
Traits
Deep operations

Trait-based metaprogramming

A foundation for trait-based metaprogramming

Aaron Turon

Department of Computer Science
University of Chicago

Joint work with John Reppy

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

A problem for single inheritance:

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 override Rd

class CSIntWr
 field lock
 field desc
 override Wr

class CSIntRW
 field lock
 field desc
 override Rd
 override Wr

inheritance

missed
inheritance

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

What are traits?

A trait is a partial class implementation: a flat collection of
provided methods.

Methods invoked by a trait but not provided are required
methods.

Traits cannot introduce state – they can only provide methods.

Introduced in [Schärli et al.; ECOOP’03].

Key idea

Trait composition occurs outside the inheritance hierarchy.
Composition is symmetric.

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

What are traits?

A trait is a partial class implementation: a flat collection of
provided methods.

Methods invoked by a trait but not provided are required
methods.

Traits cannot introduce state – they can only provide methods.

Introduced in [Schärli et al.; ECOOP’03].

Key idea

Trait composition occurs outside the inheritance hierarchy.
Composition is symmetric.

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

A trait-based solution:

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSRd
required
 field lock
provided
 override Rd

trait TSWr
required
 field lock
provided
 override Wr

inheritance
trait

inlining

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

Trait operations

Besides composition, traits support aliasing and excluding methods
to resolve conflicts.

Exclude and compose

TCPoint = TPoint + (TColored exclude toString)

Alias, exclude and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + ((TPoint alias toString as strP) exclude toString)
+ ((TColored alias toString as strC) exclude toString)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

Trait operations

Besides composition, traits support aliasing and excluding methods
to resolve conflicts.

Exclude and compose

TCPoint = TPoint + (TColored exclude toString)

Alias, exclude and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + ((TPoint alias toString as strP) exclude toString)
+ ((TColored alias toString as strC) exclude toString)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Why traits?
What are traits?
Trait operations

Trait operations

Besides composition, traits support aliasing and excluding methods
to resolve conflicts.

Exclude and compose

TCPoint = TPoint + (TColored exclude toString)

Alias, exclude and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + ((TPoint alias toString as strP) exclude toString)
+ ((TColored alias toString as strC) exclude toString)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

Deep operations

The alias and exclude operations are shallow: they do not affect
the bodies of other methods in the trait.

Deep aliasing =⇒ renaming Deep exclusion =⇒ hiding

Hide and compose

TCPoint = TPoint + (TColored hide toString)

Rename and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + (TPoint rename toString to strP)
+ (TColored rename toString to strC)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

Deep operations

The alias and exclude operations are shallow: they do not affect
the bodies of other methods in the trait.

Deep aliasing =⇒ renaming Deep exclusion =⇒ hiding

Hide and compose

TCPoint = TPoint + (TColored hide toString)

Rename and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + (TPoint rename toString to strP)
+ (TColored rename toString to strC)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

Deep operations

The alias and exclude operations are shallow: they do not affect
the bodies of other methods in the trait.

Deep aliasing =⇒ renaming Deep exclusion =⇒ hiding

Hide and compose

TCPoint = TPoint + (TColored hide toString)

Rename and compose

TCPoint = {
provides toString() : string {

self.strP() + ”: ” + self.strC();
}

} + (TPoint rename toString to strP)
+ (TColored rename toString to strC)

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

Our research: develop a statically-typed trait calculus giving a
semantics for method hiding and renaming.

Built on the Fisher-Reppy polymorphic trait calculus [Fisher &
Reppy 2003].

Uses Riecke-Stone dictionaries [Riecke & Stone 2002] to
provide a realistic model of the deep operations.

Provides more accurate trait types (requirements are tracked
per-method, rather than per-trait).

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

Syntactic forms for runtime trait values

φ ::= {r 7→ i r∈R} dictionary
Mv ::= {i 7→ µvi

i∈I} method suite value
µv ::= [E ; φ; λx .e] method value
tv ::= 〈| Mv ; φP ; φR |〉 trait value

where r ranges over trait method requirements (both self
and super) and i ranges over slots.

Note: these are simplified versions of the forms in the paper.

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

ΦP

1

ΦR

bar

bar
Φ1

TBar provides bar.

φP = {bar 7→ 1}
φR = {}
φ1 = {bar 7→ 1}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

ΦP

1 2

ΦR

foo bar

foo bar
Φ1

TFoo provides foo, requires bar.

φP = {foo 7→ 1}
φR = {bar 7→ 2}
φ1 = {foo 7→ 1, bar 7→ 2}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei ; φi ; ei]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I ′1 = I1 ∪ rng(φR1) I ′2 = I2 ∪ rng(φR2)
ϕF = FS(I ′2 \ dom(ϕR ∪ ϕP), I ′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei ; ϕ ◦ φi ; ei]
i∈I2}

E ` T1 + T2 −→ 〈| Mv ; φP ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei ; φi ; ei]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I ′1 = I1 ∪ rng(φR1) I ′2 = I2 ∪ rng(φR2)
ϕF = FS(I ′2 \ dom(ϕR ∪ ϕP), I ′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei ; ϕ ◦ φi ; ei]
i∈I2}

