reads the
current value of the reference stored in next, binds that value to n, and then
matches the pattern Node (x,_) against n. If the pattern matches—which it will
any time the next field of the sentinel is non-null—the node n becomes the
new head (and hence the new sentinel).

Since the location of the tail node is determined dynamically by the data
in the queue, the enq reagent must itself be determined dynamically. For enq,
we compute a dynamic reagent by first taking the given input x, creating a
node with that data, and then calling a private function findAndEng that will
locate the tail of the queue and yield a reagent to update it to the new node.
Since findAndEnq is private and tail-recursive, Scala will compile it to a loop.

The findAndEng function searches for the frue tail node (whose next
field is null) starting from the tail pointer, which may lag. To perform
the search, findAndEng must read the tail pointer, which it does using the
read combinator. There is a subtle but important point here: this read occurs
while the final reagent is being computed. That means, in particular, that the
read is not part of the computed reagent; it is a side-effect of computing the
reagent. The distinction is important: such a read is effectively “invisible” to
the outer reagent being computed, and thus is not guaranteed to happen
atomically with it. As we explained above, invisible reads and writes are useful
for avoiding compound atomic updates, but must be employed carefully to
ensure that the computed reagent provides appropriate atomicity guarantees.

Once the tail pointer has been read, its value is pattern-matched to
determine whether it points to the true tail. If it does, findAndEng yields a
cas reagent ($10.5.2) that will update the next field of the tail node from
null to the new node. The attached post-commit action attempts to catch
up the tail pointer through a cas, after the fact. Since the cas fails only if
further nodes have been enqueued by other concurrent threads, we perform
it tentatively ($10.5.3); it is not necessary or desirable to retry on failure.

If, on the other hand, the tail pointer is lagging, findAndEng performs
an invisible cas to update it. Since it may be racing with other enqueuers to
catch up the tail, a failure to CAS is ignored here. Regardless of the outcome of
the cas, the findAndEng function will restart from a freshly-read tail pointer.
Notice that in this case, an entire iteration of findAndEnq is executed with no
visible impact or record on the final computed reagent—there is no extended
redo log or compound atomic transaction. Only the final cas produced in the
first case of findAndEnq is visible.

THE MICHAEL-SCOTT QUEUE

191

11.1

11

Implementing reagents

Synopsis This chapter walks through the implementation of reagents (in
Scala) in significant detail, which reveals the extent to which reagents turn
patterns of scalable concurrency into a general algorithmic framework. It
includes benchmarking results comparing multiple reagent-based collections
to their hand-written counterparts, as well as to lock-based and STM-based
implementations. Reagents perform universally better than the lock- and
STM-based implementations, and are competitive with hand-written lock-

free implementations.

OVERVIEW

When invoked, reagents attempt to react, which is conceptually a two-phase
process: first, the desired reaction is built up; second, the reaction is atomi-
cally committed. We emphasize “conceptually” because reagents are designed
to avoid this kind of overhead in the common case; it is crucial that reagents
used to express scalable concurrent algorithms do not generate traffic to
shared memory beyond what the algorithms require. We first discuss the gen-
eral case (which imposes overhead) but return momentarily to the common
(no overhead) case.

An attempt to react can fail during either phase. A failure during the first
phase, i.e. a failure to build up the desired reaction, is always a persistent
failure ($10.2.1). Persistent failures indicate that the reagent cannot proceed
given current conditions, and should therefore block until another thread
intervenes and causes conditions to change." On the other hand, a failure
during the second phase, i.e. a failure to commit, is always a transient
failure (§10.2.1). Transient failures indicate that the reagent should retry, since
the reaction was halted due to active interference from another thread. In
general, an in-progress reaction is represented by an instance of the Reaction
class, and contains three lists: the CASes to be performed, the messages to be
consumed,” and the actions to be performed after committing. A Reaction
thus resembles the redo log used in some STM implementations.?

In the common case that a reagent performs only one visible ($10.5) CAS or
message swap, those components of the reaction are not necessary and hence
are not used. Instead, the CAS or swap is performed immediately, compress-
ing the two phases of reaction. Aside from avoiding extra allocations, this
key optimization means that in the common case a cas or upd in a reagent

“One of the joys of functional programming
is the way in which apparently-exotic theory
can have a direct and practical application,
and the monadic story is a good example.”

—Simon Peyton Jones, “Tackling the
awkward squad”

Phase 2
Attempt k-CAS

Phase 1
Accumulate CASes

Persistent failure @

Transient failure

' Cf. $2.2.3.

>Message consumption ultimately boils
down to additional CASes.

3 Tim Harris et al. (2010), “Transactional
Memory, 2nd edition”

193

http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011

194 IMPLEMENTING REAGENTS

leads to exactly one executed CAS during reaction, with no extra overhead.*
When a reaction encompasses multiple visible CASes or message swaps, a
costlier® kCAS protocol must be used to ensure atomicity. We discuss the
kCAS protocol in $11.4, and the common case single CAS in $11.5.1.

IN THE IMPLEMENTATION, Reagent[A,B] is an abstract class all of whose sub-
classes are private to the library. These private subclasses roughly correspond
to the public combinator functions, which are responsible for instantiating
them; each subclass instance stores the arguments given to the combinator
that created it.5

The one combinator that does not have a corresponding Reagent subclass is
sequencing >>. Instead, the reagent subclasses internally employ continuation-
passing style (CPS): each reagent knows and has control over the reagents
that are sequenced after it, which is useful for implementing backtracking
choice” Thus, instead of representing the sequencing combinator >> with
its own class, each reagent records its own continuation k, which is another
reagent. For example, while the cas combinator produces a reagent of type
Reagent[Unit,Unit], the corresponding CAS class has a continuation parame-
ter k of type Reagent [Unit,R], and CAS extends Reagent [Unit,R] rather than
Reagent[Unit,Unit]. TheRstands for (final) result. The combinator functions
are responsible for mapping from the user-facing API, which does not use
continuations, to the internal reagent subclasses, which do. Each reagent
initially begins with the trivial “halt” continuation, Commit, whose behavior
is explained in $§11.4.

Each subclass of Reagent[A,B] must implement its abstract methods:

// the +/- are variance annotations
def >>[C](next: Reagent[B,C]): Reagent[A,C]

def canFail: Boolean // can this reagent fail?

abstract class Reagent[-A, +B] {

def canSync: Boolean // can this reagent send a message?

def tryReact(a: A, rx: Reaction, offer: Offer[B]): Any

The tryReact method takes the input a (of type A) to the reagent and the
reaction rx built up so far, and either:3

e completes the reaction, returning a result (type B), or

e fails, returning a failure (type Failure). The class Failure has exactly
two singleton instances, Block and Retry, corresponding to persistent and
transient failures respectively.

The remaining argument, offer, is used for synchronization and communi-
cation between reagents, which we explain next.

+ An important implication is that the win-
dow of time between taking a snapshot of
shared state and performing a CAS on it is
kept small.

5 Currently we implement kCAS in software,
but upcoming commodity hardware is de-
signed to support it primitively, at least for
small k.

¢ Thus, reagents are an abstract data type
whose instances are created using “smart
constructors’—a very common idiom in
functional programming.

7CPS is also needed for message passing:
since a reagent will try to synchronize with
any message it finds in a channel’s bag, swap
is also a form of backtracking choice.

¥ The Any type in Scala lies at the top of the
subtyping hierarchy, akin to Object in Java.
Here we are using Any to represent a union
of the type B with the type Failure, to avoid
extra allocation.

11.2

11.3

OFFERS

Message passing between reagents is synchronous, meaning that both
reagents take part in a single, common reaction. In the implementation, this
works by one reagent placing an offer to react in a location visible to the
other.? The reagent making the offer either spinwaits or blocks until the offer
is fulfilled;" if it spinwaits, it may later decide to withdraw the offer. The
reagent accepting the offer sequences the accumulated Reactions of both
reagents, and attempts to commit them together. Fulfilling the offer means,
in particular, providing a final “answer” value that should be returned by the
reagent that made the offer."" Each offer includes a status field, which is either
Pending, Rescinded, or a final answer. Hence, the 0f fer class is parameterized
by the answer type; aReagent[A,B] will use 0ffer[B]. When fulfilling an offer,
a reagent CASes its status from Pending to the desired final answer.
Offers follow a very simple protocol (Chapter 4):

ED—Cormons >

Rescinded;

Due to the use of tokens, only the thread that originally created an offer can
rescind it.

In addition to providing a basic means of synchronization, the offer
data structure is used to resolve external choices. For example, the reagent
swap(epl) + swap(ep2) may resolve its choices internally by fulfilling an
existing offer on ep1 or ep2; but if no offers are available, the reagent will post
a single offer to both endpoints, allowing the choice to be resolved externally.
Reagents attempting to consume that offer will race to change a single, shared
status field, thereby ensuring that such choices are resolved atomically.

Offers are made as part of the same tryReact process that builds and
commits reactions. The of fer argument to tryReact is null when the reaction
is first attempted; reagents make offers lazily, just as join patterns create
messages lazily (§9.5.1), as we will see below.

THE ENTRY POINT: REACTING

The code for performing a reaction is given in the ! method definition for
Reagent[A,B], shown in Figure 11.1. This method provides two generalized
versions of the optimistic retry loops we described in Chapter 2. The retry
loops are written as local, tail-recursive functions, which Scala compiles down
to loops.

The first retry loop, withoutOffer, attempts to perform the reaction
without making visible offers to other reagents. It may, however, find and
consume offers from other reagents as necessary for message passing.'”” To
initiate the reaction, withoutOffer calls the abstract tryReact method with

OFFERS 195

® Cf. messages in Chapter 9.

‘It spinwaits iff it encountered a transient
failure at any point during the reaction.

" The final answer will be the value passed
the offer would have passed to its own
Commit continuation.

* Cf. §9.5.1.

196 IMPLEMENTING REAGENTS

def !(a: A): B ={
val backoff = new Backoff
def withoutOffer(): B =
tryReact(a, empty, null) match {
case Block = withOffer()
case Retry =
backoff.once()
if (canSync) withOffer() else withoutOffer()
case ans = ans.asInstanceOf[B]
}
def withOffer(): B = {
val offer = new Offer[B]
tryReact(a, empty, offer) match {
case (f: Failure) =
if (f == Block) park() else backoff.once(offer)
if (offer.rescind) withOffer() else offer.answer

case ans = ans.asInstanceOf[B]

}
withoutOffer()

the input a, an empty reaction to start with, and no offer. If the reaction
fails in the first phase (a persistent failure, represented by Block), the next
attempt must be made with an offer, to set up the blocking/signaling protocol.
If the reaction fails in the second phase (a transient failure, represented by
Retry), there is likely contention over shared data. To reduce the contention,
withoutOffer performs one cycle of exponential backoft before retrying. If
the reagent includes communication attempts, the retry is performed with
an offer, since doing so increases chances of elimination ($10.2.3) without
further contention. Finally, if both phases of the reaction succeed, the final
answer ans is returned.

The second retry loop, withOffer, is similar, but begins by allocating an
offer object to make visible to other reagents. Once the offer has been made,
the reagent can actually block when faced with a persistent failure; the offer
will ensure that the attempted reaction is visible to other reagents, which may
complete it, fulfilling the offer and waking up the blocked reagent. Blocking
is performed by the park method provided by Java’s LockSupport class.”> On
a transient failure, the reagent spinwaits, checking the offer’s status. In either
case, once the reagent has finished waiting it attempts to rescind the offer,
which will fail if another reagent has fulfilled the offer.'#

Initially, the reaction is attempted using withoutOffer, representing opti-
mism that the reaction can be completed without making a visible offer.

Figure 11.1: The ! method, defined in
Reagent[A,B]

" The park/unpark methods work similarly
to the signals we used in Chapter 9, but they
are associated with each thread and may
suffer from spurious wakeups.

' Even if the reagent had blocked, it is still
necessary to check the status of its offer,
because park allows spurious wakeups.

THE EXIT POINT: COMMITTING 197

11.4 THE EXIT POINT: COMMITTING

As mentioned in $11.2, the initial (outermost) continuation for reagents is an
instance of Commit, which represents an “empty” reagent:

class Commit[A] extends Reagent[A,A] {
def >>[B] (next: Reagent[A,B]) = next
def canFail = false
def canSync = false
def tryReact(a: A, rx: Reaction, offer: Offer[A]) =
if (offer != null & !offer.rescind) offer.answer
else if (rx.commit) a

else Retry

The emptiness of Commit is reflected in the first three methods it defines: it
is an identity for sequencing, and it does not introduce any failures or syn-
chronizations. Any failure or synchronization must be due to some reagent
sequenced prior to the Commit reagent, which always comes last.

The tryReact method of Commit makes the phase-transition from building
up a Reaction object to actually committing it. If the reagent has made an
offer, but has also completed the first phase of reaction, the offer must be
rescinded before the commit phase is attempted—otherwise, the reaction
could complete twice. As with the ! method, the attempt to rescind the offer is
in a race with other reagents that may be completing the offer. If Commit loses
the race, it returns the answer provided by the offer. Otherwise, it attempts to
commit the reaction, and if successful simply returns its input, which is the
final answer for the reaction.

Committing a reaction requires a kCAS operation: k compare and sets
must be performed atomically. This operation, which forms the basis of STM,

is in general expensive and not available in most hardware.” There are several s Though, as we have noted several times,
6 hardware support is coming and may even-

software implementations that provide nonblocking progress guarantees.
p p § brog & tually be commonplace.

Reagents that perform a multiword CAS will inherit the progress properties ' Fraser and Tim Harris (2007); Luchangco

of the chosen implementation. et al. (2003); Attiya and Hillel (2008)
For our prototype implementation, we have opted to use an extremely

simple implementation that replaces each location to be CASed with a

sentinel value, essentially locking the location. As the Reaction object is

assembled, locations are kept in a consistent global order and hence avoids

dead- and live-lock within the kCAS implementation. The advantage of this

implementation, other than its simplicity, is that is has no impact on the

performance of single-word CASes to references, which we expect to be the

common case; such CASes can be performed directly, without any awareness

of the kCAS protocol. Our experimental results in $2.4 indicate that even

this simple kCAS implementation provides reasonable performance—much

11.5

11.5.1

198 IMPLEMENTING REAGENTS

better than STM or coarse-grained locking—but a more sophisticated kCAS
would likely do even better.

THE COMBINATORS
Shared state

Reads are implemented by the nearly trivial Read class:

class Read[A,R](ref: Ref[A], k: Reagent[A,R])

extends Reagent[Unit,R] {
def >>[S](next: Reagent[R,S]) = new Read[A,S](ref, k >> next)
def canFail = k.canFail

def canSync = k.canSync

def tryReact(u: Unit, rx: Reaction, offer: Offer[R]) = {
if (offer != null) ref.addOffer(offer)
k.tryReact(ref.get(), rx, offer)

A read introduces neither failures nor synchronization, but its continuation
might, so canFail and canSync defer to the values in k. The role of reading
in tryReact is fairly straightforward: absent an offer, we simply perform the
read and pass its result to the continuation k, with an unchanged reaction
argument rx. However, if an offer is present, it is recorded in a bag of offers
associated with the reference (via addoffer). Although the read itself cannot
block, the value it reads could be the proximal cause of blocking in the
continuation k. Thus, if the continuation is preparing to block (as evidenced
by the non-null offer), logging the offer with the read reference will ensure
that the entire reagent is woken up if the reference changes. Once the offer
is rescinded or fulfilled, it is considered “logically removed” from the bag of
offers stored with ref, and will be physically removed when convenient."”

While the Read class is private to the reagent library, the corresponding
read combinator is exported:

def read[A](ref: Ref[A]): Reagent[Unit, A] =
new Read[A,A] (ref, new Commit[A])

All of the primitive reagent combinators are defined in this style, using the
Commit reagent as the (empty) continuation. The result type R of the Read
reagent is thus initially set at A when reading a Ref [A].

The implementation of the cas combinator is given by the CAS class, shown
in Figure 11.2. Its tryReact method is fairly simple, but it illustrates a key
optimization we have mentioned several times: if the reaction so far has no
CASes, and the continuation is guaranteed to succeed, then the entire reagent

7 This is essentially the same approach we
used to remove messages in Chapter 9.

11.5.2

class CAS[A,R](ref: Ref[A], ov: A, nv: A, k: Reagent[Unit,R])
extends Reagent[Unit,R] {
def >>[S](next: Reagent[R,S]) = new CAS[A,S](ref, ov, nv, k >> next)
def canFail = true
def canSync = k.canSync
def tryReact(u:

Unit, rx: Reaction, offer: Offer[R]) =

if (!'rx.hasCAS && 'k.canFail) // can we commit immediately?

if (ref.cas(ov, nv)) // try to commit
k.tryReact((), rx, offer) // successful; k MUST succeed
else Retry

else // otherwise must record CAS to reaction log, commit in k
k.tryReact((), rx.withCAS(ref, ov, nv), offer)

is performing a single CAS and can thus attempt the CAS immediately. This
optimization eliminates the overhead of creating a new Reaction object and
employing the kCAS protocol, and it means that lock-free algorithms like
TreiberStack and MSQueue behave just like their hand-written counterparts.
If, on the other hand, the reagent may perform a kCAS, then the current cas is
recorded into a new Reaction object,'® which is passed to the continuation k.
In either case, the continuation is invoked with the unit value as its argument.

Message passing

We represent each endpoint of a channel as a lock-free bag.'® The lock-
freedom allows multiple reagents to interact with the bag in parallel; the fact
that it is a bag rather than a queue trades a weaker ordering guarantee for
increased parallelism, but any lock-free collection would suffice.>°

The endpoint bags store messages, which contain offers along with addi-
tional data from the sender:

case class Message[A,B,R](
payload: A, // sender’s actual message
senderRx: Reaction, // sender’s checkpointed reaction
senderK: Reagent[B,R], // sender’s continuation
offer: Offer[R] // sender’s offer

Each message is essentially a checkpoint of a reaction in progress, where the
reaction is blocked until the payload (of type A) can be swapped for a dual
payload (of type B). Hence the stored sender continuation takes a B for input;

THE COMBINATORS 199

Figure 11.2: The CAS class

® The withCAS method performs a func-
tional update, i.e., returns a new Reaction
object. It is important not to mutate the
reaction objects: reagents use backtracking
choice (§11.5.3), and at various points in
the branches of such a choice reaction ob-
jects may be used to advertise synchroniza-
tions (§11.5.2).

¥ It is possible to build the bag itself using
non-blocking reagents, thereby bootstrap-
ping the library.

*° The tradeofts here are essentially the same
as in Chapter 9.

200 IMPLEMENTING REAGENTS

it returns a value of type R, which matches the final answer type of the sender’s
offer.

The core implementation of swap is shown in the Swap class in Figure 11.3.
If an offer is being made, it must be posted in a new message on the endpoint
before any attempt is made to react with existing offers. This ordering guaran-
tees that there are no lost wakeups: each reagent is responsible only for those
messages posted prior to it posting its own message.>" On the other hand, if
there is no offer, Swap attempts to complete by consuming a message on the
dual endpoint without ever creating (or publishing) its own message—exactly
like the lazy message creation of §9.5.1.

Once the offer (if any) is posted, tryReact peruses messages on the dual
endpoint using the tail-recursive loop, tryFrom. The loop navigates through
the dual endpoint’s bag using a simple cursor, which will reveal at least those
messages present prior to the reagent’s own message being posted to its
endpoint. If a dual message is found, tryFrom attempts to complete a reaction
involving it. To do this, it must merge the in-progress reaction of the dual
message with its own in-progress reaction:

e The ++ operation on a pair of Reaction produces a new reaction with all of
their CASes and post-commit actions.

e The SwapK inner class is used to construct a new continuation for the dual
message. This new continuation uses the withFulfill method of Reaction

t22

to record a fulfillment®? of the dual message’s offer with the final result of

the reagent in which that dual message was embedded.

e When SwapK is invoked as part of a reaction, it invokes the original
continuation k with the payload of the dual message.

e If the reaction is successful, the final result is returned (and the result for
the other reagent is separately written to its offer status). Recall that, in
this case, the Commit reagent will first rescind the offer of Swap.tryReact,
if any. Thus, if Swap had earlier advertised itself through its own message,
it removes that advertisement before instead consuming an advertised
message on the dual endpoint.? Just as in Chapter 9 consuming a message
logically removed it, here rescinding or fulfilling the offer associated with
a message logically removes the message from the bag.

e If the reaction fails, tryFrom continues to look for other messages. If
no messages remain, swap behaves as if it were a disjunction: it fails
persistently only if all messages it encountered led to persistent failures.
The failure logic here closely resembles that of the retry flag in §9.3.

