
A foundation for trait-based metaprogramming

John Reppy Aaron Turon
University of Chicago

{jhr, adrassi}@cs.uchicago.edu

Abstract
Schärli et al. introduced traits as reusable units of behavior inde-
pendent of the inheritance hierarchy. Despite their relative simplic-
ity, traits offer a surprisingly rich calculus. Trait calculi typically in-
clude operations for resolving conflicts when composing two traits.
In the existing work on traits, these operations (method exclusion
and aliasing) are shallow, i.e., they have no effect on the body of the
other methods in the trait. In this paper, we present a new trait sys-
tem, based on the Fisher-Reppy trait calculus, that adds deep oper-
ations (method hiding and renaming) to support conflict resolution.
The proposed operations are deep in the sense that they preserve
any existing connections between the affected method and the other
methods of the trait. Our system uses Riecke-Stone dictionaries to
support these features. In addition, we define a more fine-grained
mechanism for tracking trait types than in previous systems. The
resulting calculus is more flexible and expressive, and can serve as
the foundation for trait-based metaprogramming, an idiom we in-
troduce. A companion technical report proves type soundness for
our system; we state the key results in this paper.

1. Introduction
A trait is a simple collection of methods that represent the partial
implementation of a class. Methods defined in a trait are provided
methods; any method referenced in a trait but not provided by it
is a required method. Traits are similar to abstract classes, but with
two important differences: traits cannot introduce state, and they do
not lie within the inheritance hierarchy. The primary mechanism of
class reuse is inheritance, which is an asymmetric operation. With
traits, reuse takes place via composition, a symmetric concatena-
tion of two traits. In addition to composition, trait calculi include
fine-grained operations for manipulating traits as method suites. Ul-
timately, traits are inlined into classes during class formation. Un-
fulfilled trait requirements must be provided by the class at the time
of inlining.

Traits were introduced by Schärli et al. in the setting of
SMALLTALK [SDNB03]. A companion paper explored the use of
traits to refactor the SMALLTALK collection classes, with encourag-
ing results: a 10% reduction in method count for a 12% reduction in
overall code size [BSD03]. Since SMALLTALK is untyped, the orig-
inal work on traits did not include a type system. Fisher and Reppy
gave a calculus for statically-typed traits [FR04, FR03]. Other work
subsequently developed typed trait calculi for JAVA [LS04, SD05].
Quitslund performed a simple analysis of the Swing Java library,
which suggests that code reuse can also be improved by adding
traits to Java [Qui04]. A fair amount of activity has followed, with
trait implementations underway or completed for C#, JAVA, PERL,
and SCALA.1

1 See http://www.iam.unibe.ch/∼scg/Research/Traits/
for more information.

We present a calculus, based on the Fisher-Reppy polymorphic
trait calculus [FR03], with support for trait privacy, hiding and deep
renaming of trait methods, and a more granular trait typing. Our
calculus is more expressive (it provides new forms of conflict-
resolution) and more flexible (it allows after-the-fact renaming)
than the previous work. Traits provide a useful mechanism for shar-
ing code between otherwise unrelated classes. By adding deep re-
naming, our trait calculus supports sharing code between methods.
For example, the JAVA notion of synchronized methods can im-
plemented as a trait in our system and can be applied to multiple
methods in the same class to produce synchronized versions. We
term this new use of traits trait-based metaprogramming.

We review the standard trait operations in Section 2 and de-
scribe our additions in Section 3; the presentation is organized
around a series of examples, culminating with the introduction of
our metaprogramming idiom. The formal description of our pro-
posal begins with Section 4, which outlines our notation and the
syntax of the calculus. Section 5 describes the static semantics. The
system types traits at the time of trait formation, rather than trait in-
lining. It improves on previous work by tracking trait requirements
at a per-method, rather than per-trait basis, which allows spurious
requirements to be dropped as a trait is manipulated. Properly han-
dling evaluation in the presence of privacy can be somewhat subtle.
We utilize Riecke-Stone dictionaries [RS02] to handle privacy; this
technique also provides support for renaming. Our approach is de-
tailed in Section 6. Finally, we outline the proof of type soundness
in Section 7. After the formal description, we take stock of the cal-
culus in a broader context. Section 8 details other work in traits and
relates our presentation of traits to other constructs, e.g. mixins and
aspects. The calculus raises some interesting questions for language
design. We examine these questions and conclude in Section 9.

A technical report version of this paper includes the complete
formal model and a detailed proof of type soundness [RT06].

2. Traits
Traits originate from the observation that classes serve two often
conflicting purposes [SDNB03]. From one perspective, classes are
meant to generate objects, which means they must be complete and
monolithic. At the same time, classes act as units of reuse via inher-
itance, and from this perspective they should be small, fine-grained,
and possibly incomplete. Inheritance must straddle these two roles,
which often forces the designer of a class hierarchy to choose be-
tween interface cleanliness and implementation cleanliness.

Consider the case of two classes in different subtrees of the in-
heritance hierarchy which both implement some common protocol.
To avoid code duplication, the protocol implementation should be
shared between the two classes. In a single inheritance framework,
the common code can be lifted to a shared superclass, but doing
so pollutes the interface of the superclass, affecting all of its sub-
classes. With multiple inheritance, the protocol implementation can
reside in a new superclass that is inherited along with the existing

superclasses, but multiple inheritance complicates the implementa-
tion of subclasses (e.g., with respect to instance variables).

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 override Rd

class CSIntWr
 field lock
 field desc
 override Wr

class CSIntRW
 field lock
 field desc
 override Rd
 override Wr

inheritance

missed
inheritance

Figure 1. Synchronized readers and writers in a single inheritance
framework

Figure 1 illustrates these issues with a concrete class hierarchy
in a single inheritance framework. The root of the hierarchy is the
CDevice2 class, which implements I/O on a file descriptor. It has
two subclasses for, respectively, reading and writing integers on
the device. Defining a class that supports both reading and writing
(CIntRW) requires reimplementing one of the methods (denoted
by the dashed arrow in the figure). While we could lift the Rd
and Wr methods to the CDevice class, doing so would pollute the
interface of the original CIntRd and CIntWr subclasses as well
as new subclasses such as boolean readers and writers. The class
hierarchy is further extended with support for synchronized reading
and writing by adding a lock. Single inheritance again forces a
reimplementation of methods.

In contrast to inheritance, which specifies the relationship be-
tween a family of classes, traits allow the implementation of a sin-
gle class to be factored into multiple, structured parts. Classes are
retained as hierarchically organized object generators, but traits are
introduced as flatly organized, partial class implementations. Traits
thus assist in separating the roles distinguished above. Figure 2
shows how traits can allow code reuse without having to define
methods too high in the hierarchy; in this example, four traits are
used to generate six classes. Note that the traits in the example have
field requirements, not just method requirements.3 The override
annotation on provided methods signifies that the method invokes
the super-method with the same name.