E ` T1 + T2 −→ 〈| Mv ; φP ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei ; φi ; ei]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I ′1 = I1 ∪ rng(φR1) I ′2 = I2 ∪ rng(φR2)
ϕF = FS(I ′2 \ dom(ϕR ∪ ϕP), I ′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei ; ϕ ◦ φi ; ei]
i∈I2}

E ` T1 + T2 −→ 〈| Mv ; φP ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei ; φi ; ei]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I ′1 = I1 ∪ rng(φR1) I ′2 = I2 ∪ rng(φR2)
ϕF = FS(I ′2 \ dom(ϕR ∪ ϕP), I ′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei ; ϕ ◦ φi ; ei]
i∈I2}

E ` T1 + T2 −→ 〈| Mv ; φP ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei ; φi ; ei]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I ′1 = I1 ∪ rng(φR1) I ′2 = I2 ∪ rng(φR2)
ϕF = FS(I ′2 \ dom(ϕR ∪ ϕP), I ′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei ; ϕ ◦ φi ; ei]
i∈I2}

E ` T1 + T2 −→ 〈| Mv ; φP ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

ΦP

1 2

ΦR

foo
bar

foo bar bar
Φ1 Φ2

TFooBar = TFoo + TBar

ϕ = {1 7→ 2}

φP = {foo 7→ 1, bar 7→ 2}
φR = {}
φ1 = {foo 7→ 1, bar 7→ 2}
φ2 = {bar 7→ 2}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T −→ 〈| IMv ; MφP ; RφR |〉
r ∈M r ′ /∈M r ′ /∈ R
φ′P = (φP \ r)[r ′ 7→ φP(r)]

E ` T rename r to r ′ −→ 〈| Mv ; φ′P ; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

ΦP

1 2

ΦR

foo
baz

foo bar bar
Φ1 Φ2

TFooBaz =
TFooBar rename bar to baz

φP = {foo 7→ 1, baz 7→ 2}
φR = {}
φ1 = {foo 7→ 1, bar 7→ 2}
φ2 = {bar 7→ 2}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

E ` T −→ 〈| IMv ; MφP ; RφR |〉 m ∈M
E ` T hide m −→ 〈| Mv ; φP \m; φR |〉

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Hiding and renaming
Semantics

ΦP

1 2

ΦR

foo

foo bar bar
Φ1 Φ2

TFoo′ = TFooBaz hide baz

φP = {foo 7→ 1}
φR = {}
φ1 = {foo 7→ 1, bar 7→ 2}
φ2 = {bar 7→ 2}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Recall the trait-based solution:

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSRd
required
 field lock
provided
 override Rd

trait TSWr
required
 field lock
provided
 override Wr

inheritance
trait

inlining

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

The TSync example

trait TSync<ty1, ty2> = {
provides Op(x : ty1) : ty2 {

self.lock.Acquire();
super.Op(x) before

self.lock.Release();
}
requires field lock : LockObj

}

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

This time with renaming:

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSync
required
 field lock
provided
 override Op

Rd/Op Rd/Op
Wr/Op

Wr/Op

inheritance
trait

inlining
trait inlining

with renaming

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Trait-based metaprogramming

Our calculus provides a foundation for “trait-based
metaprogramming” by formalizing a new notion of substitution:

TSync = λOp.trait { provides Op · · · }[[
TSync Read

]]
=

TSync rename Op to Read

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Trait-based metaprogramming

Our calculus provides a foundation for “trait-based
metaprogramming” by formalizing a new notion of substitution:

TSync = λOp.trait { provides Op · · · }

[[
TSync Read

]]
= TSync rename Op to Read

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Trait-based metaprogramming

Our calculus provides a foundation for “trait-based
metaprogramming” by formalizing a new notion of substitution:

TSync = λOp.trait { provides Op · · · }[[
TSync Read

]]
= TSync rename Op to Read

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

TSync
An interesting question

Method name abstraction is only a first step!

Research challenge: design a concrete metalanguage using this
notion of substitution.

Java’s synchronized keyword – instantiate TSync?

Pointcuts and other AOP techniques?

Type-directed application of abstracted traits?

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Summary

Hiding and renaming are the deep analogs to excluding and
aliasing.

Useful for conflict resolution.

Useful in isolation (for privacy and fixing “wrong” names).

Renaming yields a new notion of substitution.

We model these features with a statically typed trait calculus and
prove type soundness (see the tech report for proof details).

Our calculus provides a rigorous notion of substitution that can be
used to build a trait metalanguage.

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Some related work

The Programming Language Jigsaw: Mixins, Modularity and
Multiple Inheritance. Bracha, G. Dissertation.

Featherweight-trait Java: A trait-based extension for FJ.
Liquori, L. and A. Spiwack. Tech report.

Chai: Traits for Java-like languages. Smith, C. and
S. Drossopoulou. ECOOP’05.

Aspect-oriented programming.

Aaron Turon A foundation for trait-based metaprogramming

Traits
Deep operations

Trait-based metaprogramming

Thank you.

Aaron Turon A foundation for trait-based metaprogramming

	Traits
	Why traits?
	What are traits?
	Trait operations

	Deep operations
	Hiding and renaming
	Semantics

	Trait-based metaprogramming
	TSync
	An interesting question

	