' The design rationale and key safety/live-
ness properties here are exactly the same as
those in Chapter 9.

** Fulfillment includes waking the reagent if
it is blocked on the offer.

*3 Swap may fail to rescind its message, but
only if some other thread has fulfilled its of-
fer; in this case, Commit aborts the attempt to
consume a message on the dual channel and
simply returns the result from the fulfilling
thread.

class Swap[A,B,R](ep: Endpoint[A,B], k: Reagent[B, R])

extends Reagent[A,R] {
def >>[S] (next: Reagent[R,S]) = new Swap[A,S](ep, k >> next)
def canFail = true
def canSync = true

// NB: this code glosses over some important details
// discussed in the text
def tryReact(a: A, rx: Reaction, offer: Offer[R]) = {
if (offer != null) // send message if so requested
ep.put(new Message(a, rx, k, offer))
def tryFrom(cur: Cursor, failMode: Failure): Any = {
cur.getNext match {
case Some(msg, next) =
val merged =
msg.senderK // complete sender’s continuation
>> new SwapK(msg.payload, // then complete our continuation
msg.offer)
merged.tryReact(a, rx ++ msg.senderRx, offer) match {
case Retry = tryFrom(next, Retry)
case Block = tryFrom(next, failMode)
case ans = ans
}

case None = failMode

}

tryFrom(ep.dual.cursor, Block) // attempt reaction

// lift our continuation to a continuation for the dual sender
class SwapK[S](dualPayload: B, dualOffer: Offer[S])
extends Reagent[S,R] {
def >>[T](next: Reagent[R,T]) = throw Impossible // unreachable
def canFail = true

def canSync = k.canSync

def tryReact(s: S, rx: Reaction, myOffer: Offer[S]) = {
k.tryReact(dualPayload, rx.withFulfill(dualOffer, s), myOffer)

THE COMBINATORS

Figure 11.3: The Swap class

201

11.5.3

11.5.4

202 IMPLEMENTING REAGENTS

The code we have given for Swap glosses over some corner cases that a full
implementation must deal with. For example, it is possible for a reagent to
attempt to swap on both sides of a channel, but it should avoid fulfilling its own
offer in this case. Similarly, if a reagent swaps on the same channel multiple
times, the implementation should avoid trying to consume the same message
on that channel multiple times.

Disjunction: choice

The implementation of choice is pleasantly simple:

class Choice[A,B](rl: Reagent[A,B], r2: Reagent[A,B])
extends Reagent[A,B] {
def >>[C](next: Reagent[B,C]) =
new Choice[A,C](rl >> next, r2 >> next)
def canFail = rl.canFail || r2.canFail

def canSync = rl.canSync || r2.canSync

def tryReact(a: A, rx: Reaction, offer: Offer[B]) =
rl.tryReact(a, rx, offer) match {
case Retry = r2.tryReact(a, rx, offer) match {
case (_: Failure) = Retry // must retry rl
case ans = ans
}
case Block = r2.tryReact(a, rx, offer)

case ans = ans

Choice attempts a reaction with either of its arms, trying them in left to right
order. As explained in §10.2.3, a persistent failure of choice can only result
from a persistent failure of both arms.*# The right arm is tried even if the left
arm has only failed transiently.

Conjunction: pairing and sequencing

To implement the pairing combinator x, we first implement combinators
first and second that lift reagents into product types; see Figure 11.4. These
combinators are associated with arrows®> in Haskell, and are useful for
building up complex wiring diagrams.

def first[A,B,C] (r: Reagent[A,B]): Reagent[AxC, Bx(]
new First(r, new Commit[B xC])
def second[A,B,C](r: Reagent[A,B]): Reagent[C xA, CxB]

new Second(r, new Commit[C xB])

>4 The accumulation of the “Retry” signal
here is reminiscent of the retry flag in §9.3.

* Hughes (2000), “Generalising monads to
arrows”

http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

11.5.5

class First[A,B,C,R](r: Reagent[A,B], k: Reagent[B xC,R])
extends Reagent[A xC,R] {

def >>[S](next: Reagent[R,S]) = new First[A,B,C,S](r, k >> next)

def canFail = r.canFail || k.canFail

def canSync = r.canSync || k.canSync

def tryReact(both: AxC, rx: Reaction, offer: Offer[R]) =

(r >> Lift(b = (b, both._2)) >> k).tryReact(both._1, rx, offer)

}

// Second is defined symmetrically

With them in hand, we can define a pair combinator?® quite easily. The x
method on reagents is just an alias for the pair combinator, to support infix
syntax.

def pair[A,B,C](rl: Reagent[A,B], r2: Reagent[A,C]): Reagent[A,BxC(C] =

lift(a = (a, a)) >> first(rl) >> second(r2)

Computational reagents

The 1ift combinator, defined in Figure 11.5 by the Lift class, is the simplest
reagent: it blocks when the function to lift is undefined, and otherwise applies

the function and passes the result to its continuation.

class Lift[A,B,R](f: A — B, k: Reagent[B,R])
extends Reagent[A,R] {
def >>[S](next: Reagent[R,S]) = new Lift[A,B,S](c, k >> next)
def canFail = k.canFail
def canSync = k.canSync
def tryReact(a: A, rx: Reaction, offer: Offer[R]) =
if (f.isDefinedAt(a)) k.tryReact(f(a), rx, offer)
else Block

The implementation of computed reagents (Figure 11.6) is exactly as de-
scribed in §10.5: attempt to execute the stored computation c on the argument
a to the reagent, and invoke the resulting reagent with a unit value. If ¢
is not defined at a, the computed reagent issues a persistent failure. The
implementation makes clear that the reads and writes performed within the
computation c are invisible: they do not even have access to the Reaction
object, and so they cannot enlarge the atomic update performed when it is

committed.

THE COMBINATORS 203

Figure 11.4: Arrow-style lifting into
product types

*¢ This combinator would be called &&8, or
“fanout”, in Haskell’s arrow terminology.

Figure 11.5: The Lift class

11.6

11.7

11.7.1

204 IMPLEMENTING REAGENTS

class Computed[A,B,R](c: A — Reagent[Unit,B], k: Reagent[B,R])
extends Reagent[A,R] {
def >>[S](next: Reagent[R,S]) = new Computed[A,B,S](c, k >> next)
def canFail = true // must be conservative
def canSync = true // must be conservative
def tryReact(a: A, rx: Reaction, offer: Offer[R]) =
if (c.isDefinedAt(a)) (c(a) >> k).tryReact((), rx, offer)
else Block

CATALYSIS

Thus far, our survey of the reagent implementation has focused wholly on
reactants. What about catalysts?

It turns out that very little needs to be done to add support for the dissolve
operation. Catalysts are introduced by invoking tryReact with an instance of
a special subclass of 0f fer. This “catalyzing” subclass treats “fulfillment” as a
no-op—and because it is never considered fulfilled, the catalyst is never used
up. Because fulfillment is a no-op, multiple threads can react with the catalyst
in parallel.

PERFORMANCE
Methodology and benchmarks

As we mentioned in Chapter 9, scalable concurrent data structures are usually
evaluated by targetted microbenchmarking, with focus on contention effects
and fine-grained parallel speedup.?” In addition to those basic aims, we wish
to evaluate (1) the extent to which reagent-based algorithms can compete
with their hand-built counterparts and (2) whether reagent composition is
a plausible approach for scalable atomic transfers.

To this end, we designed a series of benchmarks focusing on simple lock-
free collections, where overhead from reagents is easy to gauge. Each bench-
mark consists of n threads running a loop, where in each iteration they apply
one or more atomic operations on a shared data structure and then simulate a
workload by spinning for a short time. For a high contention simulation, the
spinning lasts for o.25us on average, while for a low contention simulation,
we spin for 2.5us.

In the “PushPop” benchmark, all of the threads alternate pushing and
popping data to a single, shared stack. In the “StackTransfer” benchmark,
there are two shared stacks, and each thread pushes to one stack, atomically
transfers an element from that stack to the other stack, and then pops

Figure 11.6: The Computed class

*7 Mellor-Crummey and Scott 1991; Michael
and Scott 1996; Herlihy, Luchangco, Moir,
and W.N. N Scherer, III 2003; William N.
Scherer, III and Scott 2004; Hendler et al.
2004; Fraser and Tim Harris 2007; Ceder-
man and Tsigas 2010; Hendler et al. 2010

iterations/us (bigger is better)

Throughput:

PushPop: low contention

PushPop: high contention

'
t t t t t LT

25+ L
1.54 <
~~
\~_—————‘___
Sl Lt
2 6 10 14

Threads (on 16-way machine)

Hand-build

Reagent-based e

Lock-based STM-based - e

an element from the second stack; the direction of movement is chosen
randomly. The stack benchmarks compare our reagent-based TreiberStack
to (1) a hand-built Treiber stack, (2) a mutable stack protected by a single lock,
and (3) a stack using STM.

The “EngDeq” and “QueueTransfer” benchmarks are analogous, but work
with queues instead. The queue benchmarks compare our reagent-based
MSQueue to (1) a hand-built Michael-Scott queue, (2) a mutable queue pro-
tected by a lock, and (3) a queue using STM.

For the transfer benchmarks, the hand-built data structures are dropped,
since they do not support atomic transfer; for the lock-based data structures,
we acquire both locks in a fixed order before performing the transfer.

We used the Multiverse STM, a sophisticated open-source implementa-
tion of Transaction Locking I1?® which is distributed as part of the Akka
package for Scala. Our benchmarks were run on a 3.46Ghz Intel Xeon X5677
(Westmere) with 32GB RAM and 12MB of shared L3 cache. The machine has
two physical processors with four hyperthreaded cores each, for a total of 16
hardware threads. L1 and L2 caches are per-core. The software environment
includes Ubuntu 10.04.3 and the Hotspot JVM 6u2;.

PERFORMANCE

Figure 11.7: Benchmark results for
stacks

205

28 Dave Dice et al. (2006), “Transactional

locking I1”

http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14

iterations/us (bigger is better)

Throughput:

11.7.2

206 IMPLEMENTING REAGENTS

EnqDeq: high contention

EngDeq: low contention

1
|
n
|
\
-\
|
\

—cam.

Threads (on 16-way machine)

Reagent-based e Hand-build

Lock-based STM-based - e

Analysis

The results are shown in Figures 11.7 and 11.8; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better). The results
show that reagents can plausibly compete with hand-built concurrent data
structures, while providing scalable composed operations that are rarely
provided for such data structures.

Just as with our join pattern benchmarks (§9.8), we are mainly interested
in the slopes of these graphs, which provide an indicator of scalability. One
immediately noticeable feature of the slope on most of the graphs is a
smaller incline (or even momentary plateau) at 8 threads, visible for the
faster implementations but not so for the slower ones. The likely culprit is
hyperthreading: the machine only has 8 actual cores, each of which attempts
to share processing resources between two hardware threads. In addition,
at 8 or more threads the pigeonhole principle kicks in: at least one thread
is competing to be preemptively scheduled onto a single core with either
another worker thread, or with OS services.

Aside from the changes at 8 threads, the benchmarks tell a consistent story:
the reagent-based data structures perform universally better than the lock-

Figure 11.8: Benchmark results for
queues

or STM-based data structures. They scale comparably with hand-built fine-
grained data structures at low contention. For high contention, scalability is
comparable for the queue, but for the stack reagents do not scale as well as the
hand-written algorithm. Since the algorithm being used is identical for the
reagent-based and hand-built stack, the reason for the difference must be due
to the interpretive overhead in executing the reagent. Interpretive overhead
occurs in our Scala implementation in the use of dynamic dispatch during
reagent execution. While the HotSpot compiler is generally good at inlining
or caching dynamic dispatched in hot loops, the functional programming
idioms we use in our Scala code can sometimes thwart these optimizations.*®
On the other hand, as soon as the algorithm becomes more complex (e.g., for
the queue), these overheads are dwarfed by other costs.

PERFORMANCE 207

» With the forthcoming introduction of
lambda expressions for Java, the HotSpot
JIT’s ability to optimize functional program-
ming idioms is likely to improve.

12.1

12.1.1

12.1.1.1

12.1.1.2

12

Related work: expressing concurrency

Join patterns and reagents are just two points in a large design space,
both in terms of design and implementation strategy. This chapter briefly
surveys the closest neighbors along three axes: composable concurrency
constructs (§12.1), implementations of join patterns (§12.2), and scalable
synchronization (§12.3).

COMPOSABLE CONCURRENCY
Concurrent ML

Design

Concurrent ML' (CML) was designed to resolve an apparent tension between
abstraction and choice: a synchronization protocol can be encapsulated as a
function, but doing so makes it impossible to e.g., take the external choice
between two such protocols. The solution is higher-order concurrency, a
code-as-data approach in which synchronous message-passing protocols are
represented as events—an abstract data type. CMLs events are built up from
combinators, including a choice combinator, communication combinators,
and combinators for arbitrary computations not involving communication.

Reagents are clearly influenced by the design of CMLs events, and include
variants of CMLs core event combinators (communication and choice). But
where CML is aimed squarely at capturing synchronous communication
protocols, reagents are designed for writing and tailoring fine-grained con-
current data structures and synchronization primitives. This difference in
motivation led us to include a number of additional combinators for dealing
with shared state and expressing join patterns.

Implementation

Our implementation of join patterns and reagents both draw some inspira-
tion from Reppy, Russo and Xiao’s Parallel CML (PCML), a scalable imple-
mentation of CML.> The difficulty in implementing CML is, in a sense, dual
to that of the join calculus: disjunctions of events (rather than conjunctions
of messages) must be resolved atomically. PCML implements disjunction
(choice) by adding a single, shared event to the queue of each involved chan-
nel. Events have a “state” similar to our message statuses; event “resolution” is
performed by an optimistic protocol that uses CAS to claim events.

“Don’t worry about people stealing your ideas.
If your ideas are any good, youw’ll have to ram
them down people’s throats.”

—Howard Aiken

' Reppy (1991), “CML: A higher concurrent
language”

> Reppy et al. (2009), “Parallel concurrent
ML”

209

http://dx.doi.org/10.1145/113445.113470
http://dx.doi.org/10.1145/113445.113470
http://books.google.com/books?vid=ISSN03621340
http://books.google.com/books?vid=ISSN03621340

12.1.2

12.1.2.1

12.1.2.2

210 RELATED WORK: EXPRESSING CONCURRENCY

The PCML protocol is, however, much simpler than the protocol we have
presented for join patterns: in PCML, events are resolved while holding a
channel lock. In particular, if an event is offering a choice between sending
on channel A and receiving on channel B, the resolution code will first lock
channel A while looking for partners, then (if no partners are found) unlock
A and lock channel B. These channel locks prevent concurrent changes
to channel queues, allowing the implementation to avoid subtle questions
about when it is safe to stop running the protocol—exactly the questions we
address in Chapter 9. The tradeoff for this simplicity is, in principle, reduced
scalability under high contention due to reduced concurrency. Although we
have not performed a head-to-head comparison of PCML against a finer-
grained implementation, our experimental results for the highly optimized
lock-based joins suggest that locking will be a scalability bottleneck for
contended channels in PCML.

Software transactional memory

Software transactional memory (STM) was originally intended “to provide a
general highly concurrent method for translating sequential object implemen-
tations into non-blocking ones”3 This ambitious goal has led to a remarkable
research literature, which has been summarized in textbook form.# Much
of the research is devoted to achieving scalability on multiprocessors or
multicores, sometimes by relaxing consistency guarantees or only providing
obstruction-freedom rather than lock-freedom.’

Join patterns and STM

In some ways, the join calculus resembles STM: it allows a programmer
to write a kind of “atomic section” of unbounded complexity. But where
STM allows arbitrary shared-state computation to be declared atomic, the
join calculus only permits highly-structured join patterns. By reducing ex-
pressiveness relative to STM, our joins library admits a relatively simple
implementation with robust performance and scalability. It is not too hard
to see the vestiges of an STM implementation in our joins algorithm, e.g, in
its use of a kind of undo log. But there are many aspects of the algorithm that
take specific advantage of its restricted scope to go beyond a generic STM, e.g.,
the retry/search strategy it uses, or its lazy message creation.

Reagents and STM

Both join patterns and STM provide fully “declarative” atomicity: the pro-
grammer simply asks that (respectively) certain channel interactions or
certain state interactions be performed atomically—full stop. Reagents, by
contrast, are aimed at a less ambitious goal: enabling the concise expression,
user tailoring, and composition of scalable concurrent algorithms. That is,
unlike STM, reagents do not attempt to provide a universal algorithm. In-

3 Shavit and Touitou (1997), “Software
transactional memory”

+Tim Harris et al. (2010), “Transactional
Memory, 2nd edition”

5 Herlihy, Luchangco, Moir, and

W.N. N Scherer, III (2003), “Software
transactional memory for dynamic-sized
data structures”

http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087

12.1.3

stead, they assist in writing and combining specific algorithms, carving out a
middle ground between completely hand-written algorithms and completely
automatic atomic blocks.

Consider, for example, implementing a concurrent queue:

e UsinGg STM, one would simply wrap a sequential queue implementation
in an atomic block, which requires no algorithmic insight or concurrency
expertise. To implement a transfer from one queue to another, it again suf-
fices to write some sequential code and wrap with atomic. Unfortunately,
even with a very clever STM, such an implementation is unlikely to scale
as well as e.g,, the Michael-Scott queue (§11.7).

e USING REAGENTS, a concurrency expert could instead directly express an
implementation like the Michael-Scott queue, which requires algorithmic
insight but in return provides much greater scalability. Reagents provide
a higher-than-usual level of abstraction for writing such implementations,
but their main benefit is that nonexpert users can combine and tailor such
implementations using additional reagent combinators. Thus reagents
provide some of the composability and declarative nature of STM, while
leaving room for experts to write specialized algorithms.

A key point is that, when used in isolation, reagents are guaranteed to
perform only the CASes that the corresponding hand-written algorithm
would.® Such a clear cost model is essential for maximizing scalability, and
we know of no STM that provides similar guarantees. But there is an inherent
tradeoff: the cost model depends on giving experts an “escape hatch” by
which they can perform “invisible” read or write operations, but such invisible
operations can render certain reagent compositions unsafe. The technical
details are covered in $10.5, but the takeaway is that reagents trade some safety
in return for the ability to write expert-level algorithms.

Haskell's STM7 demonstrated that transactions can be represented via
monads,® explicitly composed, and combined with blocking and choice
operators; its approach is in many respects reminiscent of CML. Reagents
also form a monad, but we have chosen an interface closer to arrows,Hughes
2000 to encourage static reagent layout wherever possible ($10.5.1). Like
orElse in Haskell’s STM, our choice operator is left-biased. But unlike orElse,
our choice operator will attempt the right-hand side even when the left-
hand side has only failed transiently (rather than permanently).® While the
distinction appears technical, it is crucial for examples like the elimination
backoff stack (§10.2.3).

Transactions that communicate

A central tenet of transactions is isolation: transactions should not be aware of
the concurrent execution of other transactions. But sometimes it is desirable
for concurrent transactions to coordinate or otherwise communicate while

COMPOSABLE CONCURRENCY 211

¢ See Chapter 11 for more detail.

7 Tim Harris et al. (2005), “Composable
memory transactions”

¥ Peyton Jones and Wadler (1993),
“Imperative functional programming”

® Note that retry in Haskell's STM signals a
permanent failure, rather than an optimistic
retry.

http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/158511.158524

12.1.4

212 RELATED WORK: EXPRESSING CONCURRENCY

executing. Recent papers have proposed mechanisms for incorporating com-
munication with STM, in the form of Communicating Transactions,'® Trans-
action Communicators,'! and Transactions with Isolation and Cooperation
(TIC)."* A key question in this line of work is how the expected isolation of
shared memory can safely coexist with concurrent communication:

e Communicating Transactions use explicit, asynchronous message passing
to communicate; the mechanism is entirely separate from shared memory,
which retains isolation. When there is a conflict between isolation and
interaction, the transaction is aborted and retried.

e On the other hand, Transaction Communicators and TIC allow shared
memory isolation to be weakened in a controlled way.

Our mixture of message-passing and shared-state combinators most closely
resembles Communicating Transactions. Of course, the most important
difference is that we do not build on top of an STM, but rather provide a
lower-level programming interface as described above. We also believe that
synchronous communication is better for expressing patterns like elimina-
tion ($10.2.3), which rely on mutual awareness between participants.