Operations on traits
Traits are partial class implementations, but they are restricted to
providing only a simple set of methods. In particular, traits cannot
introduce state. The methods of a trait are only loosely coupled:
they can be freely removed and replaced by other implementations.

2 For concrete names, we prefix classes with C and traits with T.
3 Field requirements were introduced in [FR04].

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSRd
required
 field lock
provided
 override Rd

trait TSWr
required
 field lock
provided
 override Wr

inheritance
trait

inlining

Figure 2. Using traits to implement synchronized readers and writ-
ers

These properties make traits more nimble and lighter-weight than
either multiple inheritance [Str94] or mixins [BC90, FKF98].

Two traits can be combined via trait composition, written T1 +
T2. The resulting trait is a flat merger of the operands. Compos-
ing two traits may fulfill method requirements for one or both
of the traits. In a statically-typed setting, composition requires its
operands to be disjoint; method conflicts must be resolved explic-
itly, using other trait operations. Under this definition, trait com-
position is commutative, obviating the need for a linear ordering
found with single inheritance mixins.

Trait composition is a symmetric alternative to reuse via inher-
itance. By defining additional operations on traits, one can capture
more complex idioms of reuse. The typical suite of trait operations
include alias and exclude, which are useful for conflict resolution.
As an illustration, assume that we have two traits, TPoint and
TColored, which both provide a toString method, and that
we wish to compose them into a single trait, TCPoint. In the sim-
plest case, we can resolve such a conflict by choosing one method
or the other. We exclude the unwanted method implementation, and
compose the resulting trait:

TCPoint = TPoint + (TColored exclude toString)

TCPoint will provide a single toString method, using the
implementation from TPoint. In addition, any invocations of
toString from within other methods provided by TColored
will now invoke TPoint’s implementation, making the exclude-
compose combination similar to method override.

Sometimes it is useful to retain both implementations of a con-
flicting method, perhaps providing a new implementation combin-
ing the two. The alias operation creates a new name for an existing
method:

TCPoint = {
provides toString() : string {

self.strP() + ": " + self.strC();
}

} + ((TPoint alias toString as strP)
exclude toString)

+ ((TColored alias toString as strC)
exclude toString)

It is important to realize that, while strP and strC are avail-
able in this version of TCPoint, the original toString meth-
ods have effectively been overridden. Invocations of toString
from the other methods provided by TPoint and TColored will
use the new, combined toString implementation provided by
TCPoint. The combination of aliasing and excluding thus yields
a shallow renaming: existing references to an aliased method con-
tinue to refer to the original method name.

3. Traits with hiding and deep renaming
We extend the trait system of the previous section with two new
trait operations, hide and rename, which act as the deep variants
of exclude and alias. These two operations provide new forms of
conflict resolution when composing traits. Each is also useful in
isolation: hiding without composition yields trait privacy, while
renaming yields an idiom we term trait-based metaprogramming,
the most exciting aspect of our work.

The hide operation permanently binds a provided method to a
trait, while hiding the method’s name. A new method with the same
name can be introduced as a new provided or required method of
the trait, but existing references to the method from other provided
methods are statically bound to its implementation at the time of
hiding. Returning to the TCPoint example, we can write

TCPoint = TPoint + (TColored hide toString)

Here, TCPoint will provide the toString implementation
from TPoint. Unlike the exclusion example, any references from
within TColored to the toString method will continue to
refer to TColored’s implementation. In effect, TColored’s
toString implementation is provided by TCPoint, but in a
nameless and inaccessible form. Where combining exclusion and
composition leads to overriding, the combination of hiding and
composition yields shadowing.

Method hiding can also be used to hide trait implementation
details — i.e., as a form of trait privacy. A trait implements some
collection of behavior, and it may need to make use of new methods
that are specific to its implementation but are not appropriate to
provide publicly. Although such “helper methods” could be made
private after they are inlined into a class, we believe that traits
should not only factor out, but also encapsulate, units of behavior.
The importance of trait privacy will depend to some extent on the
strength of the surrounding language features. In a language with a
powerful module system, for example, it is likely that trait privacy
could be achieved through signature ascription instead [FR99]. In
any case, trait privacy is a free by-product of introducing method
hiding for conflict resolution.

Loosening the connection between method names and method
implementations suggests the possibility of a deep renaming oper-
ation, as opposed to shallow renaming with alias-exclude. As with
the other operations, pairing renaming with composition provides
a new form of conflict resolution:

TCPoint = (TPoint rename toString to strP)
+ (TColored rename toString to strC)

This version of TCPoint does not provide a toString method
at all. Existing references to toString from within TPoint and
TColored now refer to strP and strC, respectively; this is
the sense in with the renaming is “deep.” TCPoint can now be

extended with another implementation of toString, even one
with a different type.

Of course, renaming can be used alone in order to align a
“misnamed” provided method with an existing class hierarchy or
signature constraint. Required methods may be renamed for the
same reason. Furthermore, super-method names may be renamed,
so that for example all the invocations of super.foo within a
trait may be renamed to invoke super.bar. The rationale for
this last form of renaming will become more clear in the following
discussion.

Trait-based metaprogramming
Schärli et al. summarized their system with the following equa-
tion [SDNB03]:

Class = Superclass + State + Traits + Glue

A trait represents a flat fragment of a class’s behavior, and class
behavior is closely tied to naming. But a trait can also be seen
as a collection of named provided methods parameterized over
a collection of named required methods (and fields). Thus, traits
capture a relationship between two families of named methods.
Often this relationship carries as much information as the names
of the methods themselves.

Reconsider the example of traits usage presented in Figure 2.
The trait TIntRd requires a field desc and provides a method
Rd. In a broad sense, it does not matter what we call these entities
(Rd, read, Read, etc.), so long as (1) the names convey “descrip-
tor” and “read,” respectively, and (2) the relationship between the
entities remains intact. After-the-fact renaming allows the names to
be changed as needed.

But what can we say about the traits TSRd and TSWr from the
same example? Each requires the field lock and provides a single
method that wraps a super-method invocation with synchronization
code. For these traits, the relationship between the provided meth-
ods and the trait’s requirements carries essentially all of the relevant
information; the provided method names Rd and Wr are incidental.
We can capture the relationship in a single trait, TSync, which is
parameterized by type:

trait TSync<ty1, ty2> = {
provides Op(x : ty1) : ty2 {
self.lock.Acquire();
super.Op(x) before

self.lock.Release();
}
requires field lock : LockObj

}

The generic method Op and its associated super-send can be re-
named and used to override a method with a synchronized wrapper.
Returning to the readers and writers example, we could rename Op
to Rd and super.Op to super.Rd, and likewise for Wr. The
key insight is that TSync can be instantiated several times, once
for each method we want to synchronize. Figure 3 shows the read-
ers/writers example using TSync; we now have six classes derived
from three traits. It is worth noting that, with the ability to rename
field requirements, different instantiations of TSync could use dif-
ferent locks. Our model does not support field renaming, but this
is for simplicity only; the feature would be a fairly straightforward
addition.