There has also been work treating pure message-passing in a transactional
way. Transactional Events'® combines CML with an atomic sequencing oper-
ator. Previously, Transactional Events were implemented on top of Haskell’s
STM, relied on search threads' for matching communications, and used
an STM-based representation of channels. However, Transactional Events
are expressible using reagents, through the combination of swap and the
conjunction combinators. Doing so yields a new implementation that does
not require search threads, performs parallel matching for communication,
and represents channels as lock-free bags. We are not in a position to do a
head-to-head comparison, but based on the results in $11.7, we expect the
reagent-based implementation to scale better on fine-grained workloads.

Of course, the join calculus is another example of message passing with a
transactional flavor.

Composing scalable concurrent data structures

Most of the literature on scalable concurrent data structures is focused on
“within-object” atomicity, for example developing algorithms for inserting or
removing elements into a collection atomically. Recently, though, Cederman
and Tsigas (2010) proposed a method for deriving atomic transfer operations
between lock-free data structures. The basic approach relies on a kCAS
operation in much the same way that reagent sequencing does. However, the
transfer methods must be written manually, in advance, and with access to the
internals of the relevant data structures. Reagents, by contrast, allow clients
to define arbitrary new compositions, without manually implementing them,
and without access to the code or internals of the involved data structures.
Nevertheless, reagent sequencing yields an algorithm very similar to the

' Lesani and Palsberg (2011),

Communicating memory transactions

" Luchangco and Marathe (2011),

“Transaction communicators: enabling

cooperation among concurrent
transactions”

> Smaragdakis et al. (2007), “Transactions
with isolation and cooperation

 Donnelly and Fluet (2008),
“Transactional events”

'+ The implementation can be made to work
with a single search thread at the cost of lost
parallelism.

http://dx.doi.org/10.1145/1941553.1941577
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1297027.1297042
http://dx.doi.org/10.1145/1297027.1297042
http://dx.doi.org/10.1017/S0956796808006916

12.2

12.2.1

JOIN CALCULUS IMPLEMENTATIONS 213

manually-written transfer methods. On the other hand, Cederman and Tsigas
(2010) provide a generic proof of correctness for their transfer methodology,
while we have provided no such proof for reagent composition. Chapter 13
discusses possible avenues for doing so.

It is also possible to go in the other direction: start from STM, which
provides composition, and add an “escape hatch” for writing arbitrary scalable
concurrent algorithms within the scope of a transaction. The escape hatch
can be provided through unlogged reads and/or writes to memory locations
being used by transactions, as in early release' or elastic transactions.'® As we
discussed above ($12.1.2.2), we favor an approach where the focus is foremost
on writing scalable algorithms, with guarantees about the performance and
shared-memory semantics of those algorithms. Providing such guarantees via
an escape hatch mechanism may be difficult or impossible, depending on the
details of the STM implementation. As we showed in $10.2, it is also very
useful to have combinators for choice, message-passing, and blocking, if one
wishes to capture the full range of scalable concurrent algorithms.

JOIN CALCULUS IMPLEMENTATIONS

Fournet and Gonthier originally proposed the join calculus as an asyn-
chronous process algebra designed for efficient implementation in a dis-
tributed setting." It was positioned as a more practical alternative to Milner’s
n-calculus.

Lock-based implementations

The join calculus has been implemented many times, and in many contexts.
The earliest implementations include Fournet et al.’s JoCamlI*® and Odersky’s
Funnel (the precursor to Scala), which are both functional languages sup-
porting declarative join patterns. JoCaml’s runtime is single-threaded so the
constructs were promoted for concurrency control, not parallelism. Though it
is possible to run several communicating JoCaml processes in parallel, pattern
matching will always be sequential. Funnel targeted the Java VM, which can
exploit parallelism, but we could find no evaluation of its performance on
parallel hardware. Benton et al. (2004) proposed an object-oriented version of
join patterns for C* called Polyphonic C; around the same time, Von Itzstein
and Kearney (2001) independently described JoinJava, a similar extension of
Java. The advent of generics in C! 2.0 led Russo to encapsulate join pattern
constructs in the Joins library,® which served as the basis for our library.
There are also implementations for Erlang, C++, and VB.*!

All of the above implementations use coarse-grained locking to achieve
the atomicity present in the join calculus semantics. In some cases (e.g.
Polyphonic C#, Russo’s library) significant effort is made to minimize the

5 Herlihy, Luchangco, Moir, and

W.N. N Scherer, III (2003), “Software
transactional memory for dynamic-sized
data structures”

16 Felber et al. (2009), “Elastic transactions”

7 Fournet and Gonthier (1996); Fournet and
Gonthier (2002)

8 Fournet et al. (2003), “JoCaml: A
Language for Concurrent Distributed
and Mobile Programming”

¥ Odersky (2002), “An Overview of
Functional Nets”

*° Russo (2007), “The Joins Concurrency
Library”

2 Plociniczak and Eisenbach (2010); Liu
(2009); Russo (2008), respectively.

http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1007/978-3-540-69611-7_17

12.2.2

214 RELATED WORK: EXPRESSING CONCURRENCY

critical section, but as we have shown (§9.8) coarse-grained locking remains
an impediment to scalability.

STM-based implementations

Producer/consumer (no work)

1000 1000
100
— —
w » w
£ 10 % E
o .. 5 10
= e L e - Sulzmann = Mo
E ; Seen | ; = N
5 - -Singh =
2 S-Joi =% 1
oD 0.1 ~Jomn o
3 3
— —
£ 0.1
= 0.01 £
o] 0.01
2 6 10 14 18 22 26 30 34 38 42 46 2 6
Threads

We are aware of two join-calculus implementations that do not employ
a coarse-grained locking strategy, instead using Haskell’s STM. Singh’s im-
plementation builds directly on the STM library, using transacted channels
and atomic blocks to provide atomicity;>* the goal is to provide a simple
implementation, and no performance results are given. In unpublished work,
Sulzmann and Lam suggest a hybrid approach, saying that “an entirely
STM-based implementation suffers from poor performance”.*3 Their hybrid
approach uses a nonblocking collection to store messages, and then relies
on STM for the analog to our message resolution process. In addition to
basic join patterns, Sulzmann and Lam allow guards and propagated clauses
in patterns, and to handle these features they spawn a thread per message;
Haskell threads are lightweight enough to make such an approach viable. The
manuscript provides some performance data, but only on a four core machine,
and does not provide comparisons against direct solutions to the problems
they consider.

The simplest—but perhaps most important—advantage of our implemen-
tation over STM-based implementations is that we do not require STM,
making our approach more portable. STM is an active area of research, and
state-of-the-art implementations require significant effort.

The other advantage over STM is the specificity of our algorithm. An STM
implementation must provide a general mechanism for declarative atomicity,
conflict-resolution and contention management. Since we are attacking a
more constrained problem, we can employ a more specialized (and likely
more efficient and scalable) solution. For example, in our implementation
one thread can be traversing a bag looking for PENDING messages, determine

Lock (no work)

Sulzmann
- = -Singh
=S-Join

10 14 18 22 26 30 34 38 42 46
Threads

Figure 12.1: Comparison with Haskell-
STM implementations on 48-core
machine. Note log scale.

** Singh (2006), “Higher-Order
combinators for join patterns using STM”

2 Sulzmann and Lam (2009), “Parallel Join
Patterns with Guards and Propagation”

https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf

12.2.3

JOIN CALCULUS IMPLEMENTATIONS 215

that none are available, and exit message resolution all while another thread
is adding a new PENDING message to the bag. Or worse: two threads might
both add messages to the same bag. It is not clear how to achieve the same
degree of concurrency with STM: depending on the implementation, such
transactions would probably be considered conflicting, and one aborted and
retried. While such spurious retries might be avoidable by making STM aware
of the semantics of bags, or by carefully designing the data structures to play
well with the STM implementation, the effort involved is likely to exceed that
of the relatively simple algorithm we have presented.

To test our suspicions about the STM-based join implementations, we
replicated the pure synchronization benchmarks for producer/consumer and
locks, on top of both Singh and Sulzmann’s implementations. Figure 12.1 gives
the results on the same 48-core benchmarking machine we used for §9.8. Note
that, to avoid losing too much detail, we plot the throughput in these graphs
using a log scale. The comparison is, of course, a loose one: we are comparing
across two very different languages and runtime systems, and Sulzmann’s
implementation provides more than just join patterns. However, it seems
clear that the STM implementations suffer from both drastically increased
constant overheads, as well as much poorer scalability. Surprisingly, of the two
STM implementations, Singh’s much simpler implementation was the better
performer.

Given these results, and the earlier results for lock-based implementations,
our Joins implementation is the only one we know to scale when used for fine-
grained parallelism.

Languages versus libraries

By implementing joins as a library, we forgo some expressivity. JoCaml, for
example, supports restricted polymorphic sends: the type of a channel can be
generalized in those type variables that do not appear in the types of other,
conjoined channels.?4 Since our channels are monomorphic C! delegates, we
are, unfortunately, unable to provide that level of polymorphism. Neverthe-
less, one can still express a wide range of useful generic abstractions (e.g.
Buffer<T>, Swap<A, B>). Another difference is that our rendezvous patterns are
more restrictive than JoCaml’s. Our implementation only allows us to return
a single value to all synchronous channels, instead of returning separately
typed values to each synchronous channel. In effect, we strike a compromise
between the power of JoCaml and limitations of Polyphonic C* (which
allowed at most one synchronous channel per pattern). As a consequence,
our coding of swap channels is clumsier than JoCamls, requiring wrapper
methods to extract the relevant half of the common return value. JoCaml
instead supports (the equivalent of) selective return statements, allowing one
to write, e.g.,

return b to Left; return a to Right;

>4 Fournet et al. (1997), “Implicit Typing a
la ML for the Join-Calculus”

http://dx.doi.org/10.1007/3-540-63141-0_14
http://dx.doi.org/10.1007/3-540-63141-0_14

12.3

12.3.1

12.3.2

216 RELATED WORK: EXPRESSING CONCURRENCY

within the same chord. The static semantics of selective returns are difficult to
capture in a library, so we have avoided them. Note that forcing all channels to
wait on a single return statement, as we do, also sacrifices some concurrency.

SCALABLE SYNCHRONIZATION
Coordination in java.util.concurrent

The java.util.concurrent library contains a class called AbstractQueuedSynchro-
nizer that provides basic functionality for queue-based, blocking synchroniz-
ers.” Internally, it represents the state of the synchronizer as a single 32-bit
integer, and requires subclasses to implement tryAcquire and tryRelease
methods in terms of atomic operations on that integer. It is used as the
base class for at least six synchronizers in the java.util.concurrent package,
thereby avoiding substantial code duplication. In a sense, our Joins library is a
generalization of the abstract synchronizer framework: we support arbitrary
internal state (represented by asynchronous messages), n-way rendezvous,
and the exchange of messages at the time of synchronization. Reagents then
generalize further by incorporating updates to shared memory.

Dual data structures

Another interesting aspect of java.util.concurrent is its use of dual data struc-

tures,?°

in which blocking calls to a data structure (such as Pop on an empty
stack) insert a “reservation” in a nonblocking manner; they can then spinwait
to see whether that reservation is quickly fulfilled, and otherwise block.
Reservations provide an analog to the conditions used in monitors, but apply
to nonblocking data structures.

Both join patterns and reagents offer alternative perspectives on reserva-

tions:

e WITH JOIN PATTERNS, one generally treats methods (like Pop) as syn-
chronous channels. Calling a method is then tantamount to sending a
message. But with lazy message creation (§9.5.1), the caller will first attempt
to find some current enabled pattern and immediately fire it—just as,
with a dual data structure, a caller first attempts to perform the operation
normally. Only if no pattern is enabled (i.e., the method call should block)
is a message actually created and added to a bag—just as, with a dual data
structure, a reservation would be created and enqueued. So something
like dual data structures “fall out” as a natural consequence of the joins
implementation, including not just reservations but the spinwaiting and
blocking strategies as well.

e REAGENTS LIKEWISE naturally support dual data structures as coded
through join patterns, since the reagent implementation includes lazy
message creation. But the shared state combinators provide an alternative

* Lea (2005), “The java.util.concurrent
synchronizer framework”

26 William N. Scherer, III and Scott (2004),
“Nonblocking Concurrent Data Structures
with Condition Synchronization”

http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1007/978-3-540-30186-8_13

avenue for blocking. When a reagent fails permanently in a way that could
depend on the value read from a reference, the blocking protocol will
automatically add an appropriate continuation to a bag of waiting reagents
associated with the reference.

Neither the joins- nor reagents-based blocking reservations work exactly the
same way as those in hand-built dual data structures, which take advantage
of specific representation details to store either real data or reservations, but
never both. On the other hand, joins and reagents provide a more general and
automatic technique for adding blocking to a scalable data structure.

SCALABLE SYNCHRONIZATION

217

Part IV

EPILOGUE

13.1

13

Conclusion

LOOKING BACK “I may not have gone where I intended to go,
but I think I have ended up where I needed to

be”
This dissertation demonstrates two claims:

A. Scalable algorithms can be understood through linked protocols govern-
ing each part of their state, which enables verification that is local in space,
time, and thread execution.

B. Scalable algorithms can be expressed through a mixture of shared-state
and message-passing combinators, which enables extension by clients
without imposing prohibitive overhead.

The support for these claims takes the form of three distinct research artifacts:

¢ A rogic for local reasoning about scalable concurrency using standalone,
visual protocols. The approach enables direct refinement proofs via Hoare-
style reasoning, and scales to high-level languages (with higher-order
functions and recursive and abstract types) and sophisticated algorithms
(employing role-playing, cooperation and internal nondeterminism).

e A LIBRARY for declarative and scalable synchronization based on the join
calculus. Users of the library can write down arbitrary synchronization
constraints as join patterns (roughly, disjunctions of conjunctions), and
the library will automatically derive a reasonably scalable solution to them.

e AN ABSTRACTION—reagents—for expressing and composing scalable con-
current algorithms and data structures through a blend of message-
passing and shared-state primitives. Reagents serve the needs of two dis-
tinct groups: concurrency experts and concurrency users. Using reagents,
experts can write libraries more easily, because common patterns are
expressible as abstractions and many are built-in. Users can then extend,
tailor and compose the resulting library without detailed knowledge of the
algorithms involved.

Taken together, these contributions make a significant step forward in our
ability to understand and express scalable concurrency. But much remains to
be done.

—Douglas Adams

221

13.2

13.2.1

222 CONCLUSION

LOOKING AHEAD
Understanding scalable concurrency

For the sake of simplicity, the logic of Chapter 5 only goes part of the way
to a full-fledged “logic for logical relations™: it is not powerful enough to
define our logical relation, and so instead treats it as a built-in assertion. In
particular, the assertions of the logic do not allow second-order quantification
or recursion. By adding these constructions, we could treat both value- and
expression-level refinement as sugar for more basic logical formulas, in the
spirit of Plotkin and Abadi (1993).

Likewise, while we have given a substantial sketch of a proof theory for
the logic, there are several gaps—most importantly in our treatment of spec
resources and their interaction with speculation, which we reason about
entirely “in the model” There is a duality between implementation reasoning
(in which one must consider all executions) and specification reasoning (in
which one must discover some execution), elegantly expressed in the two
modalities of dynamic logic." It would be interesting to reformulate our atomic
Hoare triples along the lines of dynamic logic, allowing them to be used for
spec reasoning as well—and to study the interaction with speculation as well.

One somewhat irritating aspect of the refinement approach, at least as
we have presented it, is that specifications tend to be overly concrete. Our
“canonical atomic specs” (Chapter 3) use a physical lock to guarantee mutual
exclusion, and our specs for data structures like queues (Chapter ??) must
concretely represent the current value of the queue. Ideally, specs would be
given even more abstractly, in terms of some “atomic” keyword and arbitrary
“mathematical” data types. However, as we discussed in $§3.4, an “atomic”
keyword is problematic: it gives too much power to the context. So we leave as
an open question how to write more abstract atomic specs in a higher-order
refinement framework.

There are at least two interesting questions about the completeness of our
logic. First, is it complete for the traditional scope of linearizability, i.e., first-
order modules that share no state with their clients? Second, are local proto-
cols “complete” for Views,? i.e., can one express any monoid instantiation of
the Views framework in terms of an STS with tokens?

Despite the fact that our logic scales to higher-order programs, we have
only explored very simple uses of this capability, namely, in reasoning about
simple “modules” which export a tuple of functions. It remains to be seen how
suitable the logic is for reasoning about more fundamentally higher-order
code like Herlihy’s universal construction? or the flat combining algorithm.*
Likewise, we have focused on atomic specifications, but many data structures
provide more complex forms of interaction (e.g, iteration in a concurrent
collection) or weaker guarantees (e.g., RCU-based algorithms in the Linux
kernel). Can we give these data structures clean specs and correctness proofs?

Finally, there are a number of extensions of our logic to explore:

' Harel et al. (2000), “Dynamic logic”

* Dinsdale-Young et al. (2013), “Views:
Compositional Reasoning for Concurrent
Programs”

? Herlihy and Shavit (2008), “The Art of
Multiprocessor Programming”

+ Hendler et al. (2010), “Flat combining and
the synchronization-parallelism tradeoff”

http://mitpress.mit.edu/books/dynamic-logic
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

13.2.2

Can the logic be extended to reason about liveness as well as safety?> It
is unclear to what extent a step-indexed model such as ours can capture
liveness properties; presumably, at the very least, one would need to work
with a more complex ordinal than w.

Is it possible, moreover, to reason thread-locally about liveness? Tradition-
ally liveness properties are proved using a global, well-founded measure,
but nonblocking progress properties (which do not rely on fair scheduling)
are likely amenable to protocol-based, thread-local reasoning.

We have assumed sequential consistency, which is not unreasonable (see
§3.2), but in the long run will prevent application of the logic to algorithms
that use reference cells with weaker guarantees. A major open question
is whether something like our local protocols—which rely on a global
notion of “current state”—can be adapted to work in the context of a weak
memory model.

Expressing scalable concurrency

There is significant remaining work for elucidating both the theory and

practice of reagents:

ON THE THEORETICAL SIDE, developing a formal operational semantics
would help to clarify the interactions possible between shared state and
message passing, as well as the atomicity guarantees that reagents pro-
vide. A reasonable starting point would be the operational semantics for
Haskell’s STM.S

ON THE PRACTICAL SIDE, developing a serious concurrency library using
reagents would go a long way toward demonstrating their usability. We
have begun work along these lines by building an implementation of
reagents, called CAPER,” for the Racket programming language. Racket’s
runtime system is undergoing an incremental parallelization process,® and
currently the language is equipped with very few scalable concurrent data
structures. Since Racket also includes a sophisticated macro system, we
plan to explore compiler support for reagents in CAPER.

Beyond these immediate steps, a major open question for reagents (and

similar composable concurrency abstractions) is how to integrate lock-based

algorithms. Many scalable concurrent algorithms use fine-grained locking,

and are thereby outside of the current scope of reagents. The key problem is

that, in a monadic setting, it is not possible for the reagent library to know or

enforce lock ordering up front. Ideally, reagents would allow free composition

of lock-based and lock-free algorithms, thereby enabling a gradual transition

from one to the other in the spirit of “script to program evolution.®

LOOKING AHEAD 223

> See §2.5.

¢ Tim Harris et al. (2005), “Composable
memory transactions”

7 Concurrent and parallel extensions to
Racket.

8 Swaine et al. (2010), “Back to the futures:
incremental parallelization of existing
sequential runtime systems”

® Tobin-Hochstadt (2010), “Typed Scheme:
From Scripts to Programs”

http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507

13.2.3

224 CONCLUSION

Crossing the streams

Ultimately, the two parts of this dissertation should have more to say to each
other:

A. It should be possible to use our logic to prove the correctness of our join
pattern and reagents implementations.

B. Itshould also be possible to use something like our logic of local protocols
to reason about reagent-based algorithms. This reasoning should be ab-
stract, in that it should use only some high-level specification of the reagent
API without divulging its implementation details.

Item A is already feasible for the joins library, although giving a modular
proof would require doing some of the work outlined above, e.g., cleanly
specifying concurrent iterators. Applying it to reagents would entail, at the
very least, giving an operational semantics for the reagent API.

Item B would likely require some new ideas in the logic, in order to specify
and perform client-side reasoning about monadic APIs at an appropriate level
of abstraction.

In the long run, of course, items A and B should plug together: it should be
possible to compose a correctness proof of the reagents library implementa-
tion with a correctness proof of a reagent-based algorithm.

References

Abadi, Martin and Leslie Lamport (1991).
The existence of refinement mappings. Theoretical Computer Science,
82(2):253-284 (cited on pages 60, 75, 138).

Abadi, Martin and Leslie Lamport (1993).
Composing specifications. ACM Transactions on Programming Languages
and Systems (TOPLAS), 15(1):73-132 (cited on page 82).

Abadi, Martin and Leslie Lamport (1995).
Conjoining specifications. ACM Transactions on Programming Languages
and Systems (TOPLAS), 17(3):507-535 (cited on page 82).

Abelson, Harold and Gerald Jay Sussman (1996).
Structure and Interpretation of Computer Programs. MIT Press. URL: http:
//mitpress.mit.edu/sicp/ (cited on pages 17, 21).

Abramsky, Samson (1990).
The lazy lambda calculus. Research topics in functional programming,
pages 65-116. URL: http://moscova.inria. fr/~levy/courses/X/M1/
lambda/bib/90abramskylazy.pdf (cited on page 57).

Adve, Sarita V. and Kourosh Gharachorloo (1996).
Shared memory consistency models: a tutorial. Computer, 29(12):66-76
(cited on page 26).

Agarwal, A and M Cherian (1989).
Adaptive backoff synchronization techniques. In proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA). New York, New York,
USA: ACM Press, pages 396-406 (cited on page 36).

Ahmed, Amal (2004).
Semantics of Types for Mutable State. PhD thesis. Princeton University.
URL: http://www.cs.indiana.edu/~amal/ahmedsthesis . pdf (cited on

page 82).

Ahmed, Amal (2006).
Step-Indexed Syntactic Logical Relations for Recursive and Quantified
Types. In proceedings of the European Symposium on Programming (ESOP).
Springer, pages 69-83 (cited on pages 47, 57).

Ahmed, Amal, Derek Dreyer, and Andreas Rossberg (2009).
State-dependent representation independence. In proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM Press (cited on pages 57, 128, 129).

225

http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1145/151646.151649
http://dx.doi.org/10.1145/203095.201069
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1145/74925.74970
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1145/1480881.1480925

226 REFERENCES

Alpern, Bowen and Fred B. Schneider (1985).
Defining liveness. Information Processing Letters, 21(4):181-185 (cited on

page 39).

Amdahl, Gene M. (1967).
Validity of the single processor approach to achieving large scale comput-
ing capabilities. AFIPS Conference Proceedings. New York, New York, USA:
ACM Press, pages 483-485 (cited on pages 32, 33).

Appel, Andrew W. and David McAllester (2001).
Anindexed model of recursive types for foundational proof-carrying code.
ACM Transactions on Programming Languages and Systems (TOPLAS),
23(5):657-683 (cited on page 82).

Appel, Andrew W,, Paul-André Melli¢s, Christopher D. Richards, and Jérome
Vouillon (2007).
A very modal model of a modern, major, general type system. In pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). New York, New York, USA: ACM Press,
pages 109-122 (cited on pages 90, 129).

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali (1989).
I-structures: data structures for parallel computing. ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(4):598-632 (cited on

page 18).

Attiya, Hagit, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.
Michael, and Martin Vechev (2011).
Laws of order. In proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). New York, New York,
USA: ACM Press, pages 487-498 (cited on page 13).

Attiya, Hagit and Eshcar Hillel (2008).
Highly-concurrent multi-word synchronization. In proceedings of Dis-
tributed Computing and Networking (ICDCN). Springer Berlin Heidelberg,
pages 112123 (cited on page 197).

Batty, Mark, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber
(2011).
Mathematizing C++ concurrency. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). New
York, New York, USA: ACM Press, pages 55-66 (cited on page 12).

Benton, Nick (2003).
Jingle Bells: Solving the Santa Claus Problem in Polyphonic C#. URL: http:
//research.microsoft.com/~nick/santa.pdf (cited on page 148).

Benton, Nick, Luca Cardelli, and Cédric Fournet (2004).
Modern concurrency abstractions for C#. ACM Transactions on Program-

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/1190216.1190235
http://dx.doi.org/10.1145/69558.69562
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1007/978-3-540-77444-0_9
http://dx.doi.org/10.1145/1926385.1926394
http://research.microsoft.com/~nick/santa.pdf
http://research.microsoft.com/~nick/santa.pdf
http://research.microsoft.com/~nick/santa.pdf
http://dx.doi.org/10.1145/1018203.1018205

ming Languages and Systems (TOPLAS), 26(5):769-804 (cited on pages 142,
143, 147, 149, 150, 160, 161, 174, 213).

Berry, Gérard and Gérard Boudol (1992).
The chemical abstract machine. Theoretical computer science, 96(1):217—
248 (cited on page 177).

Birkedal, Lars, Filip Sieczkowski, and Jacob Thamsborg (2012).
A concurrent logical relation. In proceedings of Computer Science Logic
(CSL). URL: http://itu.dk/people/fisi/pub/relconc_conf.pdf (cited
on pages 55, 129).

Blelloch, Guy E. (1996).
Programming parallel algorithms. Communications of the ACM, 39(3):85-
97 (cited on page 12).

Blelloch, Guy E., Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun
(2012).
Internally deterministic parallel algorithms can be fast. In proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP). New York, New York, USA: ACM Press, pages 181-192
(cited on page 13).

Bloom, Bard, Sorin Istrail, and Albert R Meyer (1995).
Bisimulation can’t be traced. Journal of the ACM, 42(1):232-268 (cited on

page 138).

Blumofe, Robert D., Christopher E Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou (1996).
Cilk: An eflicient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55-69 (cited on page 13).

Blundell, Colin, E. Christopher Lewis, and Milo M. K. Martin (2006).
Subtleties of Transactional Memory Atomicity Semantics. IEEE Computer
Architecture Letters, 5(2):17 (cited on page 55).

Boehm, Hans J. and Sarita V. Adve (2008).
Foundations of the C++ concurrency memory model. In proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). New York, New York, USA: ACM Press, pages 68—78
(cited on page 12).

Brinch Hansen, Per (1973).
Operating system principles. Prentice Hall. URL: http://dl . acm. org/
citation.cfm?id=540365 (cited on pages 11, 23, 31).

Brinch Hansen, Per (2001).
The invention of concurrent programming. The Origin of Concurrent Pro-
gramming: From Semaphores to Remote Procedure Calls. Springer-Verlag.

REFERENCES

227

http://dx.doi.org/10.1016/0304-3975(92)90185-I
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://dx.doi.org/10.1145/227234.227246
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1145/1375581.1375591
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365
http://oberon2005.oberoncore.ru/paper/bh2002.pdf

228 REFERENCES

URL: http://oberon2005 . oberoncore. ru/paper/bh2002 . pdf (cited on
page 176).

Brookes, Stephen (1996).
Full Abstraction for a Shared-Variable Parallel Language. Information and
Computation, 127(2):145-163 (cited on page 131).

Brookes, Stephen (2002).
Traces, Pomsets, Fairness and Full Abstraction for Communicating Pro-
cesses. In proceedings of Concurrency Theory (CONCUR), pages 466—482
(cited on page 15).

Brooks, Jr., Frederick P. (1987).
No Silver Bullet: Essence and Accidents of Software Engineering. Com-
puter, 20(4):10-19 (cited on page 15).

Calcagno, Cristiano, Peter W. O'Hearn, and Hongseok Yang (2007).
Local Action and Abstract Separation Logic. In proceedings of the IEEE
Symposium on Logic in Computer Science (LICS). IEEE, pages 366-378
(cited on page 114).

Cederman, Daniel and Philippas Tsigas (2010).
Supporting lock-free composition of concurrent data objects. In proceed-
ings of the ACM International Conference on Computing Frontiers (CF),
pages 53—62 (cited on pages 167, 204, 212, 213).

Dice, Dave, Ori Shalev, and Nir Shavit (2006).
Transactional locking II. In proceedings of Distributed Computing (DISC).
Springer, pages 194-208 (cited on page 205).

Dice, David and Oleksandr Otenko (2011).
Brief announcement: MultiLane - a concurrent blocking multiset. In pro-
ceedings of the ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). New York, New York, USA: ACM Press, pages 313314 (cited
on page 150).

Dijkstra, Edsger W.
EWDgs2: Science fiction and science reality in computing. URL: http://
www . Cs . utexas .edu/~EWD/transcriptions/EWDO9xx/EWD952 . html (cited

on page 149).

Dijkstra, Edsger W. (1965).
EWD123: Cooperating Sequential Processes. Technical report. URL: http:
//www.cs.utexas.edu/~EWD/transcriptions/EWDO1xx/EWD123.html (cited

on pages 23, 30, 145).

Dijkstra, Edsger W. (1971).
Hierarchical ordering of sequential processes. Acta Informatica, 1(2):115-
138 (cited on page 141).

http://oberon2005.oberoncore.ru/paper/bh2002.pdf
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/LICS.2007.30
http://dx.doi.org/10.1145/1787275.1787286
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1989493.1989545
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

Dijkstra, Edsger W. (1976).
A Discipline of Programming. Prentice Hall (cited on page 101).

Dijkstra, Edsger W. (2000).
EWD 1303: My recollections of operating system design. URL: http: //www.
cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303. html (cited on
page 11).

Dinsdale-Young, Thomas, Lars Birkedal, Philippa Gardner, Matthew Parkin-
son, and Hongseok Yang (2013).
Views: Compositional Reasoning for Concurrent Programs. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (cited on pages 133, 222).

Dinsdale-Young, Thomas, Mike Dodds, Philippa Gardner, Matthew Parkin-
son, and Viktor Vafeiadis (2010).
Concurrent Abstract Predicates. ECOOP. Springer, pages 504—528. URL:
http://www.springerlink.com/index/184241T463712776.pdf (cited on
pages 62, 132).

Dodds, Mike, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis (2009).
Deny-guarantee reasoning. In proceedings of the European Symposium on
Programming (ESOP). 736. Springer, pages 363—377 (cited on page 134).

Donnelly, Kevin and Matthew Fluet (2008).
Transactional events. Journal of Functional Programming (JFP), 18(5 &
6):649-706 (cited on page 212).

Drepper, Ulrich (2007).
What every programmer should know about memory. URL: http://ftp.
linux.org.ua/pub/docs/developer/general/cpumemory . pdf (cited on
pages 26, 29).

Dreyer, Derek, Amal Ahmed, and Lars Birkedal (2009).
Logical Step-Indexed Logical Relations. Logical Methods in Computer
Science, 7(2:16):71-80 (cited on pages 90, 129).

Dreyer, Derek, Georg Neis, and Lars Birkedal (2010).
The impact of higher-order state and control effects on local relational
reasoning. In proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP). New York, New York, USA: ACM
Press, pages 143-156 (cited on pages 57, 60-62, 66, 82, 85, 128, 130).

Dreyer, Derek, Georg Neis, and Lars Birkedal (2012).
The impact of higher-order state and control effects on local relational rea-
soning. Journal of Functional Programming (JFP), 22(4-5):477-528 (cited
on page 129).

REFERENCES

229

http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://dx.doi.org/10.1145/2429069.2429104
http://www.springerlink.com/index/184241T463712776.pdf
http://www.springerlink.com/index/184241T463712776.pdf
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1017/S0956796808006916
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://dx.doi.org/10.1109/LICS.2009.34
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1017/S095679681200024X

230 REFERENCES

Dreyer, Derek, Georg Neis, Andreas Rossberg, and Lars Birkedal (2010).
A relational modal logic for higher-order stateful ADTs. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). New York, New York, USA: ACM Press (cited on

pages 79, 82, 90, 129).

Elmas, Tayfun, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran
(2010).
Simplifying Linearizability Proofs with Reduction and Abstraction. TACAS.
Springer, pages 296-311 (cited on page 136).

Elmas, Tayfun, Shaz Qadeer, and Serdar Tasiran (2009).
A calculus of atomic actions. In proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) (cited on
page 136).

Felber, Pascal, Vincent Gramoli, and R. Guerraoui (2009).
Elastic transactions. In proceedings of Distributed Computing (DISC) (cited
on page 213).

Felleisen, Matthias (1991).
On the expressive power of programming languages. Science of Computer
Programming, 17(1-3):35—75 (cited on page 14).

Feng, Xinyu (2009).
Local rely-guarantee reasoning. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).
ACM, pages 315-327 (cited on page 134).

Feng, Xinyu, Rodrigo Ferreira, and Zhong Shao (2007).
On the Relationship Between Concurrent Separation Logic and Assume-
Guarantee Reasoning. In proceedings of the European Symposium on Pro-
gramming (ESOP) (cited on page 134).

Filipovi¢, Ivana, Peter O’'Hearn, Noam Rinetzky, and Hongseok Yang (2010).
Abstraction for Concurrent Objects. Theoretical Computer Science, 411(51-
52):4379-4398 (cited on pages 56, 130).

Fournet, Cédric and Georges Gonthier (1996).
The reflexive CHAM and the join-calculus. In proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 372-385 (cited on pages 6, 141, 142, 150, 165, 186, 213).

Fournet, Cédric and Georges Gonthier (2002).
The Join Calculus: A Language for Distributed Mobile Programming. Inter-
national Summer School on Applied Semantics (APPSEM). LNCS. Springer-
Verlag, pages 268-332 (cited on pages 142, 186, 213).

http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1007/978-3-540-71316-6_13
http://dx.doi.org/10.1007/978-3-540-71316-6_13
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1007/3-540-45699-6_6

Fournet, Cédric, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt (2003).
JoCaml: A Language for Concurrent Distributed and Mobile Program-
ming. International School on Advanced Functional Programming (AFP).
LNCS (cited on pages 160, 213).

Fournet, Cédric, Luc Maranget, Cosimo Laneve, and Didier Rémy (1997).
Implicit Typing a la ML for the Join-Calculus. In proceedings of Concur-
rency Theory (CONCUR) (cited on page 215).

Fraser, Keir and Tim Harris (2007).
Concurrent programming without locks. ACM Transactions on Computer
Systems, 25(2) (cited on pages 63, 120, 167, 197, 204).

Glabbeek, R J Van (1990).
The linear time-branching time spectrum. CONCUR90 Theories of Con-
currency: Unification and Extension():278-297 (cited on page 137).

Gotsman, Alexey and Hongseok Yang (2012).
Linearizability with Ownership Transfer. In proceedings of Concurrency
Theory (CONCUR) (cited on page 130).

Groves, Lindsay and Robert Colvin (2009).
Trace-based derivation of a scalable lock-free stack algorithm. Formal
Aspects of Computing, 21(1-2):187-223 (cited on page 135).

Harel, David, Dexter Kozen, and Jerzy Tiuryn (2000).
Dynamic logic. MIT Press. URL: http : / / mitpress . mit . edu / books /
dynamic-logic (cited on page 222).

Harper, Robert (2011).
Parallelism is not concurrency. URL: http://existentialtype.wordpress.
com/2011/03/17/parallelism- is-not- concurrency/ (cited on pages 11,

12, 18).

Harris, Tim, James Larus, and Ravi Rajwar (2010).
Transactional Memory, 2nd edition. Morgan and Claypool (cited on

pages 193, 210).

Harris, Tim, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy
(2005).
Composable memory transactions. In proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
ACM, pages 48-60 (cited on pages 177, 181, 211, 223).

Harris, Timo, Keir Fraser, and Ian A. Pratt (2002).
A practical multi-word compare-and-swap operation. In proceedings of
Distributed Computing (DISC), pages 265-279. URL: http://www.cl.cam.
ac.uk/research/srg/netos/papers/2002-casn.pdf (cited on page 120).

REFERENCES

231

http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/3-540-63141-0_14
http://dx.doi.org/10.1145/1233307.1233309
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1007/s00165-008-0092-5
http://mitpress.mit.edu/books/dynamic-logic
http://mitpress.mit.edu/books/dynamic-logic
http://mitpress.mit.edu/books/dynamic-logic
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.1145/1065944.1065952
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf

232 REFERENCES

Heller, Steve, Maurice Herlihy, Victor Luchangco, Mark Moir, William N.
Scherer, 111, and Nir Shavit (2006).
A lazy concurrent list-based set algorithm. In proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC). Springer,
pages 3-16 (cited on page 36).

Hendler, Danny, Itai Incze, Nir Shavit, and Moran Tzafrir (2010).
Flat combining and the synchronization-parallelism tradeoff. In proceed-
ings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 355-364 (cited on pages 42, 45, 130, 167, 204, 222).

Hendler, Danny, Nir Shavit, and Lena Yerushalmi (2004).
A scalable lock-free stack algorithm. In proceedings of the ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). New York, New
York, USA: ACM Press, pages 206-215 (cited on pages 37, 71, 167, 204).

Herlihy, Maurice (1991).
Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124-149 (cited on pages 30, 45).

Herlihy, Maurice, Victor Luchangco, and Mark Moir (2003).
Obstruction-free synchronization: double-ended queues as an example.
In proceedings of the International Conference on Distributed Computing
Systems (ICDCS). IEEE, pages 522-529 (cited on page 42).

Herlihy, Maurice, Victor Luchangco, Mark Moir, and W.N. N Scherer, III
(2003).
Software transactional memory for dynamic-sized data structures. In pro-
ceedings of the ACM Symposium on Principles of Distributed Computing
(PODC) (cited on pages 167, 204, 210, 213).

Herlihy, Maurice and Nir Shavit (2008).
The Art of Multiprocessor Programming. Morgan Kaufmann (cited on
pages 13, 24, 32, 40, 41, 130, 146, 189, 222).

Herlihy, Maurice and Jeannette M. Wing (1990).
Linearizability: a correctness condition for concurrent objects. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 12(3):463-492
(cited on pages 40, 75, 130, 138).

Hoare, C.A.R. (1972).
Proof of correctness of data representations. Acta {I}nformatica, 1(4):271-
281. URL: http://www.springerlink.com/index/W7446683830]348H . pdf
(cited on page 60).

Hughes, John (2000).
Generalising monads to arrows. Science of computer programming, 37(1-
3):67-111 (cited on pages 175, 188, 202, 211).

http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://books.google.com/books?vid=ISBN1581137087
http://dx.doi.org/10.1145/78969.78972
http://www.springerlink.com/index/W7446683830J348H.pdf
http://www.springerlink.com/index/W7446683830J348H.pdf
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

Hur, Chung-Kil, Derek Dreyer, Georg Neis, and Viktor Vafeiadis (2012).
The marriage of bisimulations and Kripke logical relations. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). New York, New York, USA: ACM Press, pages 59-72
(cited on page 86).

Jensen, Jonas Braband and Lars Birkedal (2012).
Fictional Separation Logic. In proceedings of the European Symposium on
Programming (ESOP) (cited on page 133).

Jerger, Natalie D. Enright (2008).
Chip Multiprocessor Coherence and Interconnect System Design. PhD
thesis. University of Wisconsin-Madison (cited on page 26).

Jones, Cliff B. (1983).
Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems (TOPLAS),
5(4):596-619 (cited on pages 61, 134).

Kahn, Gilles (1974).
The semantics of a simple language for parallel programming. Information
processing, pages 471-475. URL: http://www.citeulike.org/group/872/
article/349829 (cited on page 18).

Kennedy, Andrew and Claudio V. Russo (2005).
Generalized algebraic data types and object-oriented programming. In
proceedings of the ACM SIGPLAN Conference on Object-oriented Program-
ming Systems, Languages, and Applications (OOPSLA). New York, New
York, USA: ACM Press, pages 21-40 (cited on page 153).

Knuth, Donald E. (1977).
Notes on the van Emde Boas construction of priority deques: An instruc-
tive use of recursion (cited on page 101).

Knuth, Donald E. (1997).
The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison Wesley (cited on page 31).

Knuth, Donald E. (2003).
Bottom-up education. Proceedings of the 8th annual conference on Inno-
vation and technology in computer science education (ITiCSE). New York,
New York, USA: ACM Press (cited on page 25).

Koutavas, Vasileios and Mitchell Wand (2006).
Small bisimulations for reasoning about higher-order imperative pro-
grams. In proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pages 141-152 (cited on pages 57,
129).

REFERENCES

233

http://dx.doi.org/10.1145/2103656.2103666
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://books.google.com/books?vid=ISSN0164-0925
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://dx.doi.org/10.1145/1094811.1094814
http://dx.doi.org/10.1145/961511.961514
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050

234 REFERENCES

Krishnaswami, Neelakantan R., Aaron Turon, Derek Dreyer, and Deepak
Garg (2012).
Superficially substructural types. In proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP) (cited on

page 134).

Kuper, Lindsey and Ryan R. Newton (2012).
A Lattice-Based Approach to Deterministic Parallelism with Shared State
(cited on page 18).