Traits were intended to capture specific, named behavior at the
class level. Examples like TSync shift the focus to behavior at the
method family level. With the latter perspective it becomes sensi-
ble to inline a trait several times into a class; we label this idiom
trait-based metaprogramming. The power of the technique is that
we can freely mix flat requirements for the class (e.g., lock) with
provided methods that may be instantiated several times. Traits

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSync
required
 field lock
provided
 override Op

Rd/Op Rd/Op
Wr/Op

Wr/Op

inheritance
trait

inlining
trait inlining

with renaming

Figure 3. Using traits with renaming to implement synchronized
readers and writers

provide the structure for specifying method relationships, and re-
naming provides the flexibility to apply traits in multiple contexts
within a single class.

The metaprogramming technique we have outlined is somewhat
ad hoc: examples like TSync would be best served by an explicit
notion of method name abstraction. A good starting point would
be a “lambda calculus of traits,” with method renaming playing
the role of substitution. It is easy to imagine further extensions.
A sophisticated trait-metalanguage could codify certain patterns of
trait use, perhaps providing a mechanism like JAVA’s synchronized
keyword for appropriately instantiating traits like TSync. Borrow-
ing a line from aspect-oriented programming, a language might
also allow join points to be specified for trait application. Such pos-
sibilities are exciting and deserve to be explored, but before we can
define abstraction mechanisms for higher-level calculi, we need a
well-defined notion of substitution.

Starting with the next section, we give a detailed semantics of
a calculus with hiding and renaming for traits, which can serve as
the foundation for trait-based metaprogramming.

4. A trait calculus with hiding and renaming
To model our proposed features, we have developed a statically-
typed trait calculus loosely based on Fisher and Reppy’s [FR03].
The calculus is meant to give a rigorous semantics of the new
trait operations, and does not represent a surface language design.
We model the trait language in considerable detail, but restrict the
rest of the language to essential features. Specifically, our class
definition form does not support definition of methods directly.
Instead, we leave this responsibility to traits. This choice is purely
to minimize the complexity of the formal system; method definition
in classes could be easily added.

The syntax for our calculus is given in Figure 4. To keep the
syntax lightweight, we separate names into disjoint “universes,”

P ::= D; P | e program

D ::= t = (~α)T trait declaration
| c = C class declaration
| x = e expression declaration

T ::= t(~τ) polymorphic trait name
| 〈| µ; ρ |〉 trait formation
| T1 + T2 trait composition
| T exclude m method exclusion
| T hide m method hiding
| T alias m as m′ method aliasing
| T rename r to r′ method renaming

µ ::= m (x : τ1) : τ2 {e} method
ρ ::= 〈〈r : τr

r∈R〉〉 inlining assumptions
θ ::= 〈| m : τm@ρm

m∈M |〉 trait type
| Λ(~α).θ polymorphic trait type

C ::= c class name
| nil empty class
| I in T extends C subclass formation

I ::= λ(x : τ).(super e1)⊕ e2 constructor
χ ::= τ → {| l : τl

l∈L |} class type

e ::= x variable
| λ(x : τ).e function abstraction
| e1 e2 function application
| new C e object instantiation
| self host object
| super.m super-method dispatch
| e.m method dispatch
| e.f field selection
| e1.f := e2 field update
| {f = ef

f∈F} field record
| e1 ⊕ e2 field concatenation
| () unit value

τ ::= α type variable
| 〈l : τl

l∈L〉 object type
| τ1 → τ2 function type
| {f : τf

f∈F} field record type
| unit unit type

Figure 4. Trait calculus syntax

Items ∈ Sets ⊂ Universe
Field names f ∈ F ⊂ FU

Method names m ∈ M ⊂ MU

Labels l ∈ L ⊂ LU = FU ∪MU

Super methods super.m ∈ S ⊂ SU

Requirements r ∈ R ⊂ RU = LU ∪ SU

Slots i ∈ I ⊂ IU

Variables x ∈ VARS
Type vars α ∈ TYVARS
Trait names t ∈ TRAITNAMES
Class names c ∈ CLASSNAMES

Figure 5. Naming conventions

as shown in Figure 5. This convention allows entities to be distin-
guished by the “type” of their name, without any additional book-
keeping.

In our model, a program is a series of zero or more declarations
followed by an expression. The calculus is organized into three
components: a trait language, a class language, and an expression
language. The trait language includes expressions forms for all of
the features we have discussed: composition of traits, and exclu-
sion, hiding, aliasing, and renaming of methods. The declaration
form for traits allows parameterization by type variables. Traits are
initially formed with a single method rather than a method suite,
which simplifies the semantics; a trait with multiple methods can
be constructed via repeated composition.

The class language provides a simple model of single inheri-
tance with no visibility control. The calculus has an empty base
class, nil; all other classes must be defined via inheritance. Sub-
class formation takes a super class, a trait expression, and a con-
structor. In our model, the only methods introduced in a subclass
are those provided by the trait; there is no separate notion of method
definition for classes. In particular, this means that any required
methods of the trait must be provided by the super class. We will
sometimes refer to subclass formation as trait inlining to emphasize
the role that traits play. When the trait being inlined is the result of
simple trait formation and concatenation, trait inlining reduces to
standard single inheritance.

Subclass formation also allows the introduction of state via
a constructor function. State is restricted to field records which
can be concatenated using the ⊕ operator. Class constructors are
syntactically constrained to apply the super class constructor to
an expression, and concatenate the result with a new field record.
Fields referenced in an inlined trait may originate from either the
super class or the newly formed subclass.

The expression language is a simple object calculus with first
class functions. It has imperative features (object instantiation and
field update) which allow us to put the class language to work in a
realistic way.

We will need several notational tools: we write A t B for
A ∩ B = ∅; when f is a function, f [x 7→ y] denotes the function
that takes x to y and otherwise behaves the same as f ; the notation
f ↓ A yields the restriction of the function f to the domain A;
the notation f \ x is shorthand for f ↓ (dom(f) \ {x}) or, if x
is a set, f ↓ (dom(f) \ x). We make heavy use of notation like
{xy

y∈Y } to describe a collection of elements xy indexed by a set
Y . Such notation allows us to give types to a collection of labels,
e.g. 〈l : τl

l∈L〉. We define the binary operator], as follows:

τl = τ ′l for all l ∈ L1 ∩ L2

{l : τl
l∈L1}] {l : τ ′l

l∈L2} = {l : τl
l∈L1 , l : τ ′l

l∈L2}

The] operator joins two possibly overlapping label/type collec-
tions. It is only defined when the operands agree on the type of
any shared labels. While we group different label/type collections
in syntactically distinct categories (e.g., trait types versus object
types), we freely use] to join two or more such collections in the
same syntactic category.

5. Static semantics
Typing judgments in our calculus are written in terms of an ordered
context Γ. Types can inhabit one of three syntactic categories: trait
types θ, class types χ, or expression types τ . The most important
judgment forms are the following:

Γ ` T : θ trait T has type θ
Γ ` C : χ class C has type χ
Γ ` e : τ expression e has type τ
Γ ` µ : τ method µ has type τ
Γ ` τ1 <: τ2 τ1 is a subtype of τ2

We also make heavy use of well-formedness checks, which take the
form Γ ` � ok where � is a type form, or Γ ` ok to assert that the
context Γ is well-formed.

Although traits can be viewed as sophisticated syntactic sugar
that is “flattened” to a core class-based language [NDS06], there are
advantages to recognizing traits directly. For the static semantics,
giving types to traits allows the detection of a number of errors
during trait manipulation that would otherwise not be detected until
trait inlining; it also makes separate compilation of traits possible.

In order to typecheck a trait, we must know the types of all
of its provided methods and of the self-methods, super-methods,
and fields that it mentions. This type information amounts to a
collection of assumptions about (or constraints on) the classes in
which the trait will be inlined. The assumptions are guaranteed
to hold of well-typed provided methods, which are syntactically
required to specify their own type. The remaining assumptions
constitute requirements of the trait, which fall into two categories:

1. Self-method requirements, which can be fulfilled via trait con-
catenation or trait method aliasing.

2. Super-method and field requirements, which can only be ful-
filled when inlining a trait.

A straightforward type system might structure trait types as a
collection of typed labels, some of which are marked as required;
this is the approach of [FR03]. Unfortunately, this view of trait
types forces a conservative typing of method exclusion. Consider
the trait TFoo:

trait TFoo = {
provides A() : unit { print("Hello!"); }
provides B() : unit { self.A(); self.C(); }
requires C : unit -> unit

}

The trait TFoo exclude A should require both A and C, while
TFoo exclude B should not have any requirements. But a flat
trait type assigning types to labels gives no way to distinguish
between excluding A and excluding B; whenever a method is ex-
cluded, it must be conservatively counted as a required method be-
cause it may be invoked from another provided method.

To overcome this limitation, we track requirements on a per-
provided-method, rather than per-trait, basis. The requirements for
a provided method are collected into a set of inlining assump-
tions ρ that represent that method’s view of any class that inlines
the trait. To distinguish between super-method and self-method re-
quirements, we have a universe of super-method names, SU ; for
any s ∈ SU there is a unique m ∈ MU such that s = super.m.
A method may require both m and super.m, but for the two re-
quirements to be coherent, their types must be compatible. Since
our calculus only supports width subtyping, an overriding method
must have the same type as its corresponding super-method. This
condition is reflected in the well-formedness judgment for inlining
assumptions:

Γ ` τr ok for all r ∈ R
τm = τsuper.m for all m with m ∈ R, super.m ∈ R

Γ ` 〈〈r : τr
r∈R〉〉 ok

Inlining assumptions can be seen as a compact and uniform rep-
resentation of a pair of object types, τsuper and τself , which are su-
pertypes of the eventual super- and self-object types. To transform
a set of inlining assumptions into its corresponding object types,
we have the functions super and self:

super 〈〈r : τr
r∈R〉〉 = 〈m : τsuper.m

super.m∈R〉
self 〈〈r : τr

r∈R〉〉 = 〈l : τl
l∈R∩LU 〉

A trait type θ is a labeled collection of method types with
inlining assumptions. A trait formation expression provides a single

method and the initial inlining assumptions for that method. To type
trait formation, we ensure that the given inlining assumptions are
well-formed and that the given method can be typed under them:

µ = m (x : τ1) : τ2 {e} Γ ` ρ] 〈〈m : τ〉〉 ok
Γ, super : super(ρ), self : self(ρ) ` µ : τ

Γ ` 〈| µ; ρ |〉 : 〈| m : τm@ρ′ |〉

Notice that a recursive method must specify its own type in its
inlining assumptions. The] operator ensures that this type agrees
with the method’s actual type.

Although trait formation only produces single-method traits, in
general traits will acquire several methods via composition. Each
provided method has its own inlining assumptions, but we also
want to consider the inlining assumptions for the trait as a whole.
We introduce a function Inl that yields the trait inlining assump-
tions for given a trait type. Trait inlining assumptions are formed
using the] operator, which ensures that repeated assumptions
about a method or field will have the same type:

ρ =
U

m∈M(ρm] 〈〈m : τm〉〉) Γ ` ρ ok

Inl(〈| m : τm@ρm
m∈M |〉) = ρ

We also have a well-formedness check for trait types, which simply
checks that Inl can succeed in producing inlining assumptions for
the trait:

Inl(θ) is defined
Γ ` θ ok

The well-formedness check for trait types does a lot of work for the
type system by centralizing coherency checking. Typing judgments
need only include additional, specialized constraints. For trait com-
position, the additional constraint is that the given traits are disjoint
(i.e., specify a disjointly-named set of provided methods):

Γ ` T1 : θ1 Γ ` T2 : θ2

dom(θ1) t dom(θ2) Γ ` θ1] θ2 ok

Γ ` T1 + T2 : θ1] θ2

Method exclusion requires that the method to be excluded is
actually provided by the trait:

Γ ` T : θ m ∈ θ Γ ` θ \m ok

Γ ` T exclude m : θ \m

Method aliasing is somewhat more complex. For aliasing m as
m′, the typing judgment first ensures that m is a provided method
and that m′ is not. It then forms a new trait type by joining inlining
assumptions for m′ to the old trait type. The inlining assumptions
for m′ are the same as those for m; in particular, if m invoked itself,
m′ will invoke m:4

Γ ` T : θ m ∈ θ m′ /∈ θ
θ′ = θ] 〈| m′ : θ(m) |〉 Γ ` θ′ ok

Γ ` T alias m as m′ : θ′

Note that m′ may be the name of a required method, so aliasing can
be used to fulfill trait requirements. The same is true for renaming.

Method renaming allows provided methods, required self-
methods, and required super-methods to be renamed. To rename
r to r′, the typing judgment checks that r and r′ are not field
names, that r is mentioned in the inlining assumptions (i.e., it is
either provided or required), and that r′ is not a provided method.
The new trait type is formed in two steps: first, r is renamed to r′

in all of the sets of inlining assumptions; then, r is renamed to r′

in the resulting trait type, which will only have an effect if r is a

4 The issue of aliasing a recursive method is detailed in the dynamic seman-
tics.

provided method:

Γ ` T : 〈| m : τm@ρm
m∈M |〉

r, r′ /∈ FU r′ /∈M r ∈ ρm for some ρm ∈M
θ = 〈| m : τm@(ρm[r′/r]) m∈M |〉[r′/r] Γ ` θ ok

Γ ` T rename r to r′ : θ

Typing method hiding is somewhat challenging for our system.
We want to completely remove any mention of a method m′ that
is to be hidden, so that its name may be reused (possibly at a
different type). But if we simply remove m′ from the trait type, its
requirements (which may not yet be fulfilled) will disappear from
the trait as well, which is unsound. Our strategy is to remove m′

from the trait’s type, but transitively record its requirements in the
inlining assumptions of any other provided method that invokes m′.
In effect, we are doing a one-step path compression on the method
call graph. The hide function achieves this result:

hide(ρ, m′, ρm′) =

(
(ρ] ρm′) \m′ m′ ∈ ρ

ρ otherwise

The type judgement for hiding simply applies hide to each pro-
vided method, dropping m′:

Γ ` T : 〈| m : τm@ρm
m∈M |〉 m′ ∈M

θ = 〈| m : τm@hide(ρm, m′, ρm′) m∈M\m′
|〉 Γ ` θ ok

Γ ` T hide m′ : θ

Notice that, if m′ is not used by any other provided method in the
trait, its requirements are dropped altogether. In this case, m′ is
dead code for the trait, and the method itself is eliminated in the
dynamic semantics.