Lauer, Hugh C. and Roger M. Needham (1979).
On the duality of operating system structures. ACM SIGOPS Operating
Systems Review, 13(2):3-19 (cited on page 14).

Le Fessant, Fabrice and Luc Maranget (1998).
Compiling Join Patterns. In proceedings of the International Workshop on
High-Level Concurrent Languages (HLCL) (cited on page 149).

Lea, Doug.
Concurrency JSR-166 Interest Site. URL: http://gee.cs.oswego.edu/dl/
concurrency-interest/ (cited on page 4).

Lea, Doug (2000).
A Java fork/join framework. In proceedings of the ACM 2000 Conference on
Java Grande (JAVA). New York, New York, USA: ACM Press, pages 36-43
(cited on page 4).

Lea, Doug (2005).
The java.util.concurrent synchronizer framework. Science of Computer
Programming, 58(3):293-309 (cited on pages 4, 161, 173, 216).

Leitner, Felix von (2009).
Source Code Optimization. URL: http://www.linux- kongress.org/2009/
slides/compiler_survey_felix_von_leitner.pdf (cited on page 5).

Lesani, Mohsen and Jens Palsberg (2011).
Communicating memory transactions. In proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP) (cited on page 212).

Ley-Wild, Ruy and Aleksandar Nanevski (2013).
Subjective Auxiliary State for Coarse-Grained Concurrency. In proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (cited on pages 75, 133).

Liang, Hongjin and Xinyu Feng (2013).
Modular Verification of Linearizability with Non-Fixed Linearization
Points (cited on pages 131, 135).

http://dx.doi.org/10.1145/2364527.2364536
http://dx.doi.org/10.1145/850657.850658
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://dx.doi.org/10.1145/337449.337465
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://dx.doi.org/10.1145/1941553.1941577
http://dx.doi.org/10.1145/2429069.2429134

Liang, Hongjin, Xinyu Feng, and Ming Fu (2012).
A rely-guarantee-based simulation for verifying concurrent program
transformations. In proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL) (cited on page 131).

Lipton, Richard] (1975).
Reduction: a method of proving properties of parallel programs. Commu-
nications of the ACM (CACM), 18(12):717-721 (cited on page 135).

Liu, Yigong (2009).
Asynchronous Message Coordination and Concurrency Library. URL:
http://channel.sourceforge.net/ (cited on page 213).

Lucassen,] M and D K Gifford (1988).
Polymorphic effect systems. In proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 47-57
(cited on page 129).

Luchangco, Victor and V.J.] Marathe (2011).
Transaction communicators: enabling cooperation among concurrent
transactions. In proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP) (cited on page 212).

Luchangco, Victor, Mark Moir, and Nir Shavit (2003).
Nonblocking k-compare-single-swap. In proceedings of the ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA) (cited on
page 197).

Lynch, Nancy and Frits Vaandrager (1995).
Forward and Backward Simulations: Part I: Untimed Systems. Information
and Computation, 121(2):214-233. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.12.3241&rep=repl&type=pdf (cited on
pages 74, 138).

Manolios, Panagiotis (2003).
A compositional theory of refinement for branching time. In proceedings
of the Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME), pages 304-318 (cited on page 75).

Manolios, Panagiotis and Richard Trefler (2003).
A lattice-theoretic characterization of safety and liveness. In proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC). New
York, New York, USA: ACM Press, pages 325-333 (cited on page 39).

Manson, Jeremy, William Pugh, and Sarita V. Adve (2005).
The Java memory model. In proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). New York,
New York, USA: ACM Press, pages 378-391 (cited on page 12).

REFERENCES

235

http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://channel.sourceforge.net/
http://channel.sourceforge.net/
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://books.google.com/books?vid=ISSN1432-4350
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1145/872035.872083
http://dx.doi.org/10.1145/1040305.1040336

236 REFERENCES

Martin, Milo M. K., Mark D. Hill, and Daniel J. Sorin (2012).
Why on-chip cache coherence is here to stay. Communications of the ACM,

55(7):78-89 (cited on page 27).

McKenney, Paul E., Dipankar Sarma, and Maneesh Soni (2004).
Scaling dcache with RCU. URL: http://www.linuxjournal.com/article/
7124 (cited on page 13).

McKenney, Paul E. and John D. Slingwine (1998).
Read-copy update: Using execution history to solve concurrency problems.
Parallel and Distributed Computing and Systems, pages 509-518. URL: http:
//www2 . rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
(cited on pages 35, 51).

Mellor-Crummey, John M. and Michael L. Scott (1991).
Algorithms for scalable synchronization on shared-memory multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21-65 (cited on pages 38,

39,167, 204).

Meyer, A. R. and K. Sieber (1988).
Towards fully abstract semantics for local variables. In proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (cited on page 19).

Michael, Maged M. (2004).
Hazard pointers: safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 15(6):491-504
(cited on page 35).

Michael, Maged M. and Michael L. Scott (1996).
Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC). ACM, pages 267-275 (cited on pages 167, 189,
204).

Michael, Maged M. and Michael L. Scott (1998).
Nonblocking Algorithms and Preemption-Safe Locking on Multipro-
grammed Shared Memory Multiprocessors. Journal of Parallel and Dis-
tributed Computing, 51(1):1-26 (cited on pages 64, 150).

Milner, R (1982).
A Calculus of Communicating Systems. Springer-Verlag New York, Inc.
(cited on page 17).

Milner, Robin (1977).
Fully abstract models of the lambda calculus. Theoretical Computer Science,
4(1):1-22. URL: http: / / ieeexplore . ieee . org/ xpls /abs_all. jsp?
arnumber=21953 (cited on page 56).

http://dx.doi.org/10.1145/2209249.2209269
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/73560.73577
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953

Milner, Robin (1993).
Elements of interaction: Turing award lecture. Communications of the
ACM, 36(1):78-89 (cited on page 17).

Mitchell, John C. (1986).
Representation independence and data abstraction. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). New York, New York, USA: ACM Press, pages 263-276
(cited on pages 20, 127).

Molka, Daniel, Daniel Hackenberg, Robert Schone, and Matthias S. Muller
(2009).
Memory Performance and Cache Coherency Effects on an Intel Ne-
halem Multiprocessor System. In proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT). IEEE,
pages 261-270 (cited on page 28).

Moore, Katherine F. and Dan Grossman (2008).
High-level small-step operational semantics for transactions. In proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL). New York, New York, USA: ACM Press, pages 51—
62 (cited on page 55).

Morris Jr., James H (1973).
Protection in programming languages. Communications of the ACM
(CACM), 16(1):15-21 (cited on page 59).

Nain, Sumit and Moshe Y. Vardi (2007).
Branching vs. Linear Time: Semantical Perspective. Automated Technology
for Verification and Analysis (ATVA) (cited on page 138).

Odersky, Martin (2002).
An Overview of Functional Nets. APPSEM Summer School, Caminha,
Portugal, September 2000 (cited on page 213).

O’Hearn, Peter W. (2007).
Resources, concurrency, and local reasoning. Theoretical Computer Sci-
ence, 375(1-3):271-307 (cited on page 70).

O’Hearn, Peter W. and David J. Pym (1999).
The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215-244.
URL: http://www.jstor.org/stable/10.2307/421090 (cited on page 90).

O’Hearn, Peter W., Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta
Yorsh (2010).
Verifying linearizability with hindsight. In proceedings of the ACM Sympo-
sium on Principles of Distributed Computing (PODC) (cited on page 131).

REFERENCES

237

http://dx.doi.org/10.1145/151233.151240
http://dx.doi.org/10.1145/512644.512669
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1145/1328438.1328448
http://dx.doi.org/10.1145/361932.361937
http://dx.doi.org/10.1007/978-3-540-75596-8_4
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://www.jstor.org/stable/10.2307/421090
http://www.jstor.org/stable/10.2307/421090
http://dx.doi.org/10.1145/1835698.1835722

238 REFERENCES

Parkinson, Matthew and Gavin Bierman (2005).
Separation logic and abstraction. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
40(1):247-258 (cited on page 132).

Perlis, Alan J. (1982).
Epigrams on programming. ACM SIGPLAN Notices, 17(9):7-13 (cited on
page 3).

Peyton Jones, Simon (2001).
Tackling the awkward squad. Engineering theories of software construction,
pages 47-96. URL: http://research.microsoft.com/en-us/um/people/
simonpj/papers/marktoberdorf/ (cited on page 193).

Peyton Jones, Simon, Andrew Gordon, and Sigbjorn Finne (1996).
Concurrent Haskell. In proceedings of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). New York, New
York, USA: ACM Press, pages 295-308 (cited on page 15).

Peyton Jones, Simon and Philip Wadler (1993).
Imperative functional programming. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL)
(cited on pages 175, 188, 211).

Pike, Rob (2012).
Concurrency is not Parallelism (it’s better). URL: http://concur. rspace.
googlecode. com/hg/talk/concur.html (cited on page 11).

Pitts, Andrew M. (2002).
Operational Semantics and Program Equivalence. Applied Semantics, Ad-
vanced Lectures. Edited by G Barthe, P Dybjer, and] Saraiva. Volume 2395.
Lecture Notes in Computer Science, Tutorial. Springer-Verlag, pages 378-
412. URL: http://www.cl.cam.ac.uk/~ampl2/papers/opespe/opespe -
lncs.pdf (cited on page 128).

Pitts, Andrew M. (2005).
Typed Operational Reasoning. Advanced Topics in Types and Programming
Languages. Edited by B C Pierce. The MIT Press. Chapter 7, pages 245-289
(cited on page 128).

Pitts, Andrew M. and Ian Stark (1998).
Operational reasoning for functions with local state. Higher order opera-
tional techniques in semantics, pages 227-274. URL: http://www.cl.cam.ac.
uk/~amp12/papers/operfl/operfl.pdf (cited on pages 57, 61, 100, 128).

Plociniczak, Hubert and Susan Eisenbach (2010).
JErlang: Erlang with Joins. Coordination Models and Languages. Vol-
ume 6116. Lecture Notes in Computer Science, pages 61-75 (cited on

page 213).

http://dx.doi.org/10.1145/1047659.1040326
http://dx.doi.org/10.1145/947955.1083808
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://dx.doi.org/10.1145/237721.237794
http://dx.doi.org/10.1145/158511.158524
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://books.google.com/books?vid=ISBN0-262-16228-8
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://dx.doi.org/10.1007/978-3-642-13414-2_5

Plotkin, Gordon D. and Martin Abadi (1993).
A logic for parametric polymorphism. International Conference on Typed
Lambda Calculi and Applications (TLCA), pages 361-375 (cited on pages 9o,
129, 222).

Reppy, John (1991).
CML: A higher concurrent language. In proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 293-305 (cited on page 209).

Reppy, John (1992).
Higher-order concurrency. PhD thesis. Cornell University. URL: http://
people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz (cited on
pages 11, 15, 175, 177).

Reppy; John (2007).
Concurrent programming in ML. Cambridge University Press. URL: http:
/ /books . google . com/books ?hl=en&lr=&id=V_0CCK8wcIUC&o0i=fnd &
pg=PP1&dqg=Concurrent+programming+in+ML&0ots=61i8BTglUXK&sig=
xKpY1lrdadlTv2rfQs-JAoow]2hs (cited on page 176).

Reppy, John, Claudio V. Russo, and Yingqi Xiao (2009).
Parallel concurrent ML. In proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP). ACM, pages 257-268
(cited on page 209).

Reynolds, John C. (1983).
Types, abstraction and parametric polymorphism. Information processing.
URL: http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
(cited on pages 20, 52, 83, 127, 130).

Reynolds, John C. (2002).
Separation logic: a logic for shared mutable data structures. In proceedings
of the IEEE Symposium on Logic in Computer Science (LICS). IEEE Com-
puter Society, pages 55-74 (cited on pages 60, 68, 95).

Russo, Claudio V. (2007).
The Joins Concurrency Library. In proceedings of Practical Aspects of
Declarative Languages (PADL). Springer-Verlag, pages 260-274 (cited on
pages 8, 141, 150, 187, 213).

Russo, Claudio V. (2008).
Join Patterns for Visual Basic. In proceedings of the ACM SIGPLAN Con-
ference on Object-oriented Programming Systems, Languages, and Applica-
tions (OOPSLA) (cited on pages 148, 165, 213).

Sangiorgi, Davide, Naoki Kobayashi, and Eijiro Sumii (2007).
Environmental Bisimulations for Higher-Order Languages. In proceedings

REFERENCES

239

http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/113445.113470
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?vid=ISSN03621340
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1109/LICS.2007.17

240 REFERENCES

of the IEEE Symposium on Logic in Computer Science (LICS). Volume 33. 1,
pages 293-302 (cited on pages 57, 129).

Scherer, ITI, William N., Doug Lea, and Michael L. Scott (2005).
A scalable elimination-based exchange channel. In proceedings of the Work-
shop on Synchronization and Concurrency in Object Oriented Languages
(SCOOL). Citeseer (cited on pages 4, 146, 172, 181).

Scherer, ITI, William N., Doug Lea, and Michael L. Scott (2006).
Scalable synchronous queues. In proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP). Vol-
ume 52. 5. New York, New York, USA: ACM Press, pages 147-156 (cited on

page 4).

Scherer, II1, William N. and Michael L. Scott (2004).
Nonblocking Concurrent Data Structures with Condition Synchroniza-
tion. In proceedings of Distributed Computing (DISC). Springer, pages 174-
187 (cited on pages 39, 167, 204, 216).

Shavit, Nir and Dan Touitou (1995).
Software transactional memory. In proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). New York, New York, USA:
ACM Press, pages 204-213 (cited on pages 6, 149, 177).

Shavit, Nir and Dan Touitou (1997).
Software transactional memory. In proceedings of Distributed Computing
(DISC), 10(2):99-116 (cited on page 210).

Singh, Satnam (2006).
Higher-Order combinators for join patterns using STM. In proceedings of
the TRANSACT workshop. URL: https: //urresearch . rochester . edu/
fileDownloadForInstitutionalltem.action?itemId=3699&itemFileld=
5278 (cited on page 214).

Smaragdakis, Yannis, Anthony Kay, Reimer Behrends, and Michal Young
(2007).
Transactions with isolation and cooperation. In proceedings of the ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA) (cited on page 212).

Sulzmann, Martin and Edmund S L Lam (2009).
Parallel Join Patterns with Guards and Propagation. URL: http : / /
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&
amp; rep=repl& type=pdf (cited on page 214).

Sumii, Eijiro and Benjamin C. Pierce (2005).
A bisimulation for type abstraction and recursion. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). Volume 4o. 1, pages 63—74 (cited on pages 57, 129).

http://dx.doi.org/10.1145/1122971.1122994
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1007/s004460050028
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
http://dx.doi.org/10.1145/1297027.1297042
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1047659.1040311

Sundell, Hi kan, Anders Gidenstam, Marina Papatriantafilou, and Philippas
Tsigas (2011).
A lock-free algorithm for concurrent bags. In proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). New
York, New York, USA: ACM Press, pages 335-344 (cited on page 150).

Sutherland, Ivan E. and Jo Ebergen (2002).
Computers without Clocks. Scientific American, 287(2):62-69 (cited on

page 17).

Svendsen, Kasper, Lars Birkedal, and Matthew Parkinson (2013).
Modular Reasoning about Separation of Concurrent Data Structures. In
proceedings of the European Symposium on Programming (ESOP). URL:
http://www.itu.dk/people/kasv/hocap-ext.pdf (cited on page 132).

Swaine, James, Kevin Tew, Peter Dinda, Robert Bruce Findler, and Matthew
Flatt (2010).
Back to the futures: incremental parallelization of existing sequential run-
time systems. In proceedings of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA).
New York, New York, USA: ACM Press (cited on page 223).

Tobin-Hochstadt, Sam (2010).
Typed Scheme: From Scripts to Programs. PhD thesis. Northeastern Uni-
versity (cited on page 223).

Treiber, R. K. (1986).
Systems programming: Coping with parallelism. Technical report. IBM
Almaden Research Center (cited on page 34).

Turon, Aaron (2012).
Reagents (cited on page 10).

Turon, Aaron and Claudio V. Russo (2011).
Scalable Join Patterns. In proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA) (cited on page 10).

Turon, Aaron, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek
Dreyer (2013).
Logical relations for fine-grained concurrency (cited on page 10).

Turon, Aaron and Mitchell Wand (2011).
A separation logic for refining concurrent objects. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL) (cited on pages 10, 131).

REFERENCES

241

http://dx.doi.org/10.1145/1989493.1989550
http://dx.doi.org/10.1038/scientificamerican0802-62
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/2254064.2254084
http://dx.doi.org/10.1145/2048066.2048111
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/1926385.1926415

242 REFERENCES

Vafeiadis, Viktor (2008).
Modular fine-grained concurrency verification. PhD thesis. University of
Cambridge (cited on page 134).

Vafeiadis, Viktor and Matthew Parkinson (2007).
A Marriage of Rely/Guarantee and Separation Logic. In proceedings of
Concurrency Theory (CONCUR) (cited on page 134).

Van Roy, Peter and Seif Haridi (2004).
Concepts, Techniques, and Models of Computer Programming. URL: http :
//www.info.ucl.ac.be/~pvr/book.html (cited on pages 15, 16, 18).

Von Itzstein, G. Stewart and David Kearney (2001).
Join Java: An alternative concurrency semantics for Java. Technical report
ACRC-o1-001. University of South Australia (cited on page 213).

http://dx.doi.org/10.1145/1360443.1360452
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html

PartV

TECHNICAL APPENDIX

Reference: the Ft.. calculus

VALUES

EXPRESSIONS

e

0

true

false

(vv)
rec f(x).e
A.e

null

X

v

if ethen e else e

e+e

(e.e)

let (x, y) = e ine

ee

€_

case(e,null = ¢, x = e)
inj; e

case(e,inj; x = e,inj, y = e)
new e

get(e[i])

e[i] = e
cas(e[i], e, e)

fork e

Unit value

Boolean value

Boolean value
Number value

Pair value

Recursive function
Type abstraction

Heap location

Null optional reference
Variable

Value

Conditional

Addition

Pair introduction

Pair elimination

Function application

Type application

Optional reference elimination
Tagged union injection
Tagged union elimination
Mutable tuple allocation
Mutable tuple dereference
Mutable tuple assignment
Mutable tuple atomic update

Process forking

Figure A.1: Syntax of values and
expressions

245

246 REFERENCE: THE Flys CALCULUS

Figure A.2: Syntax of types

COMPARABLE TYPES 0 = unit Unit (i.e., nullary tuple)
| bool Boolean
| nat Natural number
| T+7 Tagged union
| ref(T) Mutable tuple reference
| ref(7) Optional reference
| ua.co Recursive comparable type
TYPES T u= 0 Comparable type
| « Type variable
| Tx7 Immutable pair type
| pa.t Recursive type
| Va.r Polymorphic type
| 7-o71 Function type
TYPE VARIABLE CONTEXTS A == - | A«
TERM VARIABLE CONTEXTS [== | [,x:7
COMBINED CONTEXTS Q == AT

WELL-TYPED TERMS ATre:T

Q+ () : unit Q + true : bool Q + false : bool Q+ n:nat Qx:THx:T
Q + e : bool Qre;:T Qre:n Qre:1y Qre:1xXT1, Q,x:rl,yzrzl—e':r
Q+ifethene elsee,: T Qr (e, e2): 11 XT3 Qrlet(x,y)=eine :7
Qf: T >1tx:tre:t Qre: 7' >1 Qre 7 B Qr e:ref(T)
- p Q + null : ref;(7) _—
Qrrec f(x)e:7 > 1 Qree:t Q+ e:ref(7)
Q+ e :ref(7) Qre:t Qx:ref(T)Fey: 7 Qre:T;
Q+ case(e,null = e, x =>¢;): 7T Qrinje: 11+ 1,
Qre:7+1; Q,x:T;+e;: T Q,are:T Qre:Va.T Qre;:T;
Q + case(e,inj; x = ep,inj, x =€) : T QrAe:Var Qre_:1[7'/a] Q + new (e) : ref(T)
Q1+ e:ref(T) Q+ e:ref(T) Qre' T Q+ e :ref(7) T,=0 Qrey:o Qre,:0
Q+ get(e[i]): 7 Qre[i] := € :unit Q + cas(e[i], eo, €y) : bool
Q+ e :unit Qre:pat Qre:tfpa.7/a)
Q + fork e : unit Qre:1fpa.t/a] Qre:pat