Finally, we have subclass formation. We first type the construc-
tor, trait, and superclass. We then ensure that the trait’s inlining
assumptions about the class hold. A given type τl might be spec-
ified as part of the expected super-type, the expected self -type,
and the actual superclass type; the typing judgement will only suc-
ceed if these specifications agree on the form of τl. Because of this
requirement, we need only check the relationships between the var-
ious label sets to ensure that the class is well-typed:

Γ, x : τ ` econs : τcons Γ, x : τ ` eF : {f : τf
f∈F}

Γ ` T : θ Γ ` C : τcons → {| l : τl
l∈LC |} F t LC

L = LC ∪ F ∪ dom(θ)
〈l : τl

l∈Lsuper〉 = super(Inl(θ)) Lsuper ⊂ LC

〈l : τl
l∈Lself 〉 = self(Inl(θ)) Lself ⊂ L

Γ ` λ(x : τ).(super econs)⊕ eF in
T extends C : τ → {| l : τl

l∈L |}

6. Dynamic semantics
We define evaluation with a big-step operational semantics. Evalu-
ation judgments are written in the context of an environment E and
a store S. Environments map names to trait, class, and expression
values. Stores map addresses to object values, allowing objects to
have mutable fields. Declaration evaluation yields a new environ-
ment and possibly a new store, while expression evaluation (which
can occur in a declaration evaluation) yields an expression value
and possibly a new store:

Program evaluation E, S ` P −→ ev, E′, S′

Declaration evaluation E, S ` D −→ E′, S′

Expression evaluation E, S ` e −→ ev, S′

At the core of our calculus is a revised notion of trait values.
The standard view of trait values as simple collections of named
provided methods is insufficient to support trait privacy, and makes
a realistic model of deep renaming difficult to achieve. We adopt

Riecke and Stone’s approach [RS02] and distinguish between in-
ternal method names (which we term slots) and external method
names. In our model, trait values are collections of internally named
provided methods, some of which may be externally named as well.
To support deep renaming of required methods, we distinguish be-
tween internal and external names for them as well; the internal
name of a required method is eventually assigned to the method
that fulfills that requirement.

More formally, a dictionary φ is a finite partial function that
maps method names to slots. A method suite value Mv maps slots
to method values. A trait value tv is a method suite value together
with dictionaries for its provided and required methods:

φ ::= {r 7→ i r∈R} dictionary
Mv ::= {i 7→ µvi

i∈I} method suite value
µv ::= [E; φµ; λ(x : τ).e; ρ] method value
tv ::= 〈|Mv ; φP ; φR |〉 trait value

To prove type soundness we will need to give types to trait values,
so we track inlining assumptions in method values.

Method hiding and renaming only affect a trait value’s dic-
tionaries, i.e., its external naming; its method suite remains un-
changed.5 Notice that a method value µv contains a dictionary φµ

in addition to the standard closure over the lexical environment
E. This dictionary, established during evaluation of trait forma-
tion, can be thought of as a closure over the trait’s current external
name environment. Unlike the trait itself, which has two dictionar-
ies, each method closure contains only the single dictionary φµ;
from the perspective of a particular method, there is no difference
between provided and required methods, because by the time the
method is invoked all required methods must have been provided.
It is φµ that allows a method to remain coherent in the presence of
method hiding and renaming.

Ultimately, the methods in a trait value will be inlined into a
class value. Method dispatch is dictionary-based, but the dictionary
used is dependent on the location of the call (this is the crux of
Riecke and Stone’s approach). More concretely: suppose we have
a trait, TFooBar, which provides methods foo and bar. Further,
suppose that foo invokes bar. When the trait is first formed, we
assign slots to foo and bar and record these assignments in the
φµ dictionaries for both methods. We can assume φµ = {foo 7→
1, bar 7→ 2} for both methods.6 If we then rename bar to
baz, the dictionary for the trait itself is changed to reflect this
(φp = {foo 7→ 1, baz 7→ 2}), but the dictionaries for foo and
bar remain the same. Suppose we inline TFooBar into a class and
instantiate an object obj. We are able to invoke obj.baz using
a dictionary giving an external view of the object (similar to φP).
But if we invoke obj.foo, what happens when we reach the call
to self.bar, which no longer exists from the external viewpoint?
The φµ dictionary associated with foo is used to discover the slot
for bar, which will be the same as the slot for baz.

The previous example glosses over a few evaluation details,
which are explained below. The main idea to keep in mind is the
motivation for all the dictionary juggling: we need to know what
actual method to invoke, given a method name and context, and we
need to do this in the face of aliasing, renaming, hiding, and ex-
cluding. Figure 6 shows the previous example and others in more
formal detail; it should be read in parallel with the evaluation rules.
The remainder of this section gives a complete description of eval-
uation for traits and classes and describes the nonstandard portions
of expression evaluation. Some additional rules for expression eval-

5 One of the rules for renaming changes the closures in the suite, but it leaves
the slot assignments of the suite intact.
6 In this example and others, we let IU = Z+, but formally IU is held
abstract.

We define

µfoo =def foo (x : unit) : unit { self .bar() }
µbar =def bar (x : unit) : unit { · · · }

and derive
∅, ∅ ` TFoo = 〈| µfoo; 〈〈bar : unit → unit〉〉 |〉 −→ E1, ∅

E1, ∅ ` TBar = 〈| µbar; 〈〈 〉〉 |〉 −→ E2, ∅
E2, ∅ ` TFooBar = TFoo+ TBar −→ E3, ∅

where E3 =8><>:
TFoo 7→ 〈| {1 7→ µvfoo}; {foo 7→ 1}; {bar 7→ 2} |〉,
TBar 7→ 〈| {1 7→ µvbar}; {bar 7→ 1}; ∅ |〉

TFooBar 7→
fį̨̨̨

{1 7→ µvfoo, 2 7→ µvbar};
{foo 7→ 1, bar 7→ 2}; ∅

˛̨̨̨fl
9>=>;

so that
E3 ` TFooBar alias foo as fiz

−→
fį̨̨̨

{1 7→ µvfoo, 2 7→ µvbar, 3 7→ µvfoo};
{foo 7→ 1, bar 7→ 2, fiz 7→ 3}; ∅

˛̨̨̨fl
E3 ` TFooBar rename bar to baz

−→
fį̨̨̨

{1 7→ µv′foo, 2 7→ µv′bar};
{foo 7→ 1, baz 7→ 2}; ∅

˛̨̨̨fl
E3 ` TFooBar exclude bar
−→ 〈| {1 7→ µvfoo}; {foo 7→ 1}; {bar 7→ 2} |〉

= E3(TFoo)

E3 ` TFooBar hide bar
−→ 〈| {1 7→ µv′′foo, 2 7→ µv′′bar}; {foo 7→ 1}; ∅ |〉

E3 ` (TFooBar hide bar) + TBar

−→
fį̨̨̨

{1 7→ µv′′foo, 2 7→ µv′′bar, 3 7→ µvbar};
{foo 7→ 1, bar 7→ 3}; ∅

˛̨̨̨fl
E3 ` TFooBar hide foo
−→ 〈| {2 7→ µvbar}; {bar 7→ 2}; ∅ |〉

≈ E3(TBar)

Figure 6. Evaluation examples

uation appear in the appendix. The complete formal system can be
found in an extended version of this paper [RT06].

6.1 Trait evaluation
Trait evaluation judgments have the form E ` T −→ tv , since trait
evaluation does not use or modify the store. We will often write

E ` T −→ 〈| IMv ; MφP ; RφR |〉
to assert that T evaluates to 〈|Mv ; φP ; φR |〉 with dom(Mv) = I,
dom(φP) = M, and dom(φR) = R; we always have that
M t R. For slot manipulation, we will use a function NS (“new
slots”) which takes a set of method names and a set of slots, and a
function FS (“fresh slots”) which takes two sets of slots. NS yields
a dictionary mapping each of the given names to a unique, new
slot not in the given set of slots. FS yields a translation function ϕ
which maps each of the slots in its first parameter to a unique slot
not contained in its second parameter. In other words,

φ = NS(M, I)

dom(φ) = M rng(φ) t I φ is one-to-one

ϕ = FS(I1, I2)

dom(ϕ) = I1 rng(ϕ) t I2 ϕ is one-to-one

For example, we might have

NS({m1, m2}, {1, 2, 3}) = {m1 7→ 4, m2 7→ 5}
FS({1, 4}, {1, 2, 3}) = {1 7→ 4, 4 7→ 5}

Evaluating a trait formation expression to a trait value estab-
lishes the initial slot assignment for the provided method and each
required (super- or self-) method using NS. Slots are not estab-
lished for field requirements, which cannot be renamed in our
model. The resulting dictionary is used as the external name clo-
sure in the constructed method values:

φP = NS({m}, ∅) φR = NS(dom(ρ) \ FU , {φP (m)})
Mv = {φP (m) 7→ [E; φP ∪ φR; λ(x : τ).e; ρ] }

E ` 〈| m (x : τ1) : τ2 {e}; ρ |〉 −→ 〈|Mv ; φP ; φR |〉

Notice that the dictionaries φP and φR are joined as a single dictio-
nary in the method value. An alternative presentation of trait values
could maintain a single dictionary at the trait level, and determine
which methods were actually provided by examining dom(Mv).
For clarity and simplicity, we separate the dictionaries and maintain
the invariants rng(φP) ⊆ dom(Mv) and dom(Mv) t rng(φR).
The set of slots used by a trait is dom(Mv) ∪ rng(φR).

Aliasing a method does not simply map a new external name to
the existing internal name for the method; if we alias m as m′, we
want the two methods to share implementations but to otherwise be
independent, so that in particular we may later exclude m without
impacting m′. Another concern is recursion: if m invokes itself,
and we alias m as m′, what should happen to the recursive call
for m′? To see why this is important, consider that after aliasing
m as m′, we could exclude m from the trait and replace it with
some other method. This is a somewhat thorny issue, because if we
choose to have m′ recurse on itself rather than invoking m, we have
only dealt with direct recursion; if m recurses on itself indirectly
via some other method, m′ would still end up invoking m via that
same method. To keep the semantics simple and consistent, aliasing
m as m′ will leave invocations of m as still calling m.

Aliasing has two cases, which we handle with different rules.
A method can be aliased to fulfill a method requirement, in which
case the slot assigned for the required method is used for the alias,
and the requirement is removed from φR:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
m ∈M m′ /∈M m′ ∈ R

φ′P = φP [m′ 7→ φR(m′)]
Mv ′ = Mv [φR(m′) 7→ Mv(φP (m))]

E ` T alias m as m′ −→ 〈|Mv ′; φ′P ; φR \m′ |〉

If the aliasing operation does not fulfill a method requirement, we
use NS to establish a new internal name for the alias:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
m ∈M m′ /∈M m′ /∈ R

φ′P = φP ∪NS({m′}, I ∪ rng(φR))
Mv ′ = Mv [φ′P (m′) 7→ Mv(φP (m))]

E ` T alias m as m′ −→ 〈|Mv ′; φ′P ; φR |〉

As with aliasing, provided methods may be renamed to fulfill
required methods. In addition, required methods may be renamed.
We give three rules for renaming. To rename a provided method
without fulfilling a method requirement, we remove its old external
name from the φP dictionary and insert a new mapping from the
new name to the existing slot. We also rename the method in the

inlining assumptions for each provided method:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
r ∈M r′ /∈M r′ /∈ R

Mv = {i 7→ [Ei; φi; ei; ρi]
i∈I}

φ′P = (φP \ r)[r′ 7→ φP (r)]
Mv ′ = {i 7→ [Ei; φi; ei; ρi[r

′/r]] i∈I}
E ` T rename r to r′ −→ 〈|Mv ′; φ′P ; φR |〉

The rule for renaming required methods is similar, but works on
φR:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
r ∈ R r′ /∈M r′ /∈ R

Mv = {i 7→ [Ei; φi; ei; ρi]
i∈I}

φ′R = (φR \ r)[r′ 7→ φR(r)]
Mv ′ = {i 7→ [Ei; φi; ei; ρi[r

′/r]] i∈I}
E ` T rename r to r′ −→ 〈|Mv ′; φP ; φ′R |〉

Renaming a provided method to fulfill a method requirement is
more complex. Unlike the situation for aliasing, we are not estab-
lishing a new, independent method, and thus the slot assignment
for the original method must be retained. At the same time, the
required method being fulfilled has its own slot assignment which
must also be retained. Both of these assignments represent commit-
ments made to the φµ dictionaries in the method closures for the
trait. To fulfill the commitments, we slightly modify the promise
by altering the target slots for φµ; we arbitrarily choose to drop
the required method’s slot in favor of the provided method’s slot.
The modification is performed by composing a translation function
ϕ with the original φµ dictionaries. The translation is the identity
function on slots except at the required method’s slot, where it maps
to the provided method’s slot:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
r ∈M r′ /∈M r′ ∈ R