Figure A.3: Typing rules

HEAP-STORED VALUES

Heaprs

THREAD POOLS

CONFIGURATIONS

EVALUATION CONTEXTS

PRIMITIVE REDUCTIONS

h;case(#, inj, x = ey, inj, x = e;)

h;if true then ey else e,

h; if false then e else e,

h; case(null, null = e}, x = e;)
h;case(£, null = ej, x = ;)

hslet (x,y) = (vi,v2) ine

N AN >

REFERENCE: THE Ffy CALCULUS 247

NOILE
€ Heap = Loc — HeapVal
e ThreadPool = NfEExpression
= ;T
= []|ifKtheneelsee | K+e | v+K | (K,e) | (v,K)
| let(x,y)=Kine | Ke | vK | inj; K | K_
| case(K,inj, x = e,inj, x = e) | case(K,null = e,x = ¢)
| new (v,K,e) | get(K[i]) | K[i] := e | v[i] == K
| cas(K[i],e,e) | cas(v[i],K,e) | cas(v[i],v,K)
Figure A.4: Execution syntax
hsn+m < hjk whenk=n+m
h;get(£[i]) = h;v; when h(¢) = (V)
hye[i] == v - h[€[i]=v];() when ¢ € dom(h)
hycas(€[i],vo,vn) < h[€[i] =v,];true when h(&)[i] =,
hycas(€[i], vo,vy) — hsfalse when h(€)[i] £ v,
> hse;i[v/x] when h(€) = inj; v
> he
> he
> he
> hyey[€/x]
> hye[vi/x,v2/y]
hsrec f(x).ev = h;e[rec f(x).e/f,v/x]
hyinj; v & hw[€~inj;, v]; ¢
h;A.e = hje
hinew (V) - huw[ew (V)];€

GENERAL REDUCTION

hie = h'se

hT-—h;T

h; Tw (i~ K[forke]] > i Tw[i~ K[()]]w[j~ e]

hTwli- K[e]] > H;Tw[i~K[e']]

Figure A.5: Operational semantics

248 REFERENCE: THE Flys CALCULUS

Figure A.6: Pure reductions

pure

PURE REDUCTIONS e = e
pure

n+m < k whenk=n+m

pure
if true then e; else e; = ¢
pure
if false then ¢; elsee; = ¢
pure
case(null,null = ¢}, x = ¢;) = ¢
ure
case(&,null = e}, x = e;) i ex[€/x]
ure

let (x,y) = (v, v2) ine = e[vi/x,va/y]

pure

rec f(x).ev o e[rec f(x).e/f,v/x]

pure
Ae_ = e

IfQ +~ e : 7and Q + e : 7, we say e, contextually refines es, written

Figure A.7: Contextual refinement
QFEe <e:1,if:

for every i, jand C: (Q,) ~ (&, nat) we have

Vo VT, @i Cle]] =" hslirn]u T
= 3T,. &[jr Cles]] =" hg[j n]w Ty

Figure A.8: Derived forms

Ax.e = rec_(x).e
letx=ecine’ = (A_e)e
e;el 2 let_=eine’

acq = rec f(x).if cas(x, false, true) then () else f(x)

113

rel Ax. x := false

withLock(lock, e)

11>

Ax. acq(lock); let r = e(x) in rel(lock);

13

let lock = new (false) in
(withLock(lock, e1), ..., withLock(lock, e,))

mkAtomic(ei, ..., e,)

Reference: the logic of local protocols

ASSERTIONS P
(6 = €] x)

(i = i]x)

PURE CODE ASSERTIONS 0]

ISLAND DESCRIPTIONS !

STATE TRANSITION SYSTEMS 0

MAIN THREAD INDICATORS

v=vy
emp

€ u
Esu
i»ge

i

PxP
P=P
PAP

pvPp

dx.P

Vx.P

PoP

¢

>P

T@m {x. P}
{P} e {x.Q}
v<Yv:r

Qre<fe:t

(0,1,s,A)

where I € 6.5 — Assert,

s€0.S,
AcCHO.A,

A#0.F(s)

(S, A, ~, F)
where S a set,
A a set,

~C§ xS,

FGS—>p(A)

none

Equality of values

Empty resource

Singleton implementation heap
Singleton specification heap
Singleton specification thread
Island assertion

Separating conjunction
Implication

Conjunction

Disjunction

Existential quantification
Universal quantification
Speculative disjunction

Pure code assertion

Later modality

Threadpool simulation

Hoare triple
Value refinement
Expression refinement

State interpretation
Current state (rely-lower-bound)
Owned tokens

(which must not be free)

States

Tokens

Transition relation
Free tokens

ID of main thread
No main thread

Figure B.1: Syntax of assertions

249

250

REFERENCE: THE LOGIC OF LOCAL PROTOCOLS

DoMAINS

IsL

StateSet = { X < Heap x ThreadPool | X finite, nonempty }
Resource = { # € Heap x StateSet }

0 eSTS, s€6.S, Jeb.S—>UWorld, = p(Resource), }
AcO0.A, A#0.F(s), J(s)+ @

{W:(k,w) ‘ k<n, weNﬁAnIslandk}

Island, = { 1=(6,],s,A)

1>

World,,
UWorld, = { UeWorld, | U=|U|}

VRel, = {VeUWorld, ™" p(Val x Val) }

AND AND WORLD OPERATIONS

(6,5, 4)] = (6,],5.2) [(6,,50,A) [k = (6, As.I(s) I UWorldy, 50, A)
|(k, w)] 2 (k,Mijw(i)]) >(k+1w) 2 (k,di.|w(i)]x)
frame(0,],s,A) = (6,], s, 0.A-60.F(s) - A) interp(0, J,s,A) = J(s)

frame(k,) 2 (k, Ai.frame(w(i)))
COMPOSITION
State sets I ® 2 2 {hwhy;TywT, | h T €X; } when all compositions are defined

13

Resources (h,%1) ® (hy,2)) (hwhy, 21 ®%,)

Islands (0,],s,A) ® (0,],s',A") = (0,],s,Aw A") when0=0',s=s",]=]

Worlds (k,w) ® (k' ") 2 (k,Aiw(i) ® '(i)) when k = k/, dom(w) = dom(w")
PROTOCOL CONFORMANCE

Protocol step Or (s,A) ~ (s,A") 2s~ps, 0.F(s)wA=0.F(s')u A’

Island guarantee move (6,],s,A) guEar (0, 7,s,A") £ 0=0", J=T, O0r (s,A) ~* (s, A)

rel uar
Island rely move = £ frame(t) °c frame(:")
guar guar
World guarantee move (k,w) & (K, ") 2 k>k', Viedom(w).|w(i)]p = &'(i)
I
World rely move we w 2 frame(W) T frame(W’)

WORLD SATISFACTION

n:W,n' =2 Wk>0 = n=n"®7; Viecdom(W.0). n; € interp(W.w(i))(1>|W])

Figure B.2: Semantic structures and
operations on them

REFERENCE: THE LOGIC OF LOCAL PROTOCOLS 251

THE SEMANTICS OF RESOURCE AND PROTOCOL ASSERTIONS, AND THE CONNECTIVES.

R | w,pePR iff R W,neP R ff
rel
o | Wl P=Q |YW 2 W.W.qeP P = W.,nef Q
vi=vy | v =, e u =~ ul,{z;2})
emp | W=|W|,n=(2,{2;2}) s u n=(2,{[¢~ul;z})
PAQ | W,nEeP Pand W,y P Q irge n=(2,{@;[i~e]})
rel
PvQ | W,qnef Por W, Q io(0,Ls,4) | W.o(i) 2 (6,][1],s A)
Vx.P | Vv. W, EP P[v/x] where [I] £ AsAU.{n | U,nE” I(s)}
Elx'P ElV.W,ﬂ':pP[V/x] Pl*PZ W:W1®W2) 17:}71®}12) sz',l/]j':ppi
>P Wk>0 — DW,UI:PP bob ﬂ.Z:Zluzz, W,(qh,Z,) =P p;
THE SEMANTICS OF VALUE REFINEMENT.
o v Vs Uefv, <Y vty iff
T v v + v : 1y for 1}, € {unit, bool, nat}
o Vi Vs (vi,vs) € p(a)(U)
T x1y | (v,vh) (W$,v8) [UEP (V<Y vdin A vi<Vasi)
T 17 |recfx.e |recfxes | Ul >(x:tre[v/f] =< eslvs/f]: 1)
Va.T A.e A.eq U’ p(ar-e <€ e :1)
po.T v Vs UkE v <Y v t[pa.t/a]
ref,(7) null null always _
A A UEP pe, <Y & ref(T)
ref(7T) ¢, o UEfinv(3x,y. Ax <V y:taly o (%) * € 5 (7))
T+ T A s 3i. Uk 3x,y. bx <Y y:1; Adnv(v, By inj; x % vg b inj;)

where inv(P) = (({dummy},3,2,1_.@),A_.P,dummy, &)

THE SEMANTICS OF EXPRESSION REFINEMENT.

Q Uef Qre <fe:1 iff

VK,j. UEP {j»s Kles]} e {x.3y. x <V y:1Aj»sK[y]}

7, Q| Vv URP v Vvt = Q' - ef[v/x] <& es[vs/x] i T
a, Q) VV.UERPL-YVI O e <f et 1

THE SEMANTICS OF HOARE TRIPLES.
Uref{P} e {x.Q} = Vi UE P=[ir e]@i{x.Q}

THE SEMANTICS OF THREADPOOL SIMULATION.

rel

YW 3 Wo, nr#n. if W.k>0and h,2: W, 5 ® g then:

13

Wo, =P T@m {x. Q}
hy T > W T = 33,4 \W' ggir w. 2332, W2 :W,qen, W,y e? T'em {x. Q}

guar
T=Tow[mw~v] = 32,4/, W 20 W. £33, hI:W,n®ns W,4' = Q[v/x]* To@none {x. tt}

, guar ,
W 2 WaAWk=Wlk+n
Ve'eX . JceZ. ¢c-»* ¢

13

where W’ gﬁ:r w
=¥

1>

252 REFERENCE: THE LOGIC OF LOCAL PROTOCOLS

LAWS OF INTUITIONISTIC FIRST-ORDER LOGIC.

PeP P+ P[v/x] Prv=v PP PrQ PrPAQ PrPAQ
PrP P+ P[v'/x] P-PAQ PrP PrQ
P-PvQ P,P+R P,Q+R PP P-Q P,P+-Q P+P=0Q Pr+P

Pr+R PrPvQ PrPvQ PrP=Q PrQ
P+ Ply/x] y fresh P+ Vx.P Pr3Ix.P P,Ply/x]+-Q y fresh P+ P[v/x]
P+ Vx.P P+ P[v/x] PrQ P+ 3x.P
AXIOMS FROM THE LOGIC OF BUNCHED IMPLICATIONS.
(PvQ)*R <= (P*R)v(Q*R)
p p
*Q o= Qx (PAQ)*R = (P*R)A(Q=*R) P,P-Q P.PFQ
(PxQ)*R < P*(Q=*R)
(I3x.P)*xQ <+ 3Ix.(P*Q) P,P %Py Q% Q,
Pxemp < P
(Vx.P)xQ = Vx.(P*Q)

LAWS FOR THE “LATER” MODALITY.

Mono LoB >Vx.P < Vx.pP
PP P,>P+ P |>(P/\Q) <~ DPADQ ' .
_ >Ix.P < 3dx.pP
Pr P PrP >(PvQ) <= >PVPQ
>(P+Q) <= DpPx*pQ

REASONING ABOUT REFINEMENT.

®F ()<Y () : unit @ true <V true : bool

Orpvi<V v OF v <V

D+ (vi,v3) <V (vi,v3) 111 x Ty

Or e, <fe:T O v, <Y v T[pa.t/a]

%

D+ A.e <V Aes:Va.T Qv <" vt pa.t

D+ inv(EIE,?. AX =Yy TAv o (X) * v o (7))

O+ n<Y

@ + false < false : bool n : nat
vy =rec f(x;).e vs =rec f(xs).es

O, x, <V xs: T+ pe[vi/f] <€ es[vs/f]: T

Orv,<Vvito> 1

O - >y, <Y v s ref(T)

@ + null <Y null : ref,(7) % —
D+ vy <7 v refo(T)

@+ 3x, y. bx <V y 17 Adnv(v, oy inj; X % vg g inj;)

O v, <Y v 1 ref(T)

d)»—vlsvvs:‘rl+12

REFERENCE: THE LOGIC OF LOCAL PROTOCOLS 253

“GLUE” (LOGICAL AND STRUCTURAL) RULES FOR CONCURRENT HOARE LOGIC.

BinD

(P} e {x.Q} Vx. {Q} K[x] {y.R} ReTuRN
{P} K[e] {y.R} {emp} v {x.x =v Aemp}
CONSEQUENCE DisjuNcTION FRAME
PP {P'} e {x.Q'} Q'+Q {P} e {x.Q} {P} e {x.Q} {P} e {x.Q}
{P} e {x.Q} {Pv P} e {x.Q} {P*R} e {x.Q*R}
Hypro HypoOuT
O+ P {PAQ} e {x.R} P pure ®,P+{Q} e {x.R}
O+ {Q} e {x.R} O+ {PAQ} e {x.R}
PRIMITIVE RULES FOR CONCURRENT HOARE LOGIC.
PUPI;Ee PRIVATE
e > {P}e{Q} (P) a (x. Q)
{>P} e {Q} {>P} a {x.Q}
SHArI:E, P guar NEWISLAND
Vi 240,32 0.3Q. (e d(es)* P)a(x. > I(Vs)* Q) A (i Q)R {P} e {x.Qx* p>r.I(1.5)}
{i~19*>P} a {x. R} {P} e {x.Q*1}
PRIvATESUMELIM EXECSPEC
ie{l,2} {€inj; x * P} e; {ret. Q} {P} e {x.Q} Q3R
{€~ inj; x * >P} case(¥,inj; x = e1,inj, x = e;) {ret. Q} {P} e {x.R}
REASONING ABOUT ATOMIC EXPRESSIONS.
INJECT ALLoc DEREF
(emp) inj; v (ret. ret —, inj; v) (emp) new ¥ (ret. ret —; (¥)) (v 1 (v)) get(v[i]) (ret. ret = v; Av =, (¥))
ASSIGN
v (v v)) v[E] = vl (retoret= () Av ey (Voo Vie, Vi Vigts -5 Vi)
CASTRUE
(v (v, vn)) cas(v]i], vi, vi) (ret.ret = true Av > (Vi oo, Vi, Vi Vins -2 -5 Vi)
CASFALSE

v (V) Av, £ ;) cas(v[i], vo, v)) (ret. ret = false Av —, (¥
1

LOGICAL AND STRUCTURAL RULES.

ACONSEQUENCE AFRAME ADISJUNCTION
P+P (P') a (x. Q') Q' +-Q (P) a (x. Q) (P1) a (x. Q) (P2) a (x. Q)
(P) a (x. Q) (P*R)a(x.Q=R) (P v P)a(x. Q)
AEXECSPEC

(P) a (x. Q) Q3R
(P) a (x. R)

254 REFERENCE: THE LOGIC OF LOCAL PROTOCOLS

DERIVED RULES.

O+ {P} e {x. >Q} O+ Vx. {Q} e {y.R}
O+ {P} letx=cine’ {y.R}

Or {P} e {x. (x=truen >Q;) v (x =false A >Q;)} Or {Q} e {ret. R} O+ {Q,} e, {ret. R}
O + {P} if ethen e else e, {ret. R}

Or{P}e{x.(x=nullA>Q) V(I x=€AD>Q,)} UNFOLDREC
D+ {Q} e {ret. R} O+ Ve {Qy[8/x]} ey {ret. R} OrVf,x. {PAVx.{P} fx {ret. Q}} e {ret. Q}
O+ {P} case(e,null = ¢;,x = e;) {ret. R} O+ Vx. {P} e[rec f(x).e/f] {ret. Q}

Metatheory for the logic of local
protocols

BASIC PROPERTIES OF THE LOGIC OF LOCAL PROTOCOLS

rely guar
Lemma 6 (Rely-guarantee Preorders). The relations © and £ are pre-

orders.

rely
Lemma 7 (Rely-closure of Assertions). W,n =7 Pand W' 2 W implies
W', n P P.

Lemma8. [W|@ W=W.

rely rely
Lemmag. If W © W'then |W| £ |W|.

rely
Lemma 10 (Rely Decomposition). If Wy ® W, © W’ then there are W and

rely rely
W/ with W' = W/ @ W, W, © W/ and W, © W

Lemma 11 (Token Framing). If W guEar W’ and W ® Wy is defined then
rel uar

there exists some Wjﬁ = W such that W' ® W} is defined and W ® Wy °c

w'e WJi.

Lemmai2. If h,2: W,nthen h,2: W W, 1.

Lemmai3. If h,Z: W@ W/, nthen h,2: W, 1.

Lemma 4. IfW.k>0then oW s Wand oW '3 W.

Lemma1s. If W.k > 0 then |>W| = >|W]|.

Lemma 16 (Later Satisfaction). If W.k >0and h,X: W,nthenh,Z: bW, 1.

Lemma17. =3 is transitive.

255

256 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

C.2 SOUNDNESS OF HOARE-STYLE REASONING
C.21 Constructions with Threadpool Triples

Lemma 18 (Framing). W,y £? T@m {x. Q} and Wy, ¢ EP R with W#Wy,
n#ny gives
W e Wr,nens = Tem {x. Q*R}.

Proof. The proof proceeds by induction on W .k.

Case
. (We Wp).k=W.k=0.

Case

rel
2 Let W2 We Wy, n)#n®ny.

s Write W' = W @ W] with W/ 2 W, W} 'S W, by Lem. 0.
4 Suppose (W) @ WJ).k > 0.

s Wk = (W @ W)).k>0.

6. Suppose h,X: W/ ® Wy, n®ny@1;.

7 I Winensen; by Lem. 13.

Case | ;T — h'; T’

s. Pick 2’,#’, and W, with by assumption.
guar
vv'lll a M/l,)
33,
h/’Zl . M/{I, 7’], ® ”f ® ’1},
W/ k=W k-1,
W',y ef T'@m {x. Q}

o. Pick Wy’ rezly W, with W' @ W)’ 3 W@ Wy by Lem. 11.

0. B, X0 W @ W' @ @1y by Lem. 12.

(W W)) k=W"k=W.k-1=(W o W,).k-1

2. W', s EP R

5 W@ Wy, @y P T'@m {x. Q * R} by induction hypothesis.

-

SOUNDNESS OF HOARE-STYLE REASONING

Case m:iandeToLﬂ[i»—n/]‘

14. Pick ', 17/, and W/ with by assumption.
guar
vv'lll = M/l’)
=3,
h2E W'y eneny,
W'k = Wk,
W/, 7’ P Q[v/x] * To@none {x. tt}

uar

s Pick W' 'S WY with W o W2 *5" W/ o W/ by Lem. 1.
6. B, 20 W@ W' @@ by Lem. 12.
7. (W@ W,).k=W/"k=W k=(W oW,).k.

8. W', s EP R

0. W' @ Wy, n' ® ny =F Q[v/x] * R » Ty@none {x. tt}.

Corollary 1 (Precondition Extension). W, £* T@m {xl. Ixy. x1 <Y X3t TA jrog K[xz]}
together with W #W gives W Wy, 5 £ T@m {xl. Axy. %1 <Y X3t TA jrog K[xz]}.
rely
For the proofs below, we add an additional syntactic assertion, - 2 U,
with

rely rely
Urf- 3 Uy2U 2 U,

Corollary 2 (Postcondition Strengthening). If wehave W, n = T@m {x. Q}
1
then W, 5 =P T@m {x. Qn- El |W|} holds too.

257

258 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Lemma 19 (Parallel Composition). If we have Wi, #; =f Ty@my, {x. Ql} and
Wz,l’]z =P Th,@m, {X. Qz} with Wi#W,, 771#7’]2, Ti#T, and m; # none =
m; € dom(T;) then we also have

Wi @ Wo, i @ 12 =P Ty v Th,@my {X~ Ql}-

Proof. By induction on the measure M (W, m;) defined by

W.k m = none
M(W,m) =
W.k+1 m # none.

Case | M(W;,mp) =0

. (Wi ® Wa).k = Wik = 0.
Case | M(Wj,my) >0

rely
2 Let W' 2 VVI®W2,7’]f#711®7’]2.

rely rely
3 Write W = W/ @ W) with W/ 2 W, W) = W, by Lem. 10.

4. Suppose (W} ® W,).k > 0.

s. Wk =(W/ @ Wy).k>0.

6. Suppose h,X: W/ ®@ W), m ®@m ® 1.

7 X W men e, by Lem. 13.

Case \ T wT, - h';T'

8. Write T" = T{ v T, WLOG.

o. 3Ty - W5 T by nondeterminism of fork.
10. Pick X', 771, and W} with by assumption.

WSt w,

DEDIR

W k=W k-1,
W20 Wni@neny,
W'yl &P T/@my {x1. Qi}

u. Pick Wy’ rezly W, with W/’ @ W’ 3 W/ e W, by Lem. 11.

o (W@ Wi).k =W/ k=W k-1=(W & W/).k-1.

3 WL Z W e WY i@ n, @y by Lem. 12.

. W), EP T,@m, {xz. Qz} by assumption.

5. W W) ni@n P T w Th@m, {xl. Ql} by induction hypothesis.

SOUNDNESS OF HOARE-STYLE REASONING

Case‘Tl*TZ:TOLﬂ[mIHvl]‘

20.

21.

22.

23.

. my € dom(T) by assumption.
. Write T1 = Tll U] [m1 =g Vl].
. Pick 2, 51, and W/’ with by assumption.

uar
" g:, !

w2 Wy,

=3,

Wk = Wik,

2 :Whniemneny,

WY, 5} P Qu[vi/x1] * T{@none {x;. tt}

. Pick W)’ regly W, with W/’ = W’ 3 W * W, by Lem. 11.
(W)« W)k = W'k = W .k = (W[= W)).k.
hE W Wl + gy + by Lem. 12.
W' 1y P Ty@my {x. Q. by assumption.
W/« W), 1 * 12 EP Q[v1/x1] * T] & T,@none {xl. tt}.
by induction hypothesis.

259

260 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Lemma 20 (Sequential Composition). If wehave W, =° [i — e] w T@i {x. Q}
and for all v and any W', %" with W', 5" = Q[v/x] we have W',
[i = K[v]]@i {x. R} then

W,n &P [im K[e]]w T@i {x. R}.

Proof. 'The proof proceeds by induction on W.k; the case W.k = 0 is trivial so we assume W.k > 0. We branch on the
structure of e:

rel
. Let W’ eEY W, n¢#n.
>. Suppose W'.k > 0.
5. Suppose h, X : W', n ® 1.

Case

4 Pick X', 7', and W with by assumption.
W s W,
33,
hE W ' ey,
W".k=W"k,
W, 5" =P Q[v/x] * T@none {x. tt}
s. Write W’ = W/ @ W, and 1’ = 1] ® 5. with
Wi =F Q[v/x],
W', i} =P T@none {x. tt}.
6. W',ni = [i > K[v]]@i {x. R} by assumption.
7. W'n'ef i~ K[v]]wT@i {x. R} by Lem. 19.

8. Pick 2", %", and W with by (7).
W/ll gugar Wll
=z
h, 2’/ : W///) ’7" ® Tlf’
W k=W"k
W, 3" &P R[v'[x] * T@none {x. tt}
9. 233",
w0 W"k=W"k=W"k.

SOUNDNESS OF HOARE-STYLE REASONING 261

Case ‘ hi[i—K[v]]JwT—h;T

u. Pick 2", %", and W'’ with by (7).
WIII gu;ar WII
=3
h/’ Z// . W”l, ’1// ® l/lf,
W"k=W"k-1
W, " b T'@i {x. R)
w233,
3 Wk=W'k-1=W k-1

Case

14. Suppose h; [i — K[e]|w T — h';[i — K[e']]w T".
5. s [ime]loT > h;[ise]uwT.
16. Pick 2/, ', and W"' with by assumption.
w” S W,
rI3Y,
B2 W @ny,
W"k=W\.k-1,
W’ ' & [ime']o T'@i {x. Q}
7. Wy 2P [i- K[e']]w T'@i {x. R} by induction hypothesis.

C.2.2

262 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Soundness of key inference rules

The soundness of FRAME and BIND follow easily from the lemmas proved
in the previous section. Here we give proofs for the key rules dealing with
islands and lifting atomic triples.

Lemma 21.
NEwWISLAND

{P} e {x. Q% >1.I(1s)}
{P} e {x.Q*1}

We prove the result by a straightforward induction on the step index in

the underlying threadpool simulation, appealing to the following lemma in
the case that the main thread terminates: if

hEI:W,nenp and W,nEf Qx* >iI(1.s) * T@none {true}

then

8

uar
I, W2 W.h2: Wi n'enr and W',n" P Q%1 * T@none {true}

The proof of the lemma is as follows:
Proof.
L W=WieW,8W;, n=menerns,
Wi,m P Q, Wy, &P >uI(1s), Wi, s P T@none {true}
2 Let W= (W.k, Wow[i~Z[]"])

guar

s W2 w

4 DIW L P >i(Ls)

s Lety' =m®@n;

6. h,Z:W'.n' ®nr

7. Wa ® W3, 13 P T@none {true} by framing
s. W.,n' =P Q * 1 * T@none {true}

SOUNDNESS OF HOARE-STYLE REASONING

Let
neI[W] = W.K>0An=7% A Viedom(W.w).n; € interp(W.w(i))(>|W])
Lemma 22.
PRIVATE
(P) a (x. Q)
{>P} a {x.Q}
Proof.

v Fix i, Wo, W, n, e, p
2. Suppose Wy, n P >P, W regly Wo, W.k>0,

ne#n, hEXZ:W,neyp, hlira]l->h;T
s 3nw. (BLE)=n®ne®nw, nweI[W.0]w
4 . mashly, T=[irv] by inversion on operational semantics
s. Letn =p @ nw
o In'#ne. =0 @np)h (n@np) X3 (n'@np).2 pW.n' e Qv/x]

by assumption

7 LetE = (' ®nk).2

rely
. DW 2 W

o. W, Z: >W, 5" @ 5§

263

264 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Lemma 23.

SHARED

rely , guar , , . ,
Vi 3 40.3" 2 0.3Q. (rI(es)*P)a(x. bt/ I({'s)*Q) A (it *Q)+R

{i~19*>P} a {x.R}

Proof.

. Fix jand Wy, 5 F 19 * DP

N

. Suffices to show Wy, 7 =° [i — e]@i {x. R}

rel
3 Fix W =4 Wy and np#n
4. Suppose W.k>0and h,2: W, ® yp
s. WonEP g% DP

6. W — Wl ® W", 17 — ;7/ ® 11//) W’, 7], ':p 10, W”,]7// ':p DP

rely
7.3 2 g, wp. Wow=wpw[jr 1]

8. 3N, N
(hZ)=n®n®nr®n;

7€ L) (BIWD), e R w0p(i)I(wp(i).5) (5| W])
by semantics of world satisfaction

, guar .
o. A" 2 4, Q. by assumption

i~/ *QK’R
(e.J(e.s) = P) e (x. > J(1'.s) * Q)
. Lety=4" @1,
u W e >(.J(i.s) * P) by (1, 8)
v Let 7 = 1 ® 4}
s h=(®7r).h
14. Suppose h;[j— a] - ;T
5. W hsa > Wy, T=[j~v] by inversion
w. 37 W = (7 ®7r).h, by (9)
(e7nr).2= (7T ®7F).2,
>W 7 P i J(1s) * Qv/x]
v Let W= (W.k-1|wp|wiaw[j1])

_. guar

8. W 2 W
w 3,y =n"en, by semantics of assertions, token-purity of island
SW, gl i J(s), interpretations

W,n' = Q[v/x]
20. Write 2’ = (77 ® 7j¢).2
a 233
2 B2 W, ® e by (8, 19)

SOUNDNESS OF HOARE-STYLE REASONING 265

2 W' BP Q[v/x]wivm
28 W, 7' P R[v/x] by (9)
s W, 0 eP[jmv]@i {x. R}

266 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

C.3 SOUNDNESS OF REFINEMENT REASONING
C3a Congruence

Lemma 24 (Soundness Shortcut). A;T = e < e; : 7 is equivalent to

YU Vp: A — VRel Vyy,y; : dom(T') — Val.
[Vx e dom(T). U &° yi(x) <¥ y,(x) : F(x)]
(VK. joi. U, (2, {@:[j = K[ea[y2/TT]]}) ¥
[i~ e[pn/T]]@i {xl. Ay 31 <Y Xyt TA G K[xz]}]

C.3.1.1

SOUNDNESS OF REFINEMENT REASONING 267

New

Lemma 25.

A;rbeiﬁfii‘[,‘

A;T E new € < new f : ref(T)
Proof.
1 Let U,p: A - VRel, y;,9; : dom(T) — Val.
». Suppose Vx € dom(T). U & y1(x) <Y y2(x) : T(x).
5. Write e} = e;[y1/T], f{ = fi[y2/T].
+ LetK,i, .
s Wite 7 = (2, {25 [j - K[new F]}).
6. Write Q = 3y. x <V y :ref(T) A j =5 K[y].
7. Suffices to show U, 1 £° [i + new ¢’ |@i {x. Q}. by Lem. 24.

Let M = |ref(T)|. We now proceed to make a claim: for any 0 < m < M it sufices to prove

Uil BP [i > new vy, ..., Vs €y ... e @i {x. Q},

rely
forallU’ 2 UandallU’' = vi <YV w; i 1y,..., U E? v,, <¥ Wy, : T,, where

M = (2, {@3[j = K[new wi, ..., W, fr1-- - ful1})

We prove the claim by induction on m; the case m = 0 was proved above. So, suppose the claim holds for 0 < m < M
and assume that we know that

" . 4 4 .
U’ a1 EP [new vy, .o, Viit, €405+ - -5 €3y | @i {x. Q},

rely
holds for all forall U” 2 Uandall U” £° vy <V wy: 11, ..., U" EP vy <Y Winst © Tme1, where
N1 = (2,{@5 [j = K[new wi, ..., Wi, frrins -5 fu1})
rely
In the interest of applying the induction hypothesis, we pick arbitrary U’ 2 U and
Ul <"w:t,...UE v, <" wp:Tm
By induction, it will suffice for the claim to prove that
U’ o B [new vi, o, Vs € s - e]@1 {x. Q},

holds, where
Nm = (8,42 [j = Klnew wi, ..., Wi, friins -5 fir]1})

Now, by assumption and Lemma 24 and Corollary 2 we have

, Iy , . rely ,
Ul EP [i — e,]@i {xm+1. QuiiA- 2 U },

268 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

where

v . . / !
Qm+1 = El}’m+1~ Xm+1 = Ym+1* Tm+l /\] >>s K[new Wheo s Wins Yyt -+ ;fM]

rely
Now, let v,,4; be arbitrary and take W, " =7 Qus1[Vm+1/Xm+1] A+ 2 U’ and by an application of Lemma 20 we
have the claim if we can show

W' " P [im> new vy, ..., Vil €pins .- > €0 | @i {x. Q},
Luckily, we can pick w,; such that we have

|W"| EP Vi <V Wi+l * Tm+l>
0" =(2,{@;[j = K[new w1, ..., w1, frias-- 5 fir]1})s
|WII| regly UI

and we can apply our original assumption. After this detour, we proceed with the proof proper:

o LetU’ 2 U

o Let AU EPv<Vw:r.

0. Write 1" = (&, {@; [j = K[new w]]}).

n. Suffices to show U, ' £° [i =~ new v]@i {x. Q}.

1. Let W/ regly U'sne#n'.

13. Suppose W'.k>0and h, X : W', 5" ® 5.

14. by [i > new V] > hw [& > V];[i — &].

15. Pick €, with Vhy; T, € 2. €, ¢ dom(h;).

16. Write 2 = {@; [j = K[new w]]} ® Z,.

7. Write 2/ = {[€, » W]; [j — K[£2]]} ® Zo.

8. 233

19. Write " = (@, {@; [j = K[£2]]}).

20. Pick n ¢ dom(W'.w).

2 Write P = 3%, 7. Ax <Y y: 1A (€ =, (X) % & =5 (3)).
22 Write 1 = ({1}, 2,2, A_.@), [A_.P]},,,,1,2).

23. Write W = (W .k, W.ww [n—1]).

24 [W|EP £ <V £, :ref(T).

s WD W

26. D|W"| rezly >|W|.

o oW S U,

28 hw [l =], 2 W' n" @y

0. hw[6 = V], 2 oWy @1y by Lem. 16
0. DW”, 5" &P [i - 6]@i {x. Q}.

C.3.1.2

Fork

Lemma 26.

AT E e < ey :unit

A;T E fork e; < fork e; : unit

Proof.

1.

2.

10.

11.

13.

14.

15.

16.

19.

20.

)

1.

Let U,p: A - VRel, y,y, : dom(T') - Val.

Suppose Vx € dom(T). U & y;(x) <Y y,(x) : T(x).
. Write e] = e1[y1/T], €5 = e2[y2/T].

. LetK, i, j.

. Write = (&, {@; [j = K[fork €5]]}).

. Write Q = 3x,. x; <Y x5 t unit A j =4 K[x,].

. Suffices to show U, # 7 [i — fork e |@i {xl. Q}.

rely

- Let W 2 U, ns#n.
. Suppose W.k>0and h,Z: W,n ® ;.

h;[i— fork ef] = b [i > ()] w[i’' — €]
Pick j’ with VA'; T' € 2. j' ¢ dom(T").

. Write 2 = {@;[j = K[fork €5]]} ® Zo.

Write 2’ = {@; [j » K[()]] & [j = €3]} ® Z,.
>3

Write ' = (&, {@;[j = K[O]]}).

Write " = (@, {@;[j' = €5]}).

BRI W.n e n" @y
hE oW, en" eny

>W,n' £ [i = ()]@i {x. Q}.
oW, 0" &P [i’ = ef]@i’ {x. tt}
pW,n'®@n" £F [i~ ()]w[i’ — e]@i {xl. Q}

SOUNDNESS OF REFINEMENT REASONING

by Lem. 24.

by Lem. 16.

by assumption and Lem. 24.

by Lem. 19.

269

C.3.1.3

270

Function Application and Abstraction

METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Lemma 27. For U.k # 0 we have U =” rec f(x).e; <¥ rec f(x).ex: 1 > T3
equivalent to

el

I
Ywy,w,. YU’ 5’ sU.

|:U, =P w1 Sv wy - Tl]

N

[VK, j,i. U, (2,{@:[j ~ K[ez[rec f(x).e2/f, w2/x]]]}) &
[i — ei[rec f(x).e1/f, m/x]]@i {xl. . x1 <Y Xy Ty A Joog K[xz]}]

Lemma 28.

NTEe<e:11 > 12 ATEALfiin

ATeEe izefo:m

Proof.

1.

2.

10.

11.

14.

15.

16.

-
=)

Let U,p: A - VRel, y;,y, : dom(T') - Val.
Suppose Vx € dom(T). U = y;(x) <Y y,(x) : T(x).

. Write e] = e1[y1/T], €5 = e2[y2/T].

- Write f{ = filyi/T], f; = fa[y2/T].

CLetK, i, .

- Write = (&, {@; [j = K[e; f7]]})-

- Write Q = 3x,. %1 <¥ x5 1 Ty A j > K[x2].

. Suffices to show U, n £ [i — ¢ f/ @i {xl- Q}-

C Write Q" = 3x). x| <Y x5 1 11 > 12 A j > K[x) 7]

U,n e [i — ef]@i {x{. Q'}.

rely
Ui lime]@i{x.Q'rn- 2 U

. Let v{ € Val.

rely
- Let W/, 5" with W/, " P Q'[v{/x{]A- 2 U.

Suffices to show W', 5’ £ [i = v{ f/]@i {x1. Q}
Suffices to show |W'|, ' &F [i = v{ f{]@i {x1. Q}
Suppose W'.k > 0 WLOG.

. Pick v, with

|[W/| &f vi <Y V) 1) - 1o,

n' =(@,{a;[j = K[v; ,11})s
1

w2 U,

Write Q" = 3x. x]' <Y x5t 1y A j g K[V) %]

(W', q" & [i = fll@i {x{". Q"}.

by Lem. 24.

by assumption and Lem. 24.

by Cor. 2.

by Lem. 20.
by Cor. 1.

by assumption and Lem. 24.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

43

rely
AW & [im @i {2 Q" A 2 W[}
Let v’ € Val.

Suffices to show W”, 1" = [i = v{ v{]@i {x1. Q}
Suffices to show |W”|, 4" £ [i » v| v{'|@i {xl. Q}
Suppose W".k > 0 WLOG.

Pick v} with

W P v’ <V ol 2 g,

" =(2,{a;[j ~ K[v; v)11}),

L

Let W 'S W], pén”.

Suppose W"'.k > 0and h,2: W, 5" ® ;.
Write v = rec f(x).g and v} = rec f(x).g5.

hli > vivi'] = b i = gilvi/ vl /x]].

Write £ = {&; [j —» K[v} vJ]]} ® Zo.

Write 2’ = {@; [j = K[&[v3/f,v5 [x]]]} ® Zo.

DI DI

Write " = (@, {@; [j = K[g;[v3/fvi [x]1]})-
hEZ: W' " ®ns

hZ W 0" ®ny.

Suppose W'k > 0 WLOG.
AW P v <YV T - .
oW = W

W P v <Y WY 1.

WL e (i glviffovi[x]l@i {x1. Q)

rely
Let W”, " with W”, 5" =P Q"[v!"[x/'] A+ 2 |W|.

SOUNDNESS OF REFINEMENT REASONING

by Cor. 2.

by Lem. 20.
by Cor. 1.

by Lem. 16.

Suffices to show W',y =P [i — g{[vi/f,v{ [x]]|@i {xl. Q}.
Suffices to show | >W"'|, 4" £ [i = g{[v{/f,v{'[x]]@i {x1. Q}

by Cor. 1.

by Lem. 27.

271

272 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

Lemma 29.

A;r,fl’l']—>T2,x1T1|:613821T2

A;T =rec f(x).e1 <rec f(x).e2: 71 —> T2
Proof.
. Let U,p: A - VRel,y,y, : dom(T) — Val.
». Suppose Vx € dom(T). U E* y;(x) <¥ ya(x) : T(x).
3. Write e] = e;[y1/T], €5 = e2[y2/T].
v LetK, i, .
s. Write 1 = (@, {@;[j = K[rec f(x).e5]]}).
6. Write Q = 3x5. x1 <Y x5 : 71 = 13 A j =5 K[x2].
7. Suffices to show U, 5 =F [i + rec f(x).e{]@i {x;. Q}. by Lem. 24.
s. Suffices to show U, 1 =° Q[rec f(x).ej/x1].

o. Suffices to show U &* rec f(x).e] <¥ rec f(x).e5: 11 — 15.

rely
10. Suffices to show YU’ 2 U. U’ £ rec f(x).e] <Y rec f(x).e}: 11 = 15.
u. Proceed by induction on U’ .k.

12. Suppose U’k > 0.

3. Let wi, wy, U” rezly U’ with U" £F wy <Y wy @ 11

w0, Let K, j, i.

s Write ' = (2 {25 [j = Kleb[rec f(x).c4/fowa/x]]]}).
16. Write Q" = 3xy. x1 <V x5 1 15 A j > K[x2].

17. Suffices to show U”, 1’ & [i v e{[rec f(x).e{/f, wi/x]]@i {x. Q'}
by Lem. 27.

8. Vx e dom(T). U” & y1(x) <Y ya(x) : T(x).
19. U" P rec f(x).ef <Y rec f(x).e: 11— 1, by induction hypothesis.

20. U, 4" EP [i— ef[rec f(x).e]/f, wi/x]]@i {xl. Q'} by assumption and Lem. 24.

Ciigp CAS

Lemma 30. For U.k # 0 we have that U = ¢, <V ¢, : ref(T) implies the
existence of an i € dom(U.w) such that we have

I[[Uﬂ’(i)ﬂU = {([81 = V_l]a{[ez HV_z];@}) | /\ >U EP 1y <V vy T}.

Lemma 31. Assume that we have U £° v; <¥ v, : 0 and U =° w; <V w, : 0.
If U.k # 0 and there are #, h and X such that h, 2 : U, holds, then we have
that

V1 =W <= V) =W;.

SOUNDNESS OF REFINEMENT REASONING

Lemma 32.

AT E e < e ref(T) Ty =0 ATEfi<fhco ATEg=<gp:0o

AT E cas(ei[n], fi, @) < cas(e2[n], f2,£2) : bool

Proof.

1.

2.

10.

11.

15.

16.

20.

21.

22.

23.

24.