Mv = {i 7→ [Ei; φi; ei; ρi]
i∈I}

φ′P = (φP \ r)[r′ 7→ φP (r)]
ϕ = {i 7→ i, φR(r′) 7→ φP (r)}

Mv ′ = {i 7→ [Ei; ϕ ◦ φi; ei; ρi[r
′/r]] i∈I}

E ` T rename r to r′ −→ 〈|Mv ′; φ′P ; φR \m′ |〉

To support hiding and excluding methods, and to properly type
trait values, we need to drop unreachable hidden methods and un-
used required methods. The auxiliary judgement form tv ↪→ tv ′

rewrites a trait value after “dead-code elimination.” The judgement
collects all of the slots mentioned in the inlining assumptions of
the trait’s provided methods, using the dictionary stored with each
method to convert from method names to slots. The method suite
and required method dictionary are then restricted to include only
the mentioned slots; the notation φ−1

R (I) signifies the inverse im-
age of I under φR:

Mv = {i 7→ [Ei; φi; ei; ρi]
i∈dom(Mv)} IP = rng(φP)

I = IP ∪
“S

i∈IP
φi(dom(ρi))

”
R = φ−1

R (I)

〈|Mv ; φP ; φR |〉 ↪→ 〈|Mv ↓ I; φP ; φR ↓ R |〉

Hiding a method removes it from the provided method dictio-
nary. It also updates the inlining assumptions of all provided meth-
ods, using the hide function from the static semantics:

E ` T −→ 〈| IMv ; MφP ; RφR |〉
m ∈M j = φP (m) Mv = {i 7→ [Ei; φi; ei; ρi]

i∈I}
Mv ′ = {i 7→ [Ei; φi; ei; hide(ρi, m, ρj)]

i∈I}
〈|Mv ′; φP \m; φR |〉 ↪→ tv

E ` T hide m −→ tv

A method m hidden by this operation may still be available in the
method suite, via its internal name: previously established methods
can gain access to m by looking up the slot for m in the φµ

dictionary bundled with their closure. If m is not used elsewhere
in the trait, however, it is dropped.

To exclude a method m from a trait, it must be removed from
both φP and Mv . Because other methods in the trait may refer-
ence m, we add m to φR, maintaining the internal name for m;
dead-code elimination will remove this spurious requirement, and
possibly others, if m is not actually needed:

E ` T −→ 〈| IMv ; MφP ; RφR |〉 m ∈M
〈|Mv \ φP (m); φP \m; φR[m 7→ φP (m)] |〉 ↪→ tv

E ` T exclude m −→ tv

The most complex trait operation is composition. The two com-
posed traits must have disjoint external names for their provided
methods, but there may be considerable overlap in their internal
naming, so we must adjust slot assignments accordingly. We use
a technique similar to the one described for renaming, and treat
the slot assignments of one of the traits as authoritative, creating a
translation ϕ to adjust the other trait’s dictionaries:

E ` T1 −→ 〈| I1Mv1;
M1φP1 ;

R1φR1 |〉
E ` T2 −→ 〈| I2Mv2;

M2φP2 ;
R2φR2 |〉

M1 t M2 Mv2 = {i 7→ [Ei; φi; ei; ρi]
i∈I2}

ϕP = {φP2(m) 7→ φR1(m) m∈M2∩R1}
ϕR = {φR2(m) 7→ φP1(m) m∈R2∩M1}

I′1 = I1 ∪ rng(φR1) I′2 = I2 ∪ rng(φR2)
ϕF = FS(I′2 \ dom(ϕR ∪ ϕP), I′1)

ϕ = ϕP ∪ ϕR ∪ ϕF φP = φP1 ∪ (ϕ ◦ φP2)
φR = (φR1 ∪ (ϕ ◦ φR2)) \ (M1 ∪M2)

Mv = Mv1 ∪ {ϕ(i) 7→ [Ei; ϕ ◦ φi; ei; ρi]
i∈I2}

E ` T1 + T2 −→ 〈|Mv ; φP ; φR |〉

The construction of the translation ϕ is performed in three steps:
we construct ϕP for the methods provided in T2 that fulfill meth-
ods required by T1; we construct ϕR for the methods required in
T2 that are provided by T1; finally, we construct ϕF to map all
remaining slot assignments from T2 to fresh slots that do not oc-
cur in T1. A new method suite Mv joins the method suite from T1

and an adjusted method suite for T2 that reflects the translated slot
assignments.

6.2 Class evaluation
Class evaluation results in an evaluated constructor, a method suite,
and a dictionary into that method suite:

cv ::= {| λv ; Mv ; φC |} class value
λv ::= [E; λ(x : τ).e] function value

The judgment form for class evaluation is written E ` C −→
cv ; as with traits, the store is not used when evaluating a class
expression. We evaluate nil to the empty class value, writing {}
for the empty field record:

E ` nil −→ {| [∅; λx.{}]; ∅; ∅ |}

Handling inheritance requires us to deal with super-invocations.
Since class methods may be overridden, and hence no longer ac-
cessible from the class’s method suite, we bind super-invocations
to new, hidden provided methods. The judgment form cv ` tv =⇒
Mv extends the method suite in tv to a new method suite that pro-
vides the relevant super-methods from cv :

Mv ′ = Mv ∪ {φR(s) 7→ MvC(φC(s)) s∈dom(φR)∩SU }
{| λvsuper; MvC ; φC |} ` 〈|Mv ; φP ; φR |〉 =⇒ Mv ′

Note that this rewriting does not create any slots; since super-
methods are treated as requirements, we simply use the slots from
the required method dictionary.

Evaluation of inheritance is similar to evaluation of trait compo-
sition: we are reconciling two method suites with incompatible slot
assignments. In this case, however, a method with the same exter-
nal name may be provided by both the trait and the superclass. We
retain the class’s slot assignment for the method, but use the trait’s
implementation, thereby overriding the method:

E ` T −→ tv tv = 〈| IMv ; MφP ; RφR |〉
E ` C −→ cv cv = {| λvsuper; MvC ; φC |}

cv ` tv =⇒ {i 7→ [Ei; φi; ei; ρi]
i∈I′

}
ϕP = {φP (m) 7→ φC(m) m∈M∩dom(φC)}
ϕR = {φR(m) 7→ φC(m) m∈R∩dom(φC)}
ϕF = FS

`
I′ \ dom(ϕP), dom(MvC)

´
ϕ = ϕP ∪ ϕR ∪ ϕF

Mv ′T = {ϕ(i) 7→ [Ei; ϕ ◦ φi; ei; ρi]
i∈I′

}
Mv ′C = (MvC \ rng(ϕP)) ∪Mv ′T

super /∈ dom(E) Econs = E[super 7→ λvsuper]
λvcons = [Econ ; λ(x : τ).(super econs)⊕ eF]

E ` λ(x : τ).(super econs)⊕ eF in
T extends C −→ {| λvcons ; Mv ′C ; φC ∪ (ϕ ◦ φP) |}

In reading the above rule, recall that rng(φR) t I. We also have
that dom(ϕR) t I′, because no super-method name (super.m)
can appear in φC .