Let U,p: A - VRel, y;,y, : dom(T) — Val.
Suppose Vx € dom(T). U = y;(x) <Y y,(x) : T(x).

. Write e] = e[y1/T], €5 = ex[y2/T].

- Write f = fily1/T], f3 = foly2/T]-

- Write g1 = &1[31/T] & = g2[y2/T].

. LetK, i, j.

- Write np = (&, {@; [j = K[cas(e;[n], f3, &)]1})-

- Write Q = 3x;. x1 ¥ X3 1 bool A j =5 K[x3].

. Suffices to show U, 5 £ [i ~ cas(e{[n], f{, g])]@i {xl' Q}'

by Lem. 24.
Write Q' = 3x5. x| <Y x} : ref(T) A j =5 K[cas(x5[n], 3, 85)]-
U,n e [i e ef]@i {x]. Q'}. by assumption and Lem. 24.
U, ef [ivef]@i {x]. Q" A rezly U}. by Cor. 2.

. Letv] € Val.

ely

. Let W/, ' with W', 5" & Q'[v]/x{] A~ Ed

Suffices to show W', 5" ¢ [i = cas(v{[n], f{, g])]@i {x1. Q}

by Lem. 20.
Suffices to show |W'|, " £° [i — cas(v{[n], f{, g1) | @i {xl. Q}

by Cor. 1.

. Suppose W’.k > 0 WLOG.
. Pick v, with

|[W'| £F v <Y V) ref(T),
n' = (2,{@;[j » K[cas(vs[n], £, £)11})

w'S v,
. Write Q” = Hxél. xl” <V xg CO0 AN] > K[cas(vé[n],xé’,gé)].
(W', " & [i - f]@i {Xf'- Q"} by assumption and Lem. 24.
ol p T4 Myi [0 O .rely /
(W' = [i = fll@i {x{". Q" n- 3 W]} by Cor. 2.

Let v’ € Val.

el
Let W”, 5" with W, 1" =0 Q"[v'[x{']n- 2 [W'].

Suffices to show W", 5" =P [i — cas(v{[n],v], g|)] @i {xl. Q}
by Lem. 20.

273

274 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

25. Suffices to show |W"'|, "' P [i — cas(v{[n],v], g) | @i {xl. Q}
by Cor. 1.
26. Suppose W .k > 0 WLOG.
27. Pick vy with
[W"| =P vl <V vl 2o,
n" = (2,{@;[j = K[cas(v[n], v}, &) 11}),
WS (w)

28 Write Q" = 3. x]"" <Y x" 1 0 A j =g K[cas(v5[n],vY, x)")].

20. W, 0" &P [i - gll@i {x]". Q""} by assumption and Lem. 24.
rely

0o (W' e [im gll@i {x{". Q" - 2 |W'|} by Cor. 2.

1. Letv]” € Val.

32, Let W///’ ’1/// With W///, 17/// ':p Q,,,[V{,,/xl,,,] A - regly |W//|‘

5. Suffices to show W, 5" i=F [i & cas(v{[n],v{,v{")]@i {x:. Q}
by Lem. 20.

s4. Suffices to show [W"|, " &=F [i > cas(v{[n],v{,v"")]@i {x:. Q}
by Cor. 1.

35. Suppose W'k > 0 WLOG.

36. Pick v’ with
W < o,
11/// _ (Q, {@; [] - K[cas(V;[T’l], Vé’)v;’/]]}),
|W”’| regly |W”|.

o Let w 'S Wy .
38. Suppose W .k >0and h, 2 : W,y ® 4.
30. Suppose h; [i = cas(vi[n],v{",v"")] = h'; T".
40. Suppose W' .k > 1 WLOG.
4. Write v] = £; and v} = £5.
42. Pick v, w, hg, Z, with
AW ery <V w:T,
h=[8 ~V]wh,,
2={[e~»wlo}®{z;[j~ Klcas(vy[n],v5,v)")]]} ® Zo

by Lem. 30.
43. D|W""| =P Va Sv Wy 0.
sa DWW P V] <V o
s b2 Wy @ ny by Lem. 16.

46. Vy =V S w, =v) by Lem. 31.

SOUNDNESS OF REFINEMENT REASONING 275

Case

Vi =V Awy =vy

47. Write vl =v{" and v} =v,,, m # n.

48 h' = h[& > vT].

40. T' = [i — true].

so. Write w! =Y and w!, = w,,, m # n.

51 Write 27 = {[£, » w']; 2} ® {@;[j = K[true]]} ® Z,.
s2. 23 X

s3. Write """ = (@, {@; [j = K[true]]}).

sa. N D|W| P V<V wh g

s B, S W @

s6. W, Z': oW 0" @ 55 by Lem. 16.
s7. W " EP [i — true]@i {xl. Q}.

" "
Case | v, £V AW, £V,

s8. h' = h.

so. T' = [i — false].

6o. Write 2’ = {[€, » W]; 3} ® {@; [j — K[false]]} ® Z,.

6. 23X

62. Write """ = (@, {@; [j = K[false]]}).

63 W EZ W' " @y

64 B, X2 W " @ ny by Lem. 16
6s. DW" """ =P [i — false]@i {xl. Q}.

C.3.2

276 METATHEORY FOR THE LOGIC OF LOCAL PROTOCOLS

May-refinement

Theorem 4 (May-refinement). Suppose ;- = e; < e, : nat holds. Let hy, h;,
i, j and n be arbitrary. If we have

E”’l;, T. hl; [l = 61] ¥ h{, [l = 7’1] w T;

then we also have

3k, Th. hys[j = e2] =" by [j > n]w To.
Proof. Let M be the number of steps in the assumed reduction. Write

hi;[imel] = h?; T10 - h%; T11 - hfw; TIM =hjli—>n]uTh.

We proceed to prove by induction the claim that for all 0 < m < M there are W,,,, ,,#%, and £, with the following
properties, where 57 = (hy, {hy;@}) and 2 = {hy; [j ~ e2]}:
o Wy, nm P T"@i {xl. Jxy. x1 <Y x5 : nat A j>s xz}.
° hlm;zm : Wm,rlm ® 7.
e W,k=1+M-m.
o XX,

Let us initially consider the base case m = 0. We choose Wy = (1+ M, @), o = (2,{@;[j~ e2]}) and ¢ =
{hy;[j — e2]}. The different properties are easily verified; the only nontrivial is the first and that follows from the
initial assumption ;- = e; < e; : nat. The induction step comes down to unrolling the definition of threadpool triples;
we omit the details.

Instantiating our claim at m = M now gives us Wy, 7p##, and 2 such that:

o Wi,y EP [i o n]w @i {xl. 3x;. %1 <Y xp i nat A j g xz}.

o h,Zy: W, nm ®1.

L] WM =1

e X3 ZM

A final unrolling of the definition of threadpool triples and a few calculations gives us 2’ with £ = ¥’ and X' =
{@;[j ~ n]} ® Zo. All that remains is to pick an element from the nonempty set '.

Reference: the Joins library API

A new Join instance j is allocated by calling an overload of factory method
Join.Create:

Join j = Join.Create(); or

Join j = Join.Create(size);

The optional integer size is used to explicitly bound the number of channels
supported by Join instance j. An omitted size argument defaults to 32; size
initializes the constant, read-only property j.Size.

A Join object notionally owns a set channels, each obtained by calling an
overload of method Init, passing the location, channel(s), of a channel or
array of channels using an out argument:

j.Init(out channel);
j.Init(out channels, length);

The second form takes a length argument to initialize location channels with
an array of length distinct channels.

Channels are instances of delegate types. In all, the library provides six
channel flavors:

// void-returning asynchronous channels
delegate void Asynchronous.Channel();
delegate void Asynchronous.Channel<A>(A a);
// void-returning synchronous channels
delegate void Synchronous.Channel();
delegate void Synchronous.Channel<A>(A a);
// value-returning synchronous channels
delegate R Synchronous<R>.Channel();
delegate R Synchronous<R>.Channel<A>(A a);

The outer class of a channel Asynchronous, Synchronous or Synchronous<R>
should be read as a modifier that specifies its blocking behaviour and optional
return type.

When a synchronous channel is invoked, the caller must wait until the
delegate returns (void or some value). When an asynchronous channel is
invoked, there is no result and the caller proceeds immediately without
waiting. Waiting may, but need not, involve blocking.

Apart from its channels, a Join object notionally owns a set of join patterns.

Each pattern is defined by invoking an overload of the instance method When

277

278 REFERENCE: THE JOINS LIBRARY API

followed by zero or more invocations of instance method And followed by
a final invocation of instance method Do. Thus a pattern definition typically
takes the form:

j.When(cy).And(cz) . And(c,) .Do(d)

Each argument ¢ to When(¢) or And(c) can be a single channel or an array
of channels. All synchronous channels that appear in a pattern must agree on

their return type.

The argument d to Do(d) is a continuation delegate that defines the body of
the pattern. Although it varies with the pattern, the type of the continuation
is always an instance of one of the following delegate types:

delegate R Func<Py,...,Pu,R>(Pip1,..., Pu pm);
delegate void Action<Pi,...,Pu>(Pi p1,..., Pm Pm);

The precise type of the continuation d, including its number of arguments,
is determined by the sequence of channels guarding it. If the first channel,
c1, in the pattern is a synchronous channel with return type R, then the
continuation’s return type is R; otherwise the return type is void.

The continuation receives the arguments of channel invocations as dele-
gate parameters Py pi,..., P, pm, for m < n. The presence and types of
any additional parameters P; py,..., P, p is dictated by the type of each
channel ¢;:

e If ¢; is of non-generic type Channel or Channel[] then When(c;)/And(c;)
adds no parameter to delegate d.

e If ¢; is of generic type Channel<P>, for some type P then When(c¢;)/And(c;)
adds one parameter p; of type P; = P to delegate d.

e Ifc; isanarray of type Channel<P>[] for some type P thenWhen(c;)/And(c;)
adds one parameter p; of array type Pj = P[] to delegate d.

Parameters are added to d from left to right, in increasing order of i.
In the current implementation, a continuation can receive at most m < 16
parameters.

A join pattern associates a set of channels with a body d. A body can
execute only once all the channels guarding it have been invoked. Invoking a
channel may enable zero, one or more patterns:

e If no pattern is enabled then the channel invocation is queued up. If the
channel is asynchronous, then the argument is added to an internal bag.
If the channel is synchronous, then the calling thread is blocked, joining a
notional bag of threads waiting on this channel.

o If there is a single enabled join pattern, then the arguments of the invoca-
tions involved in the match are consumed, any blocked thread involved
in the match is awakened, and the body of the pattern is executed in
that thread. Its result—a value or an exception—is broadcast to all other

REFERENCE: THE JOINS LIBRARY API

waiting threads, awakening them. If the pattern contains no synchronous
channels, then its body runs in a new thread.

e If there are several enabled patterns, then an unspecified one is chosen to

run.

o Similarly, if there are multiple invocations of a particular channel pending,
which invocation will be consumed when there is a match is unspecified.

The current number of channels initialized on j is available as read-only
property j.Count; its value is bounded by j.Size. Any invocation of j.Init
that would cause j.Count to exceed j.Size throws JoinException.

Join patterns must be well-formed, both individually and collectively.
Executing Do(d) to complete a join pattern will throw JoinException if d is
null, the pattern repeats a channel (and the implementation requires linear
patterns), a channel is null or foreign to this pattern’s Join instance, or the
join pattern is empty. A channel is foreign to a Join instance j if it was not
allocated by some call to j.Init. A pattern is empty when its set of channels
is empty (this can only arise through array arguments).

Array patterns are useful for defining dynamically sized joins, e.g. an n-
way exchanger:

class NWayExchanger<T> {
public Synchronous<T[]>.Channel<T>[] Values;
public NWayExchanger(int n) {
var j = Join.Create(n); j.Init(out Values, n);

j.When(Values).Do(vs = vs);

279

Reference: the Reagents library API

// Isolated updates on refs (shared state)
upd: Ref[A] = (A x B — A x C) = Reagent[B,C(C]

// Low-level shared state combinators
read: Ref[A] = Reagent[Unit, A]
cas: Ref[A] x A x A = Reagent[Unit, Unit]

// Interaction on channels (message passing)

swap: Endpoint[A,B] = Reagent[A,B]

// Composition

+ : Reagent[A,B] x Reagent[A,B] = Reagent[A,B]

>> : Reagent[A,B] x Reagent[B,C] = Reagent[A,C]

* 1 Reagent[A,B] x Reagent[A,C] = Reagent[A, B x (]

// Liftings

lift: (A — B) = Reagent[A,B]

first: Reagent[A,B] = Reagent[AxC, BxC(]
second: Reagent[A,B] = Reagent[CxA, CxB]

// Computed reagents
computed: (A — Reagent[Unit, B]) = Reagent[A,B]

// Post-commit actions
postCommit: (A = Unit) = Reagent[A,A]

// Invoking a reagent:
dissolve: Reagent[Unit,Unit] = Unit // as a catalyst
react: Reagent[A,B] = A = B // as a reactant,

// same as the ! method

281

	Colophon
	Abstract
	Acknowledgments
	Contents
	List of Figures

	i Prologue
	1 Overview
	1.1 The problem
	1.2 My thesis
	1.2.1 Understanding scalable concurrency
	1.2.2 Expressing scalable concurrency

	1.3 Organization
	1.4 Previously published material

	2 Concurrency meets parallelism
	2.1 Concurrency is not parallelism
	2.1.1 Scalable concurrency
	2.1.2 What scalable concurrency is not

	2.2 Top down: the problems of concurrency
	2.2.1 Expressive interaction
	2.2.2 The problem of sharing
	2.2.3 The problem of timing
	2.2.4 The role of abstraction

	2.3 Bottom up: the problems of scalability
	2.3.1 Cache coherence
	2.3.2 The foundation of interaction: consensus

	2.4 The rudiments of scalable concurrency: performance
	2.4.1 Fine-grained locking
	2.4.2 Optimistic concurrency
	2.4.3 Linked data structures
	2.4.4 Backoff
	2.4.5 Helping and elimination
	2.4.6 Synchronization and dual data structures

	2.5 The rudiments of scalable concurrency: correctness
	2.5.1 Safety: linearizability
	2.5.2 Liveness: nonblocking progress properties

	ii Understanding scalable concurrency
	3 A calculus for scalable concurrency
	3.1 The calculus
	3.1.1 Syntax
	3.1.2 Typing
	3.1.3 Operational semantics

	3.2 The memory consistency model
	3.3 Contextual refinement
	3.4 Observable atomicity
	3.4.1 The problem with atomic blocks
	3.4.2 Refinement versus linearizability

	4 Local protocols
	4.1 Overview
	4.1.1 The state transition system approach
	4.1.2 Scaling to scalable concurrency
	4.1.3 A note on drawing transition systems

	4.2 Spatial locality via local life stories
	4.2.1 A closer look at linking: Michael and Scott's queue
	4.2.2 The story of a node

	4.3 Role-playing via tokens
	4.4 Thread locality via specifications-as-resources
	4.5 Temporal locality via speculation

	5 A logic for local protocols
	5.1 Overview
	5.2 Assertions
	5.2.1 Characterizing the implementation heap
	5.2.2 Characterizing implementation code
	5.2.3 Characterizing (protocols on) shared resources
	5.2.4 Characterizing refinement and spec resources
	5.2.5 The remaining miscellany

	5.3 Semantic structures
	5.3.1 Resources
	5.3.2 Islands and possible worlds
	5.3.3 Environments
	5.3.4 Protocol conformance
	5.3.5 World satisfaction

	5.4 Semantics
	5.4.1 Resources, protocols, and connectives
	5.4.2 Refinement
	5.4.3 Hoare triples and threadpool simulation

	5.5 Basic reasoning principles
	5.5.1 Hypothetical reasoning and basic logical rules
	5.5.2 Reasoning about programs: an overview
	5.5.3 Reasoning about refinement
	5.5.4 Concurrent Hoare logic
	5.5.5 Atomic Hoare logic
	5.5.6 Reasoning about specification code
	5.5.7 Reasoning about recursion
	5.5.8 Derived rules for pure expressions

	5.6 Metatheory
	5.6.1 Soundness for refinement
	5.6.2 Lemmas for threadpool simulation

	6 Example proofs
	6.1 Proof outlines
	6.2 Warmup: concurrent counters
	6.2.1 The protocol
	6.2.2 The proof

	6.3 Warmup: late versus early choice
	6.4 Elimination: red flags versus blue flags
	6.5 Michael and Scott's queue
	6.5.1 The protocol
	6.5.2 Spatial locality
	6.5.3 The proof: enq
	6.5.4 The proof: deq

	6.6 Conditional CAS
	6.6.1 The protocol
	6.6.2 The proof

	7 Related work: understanding concurrency
	7.1 High-level language
	7.1.1 Representation independence and data abstraction
	7.1.2 Local state
	7.1.3 Shared-state concurrency

	7.2 Direct refinement proofs
	7.2.1 Linearizability
	7.2.2 Denotational techniques
	7.2.3 RGSim

	7.3 Local protocols
	7.3.1 The hindsight approach
	7.3.2 Concurrent abstract predicates
	7.3.3 Views and other fictions of separation

	7.4 Role-playing
	7.5 Cooperation
	7.5.1 RGSep
	7.5.2 RGSim
	7.5.3 Reduction techniques

	7.6 Nondeterminism
	7.6.1 The linear time/branching time spectrum
	7.6.2 Forward, backward, and hybrid simulation

	iii Expressing scalable concurrency
	8 Join patterns
	8.1 Overview
	8.2 The join calculus and Russo's API
	8.3 Solving synchronization problems with joins

	9 Implementing join patterns
	9.1 Overview
	9.1.1 The problem
	9.1.2 Our approach

	9.2 Representation
	9.3 The core algorithm: resolving a message
	9.4 Sending a message: firing, blocking and rendezvous
	9.5 Key optimizations
	9.5.1 Lazy message creation
	9.5.2 Specialized channel representation
	9.5.3 Message stealing

	9.6 Pragmatics and extensions
	9.7 Correctness
	9.8 Performance
	9.8.1 Methodology
	9.8.2 Benchmarks
	9.8.3 Analysis

	10 Reagents
	10.1 Overview
	10.1.1 Isolation versus interaction
	10.1.2 Disjunction versus conjunction
	10.1.3 Activity versus passivity

	10.2 The high-level combinators
	10.2.1 Atomic updates on Refs
	10.2.2 Synchronization: interaction within a reaction
	10.2.3 Disjunction of reagents: choice
	10.2.4 Conjunction of reagents: sequencing and pairing
	10.2.5 Catalysts: passive reagents
	10.2.6 Post-commit actions

	10.3 Translating join patterns
	10.4 Atomicity guarantees
	10.5 Low-level and computational combinators
	10.5.1 Computed reagents
	10.5.2 Shared state: read and cas
	10.5.3 Tentative reagents

	10.6 The Michael-Scott queue

	11 Implementing reagents
	11.1 Overview
	11.2 Offers
	11.3 The entry point: reacting
	11.4 The exit point: committing
	11.5 The combinators
	11.5.1 Shared state
	11.5.2 Message passing
	11.5.3 Disjunction: choice
	11.5.4 Conjunction: pairing and sequencing
	11.5.5 Computational reagents

	11.6 Catalysis
	11.7 Performance
	11.7.1 Methodology and benchmarks
	11.7.2 Analysis

	12 Related work: expressing concurrency
	12.1 Composable concurrency
	12.1.1 Concurrent ML
	12.1.2 Software transactional memory
	12.1.3 Transactions that communicate
	12.1.4 Composing scalable concurrent data structures

	12.2 Join calculus implementations
	12.2.1 Lock-based implementations
	12.2.2 STM-based implementations
	12.2.3 Languages versus libraries

	12.3 Scalable synchronization
	12.3.1 Coordination in java.util.concurrent
	12.3.2 Dual data structures

	iv Epilogue
	13 Conclusion
	13.1 Looking back
	13.2 Looking ahead
	13.2.1 Understanding scalable concurrency
	13.2.2 Expressing scalable concurrency
	13.2.3 Crossing the streams

	References

	v Technical appendix
	A Reference: the Fcas calculus
	B Reference: the logic of local protocols
	C Metatheory for the logic of local protocols
	C.1 Basic properties of the logic of local protocols
	C.2 Soundness of Hoare-style reasoning
	C.2.1 Constructions with Threadpool Triples
	C.2.2 Soundness of key inference rules

	C.3 Soundness of refinement reasoning
	C.3.1 Congruence
	C.3.2 May-refinement

	D Reference: the Joins library API
	E Reference: the Reagents library API