6.3 Object instantiation and method dispatch
Expression evaluation is written E, S ` e −→ ev , S′. Most of
the rules for expression evaluation are standard, but we describe the
rules related to object instantiation and method dispatch to high-
light the role that φµ dictionaries play. The remaining expression
evaluation rules can be found in Appendix B.

An object value is a field record value paired with a method
suite:

ov ::= 〈fv ; Mv〉 object value
fv ::= {f = evf

f∈F} field record value
ev ::= (a, φ) object reference

| λv function value
| fv field record value
| () unit value

Evaluating an object instantiation takes a class and a constructor
parameter and updates the store to map a new address a to a new
object value. The evaluation yields the address a paired with the
class’s dictionary φC :

E ` C −→ {| [EF ; λx.eF]; Mv ; φC |}
E, S ` e −→ ev , S1

EF [x 7→ ev], S1 ` eF −→ fv , S2

a /∈ dom(S2)

E, S ` new C e −→ (a, φC), S2[a 7→ 〈fv ; Mv〉]

To evaluate a method dispatch e.m, we first evaluate e to an
address a and dictionary φ. We look up the object value associated
with the address, then use the dictionary to index into the object’s
method suite at m, yielding the closure for the method m. The
evaluation results in a function value equivalent to m’s closure: the
environment of the function value takes self to (a, φµ) so that self-
invocations within m have m’s view of the class:

E, S ` e −→ (a, φ), S′ S′(a) = 〈fv ; Mv〉
Mv(φ(m)) = [Em; φm; λ(x : τ).em; ρm]

E, S ` e.m −→ [Em[self 7→ (a, φm)]; λ(x : τ).em], S′

To support super-method invocation, we invoke the super-
method name in the context of self :

E, S ` self .(super.m) −→ ev , S′

E, S ` super.m −→ ev , S′

This approach works because super-method names are indexed in
the dictionary for each method, and super-method implementations
are provided, with the appropriate slot, during class formation.
Notice that this rule does not apply to the constructor for a class,
which does not invoke a super-method but invokes “super” itself.

Finally, the evaluation of self is a simple lookup in the current
environment.

E, S ` self −→ E(self), S

7. Type soundness
A detailed proof of type soundness and the run-time typing rules
for the system can be found in the tech report version of this
paper [RT06]. Here we give a brief overview of the issues and
theorems related to type soundness.

One important issue for type soundness is typing for link-time
and run-time values. We must give types to trait values, class val-
ues, and expression values, including object addresses. However,
because stores may be cyclic, we cannot type addresses via a recur-
sive examination. We follow the standard technique and introduce
a store typing Σ, which is a map from object addresses to object
types. The intuition behind this approach is that well-typed pro-
grams will always store values of the same type in a given address,
so we need only type locations when they are first introduced. Run-
time typing judgments are given in terms of store typings, and thus
have the form Σ ` � : �. Since environments and stores are also
runtime values, we type them as well: the judgment Σ ` E : Γ
says that environment E has type Γ, while ` S : Σ says that store
S has type Σ.

Type preservation is easy to state for a big-step semantics,
but the difficulty of stating a progress property is usually held as
a drawback of the big-step style. The difficulty with progress is
that, for a big-step semantics, non-termination and WRONG are
indistinguishable. In particular, if we do not have ∅, ∅ ` P −→
ev , E, S, it could either be that P diverges or that P goes wrong.
To overcome this problem, we follow [FR04] and introduce a
height function HE, S , which gives the height of the derivation tree
for a program under E and S. We have the following definition:

DEFINITION 7.1 (Divergence). We say a program P diverges if
there is no n such that H∅, ∅(P) = n.

If E, S ` P −→ ev then HE, S(P) = n, where n is the height
of the derivation tree for the judgment. If P diverges in the context
of E and S, then HE, S(P) diverges as well. Most importantly,
if P does not evaluate to any ev under E and S, then HE, S(P)
converges, and measures the height of the evaluation derivation up
to the point that P went wrong. For example,

HE, S(t = (~α)T ; P) =

1 +

(
HE′, S(P) if E, S ` t = (~α)T −→ E′, S

1 otherwise

Thus, the height function allows us to distinguish between non-
termination and stuck states, without having explicit WRONG tran-
sitions. Using this height function, we can state and prove the fol-
lowing soundness result [RT06]:

THEOREM 7.1 (Type soundness). If ∅ `P P : τ then either P
diverges or there exist a store typing Σ, a store S, a context Γ, an

environment E, a type τ ′, and an expression value ev such that
Σ ` E : Γ and ` S : Σ and ∅, ∅ ` P −→ ev , E, S and
Σ ` ev : τ ′ and ε ` τ ′ <: τ .

This result says that a well-typed, terminating program P does
not go wrong. In particular, P will evaluate to a result that improves
on its static type. While this is a weaker statement than soundness
for a small-step semantics, a characterization of terminating pro-
grams is sufficient for our purposes with this calculus.

8. Related work
Traits were originally proposed as a mechanism for SMALLTALK
by Schärli et al. [SDNB03]. In addition to studying the language
design and methodological issues, they also developed a formal
model for their system [SDN+02]. The most important difference
between our system and this original work is that we are working in
a strongly-typed setting, instead of an untyped language. Another
major point of difference is that we have abandoned the flatten-
ing property [NDS06] in favor of supporting deep renaming and
private methods in traits.7 In this sense our system is not a con-
servative extension of traditional class-based designs, but the meta-
programming techniques enabled by our system provide an argu-
ment for a dictionary-based semantics. Further argument for this
approach can be found in Riecke and Stone’s paper [RS02].

The introduction of traits for SMALLTALK has prompted a flurry
of work on traits for statically-typed languages. Fisher and Reppy
developed the first formal model of traits in a statically typed set-
ting [FR04]. This model was subsequently extended to support
polymorphic traits (key for examples such as the synchronized
readers) and stateful objects [FR03]. This extended trait calculus
was the starting point for the system in this paper. We have made a
number of refinements in the static semantics. Our calculus tracks
method requirements on a per-method basis, which provides more
accuracy when excluding methods. We have also unified the han-
dling of methods and super methods in the requirements by intro-
ducing a separate namespace for super methods (e.g. super.m).
While a simple trick, this technique streamlines the static semantics
significantly. We have reformulated the link-time and dynamic se-
mantics of method binding using Riecke-Stone dictionaries, which
allows the support for the deep operations of renaming and hiding
at the trait level. These last two are our most significant additions
to the Fisher-Reppy calculus.

Smith and Drossopoulou recently described a family of three
different extensions of JAVA with traits [SD05]. The first of these,
Chai1, defers all checking until traits have been included in a class.
The second, Chai2, adds trait types and is similar in expressiveness
to the Fisher-Reppy trait calculus, with a couple of exceptions. Like
JAVA, Chai2 uses nominal subtyping, instead of structural typing,
and does not have polymorphic traits. The differences between our
work the Fisher-Reppy calculus apply to Chai2 as well. Chai3
extends Chai2 by allowing traits to be replaced at runtime. This
feature is orthogonal to the focus of our work, but could be added
to our system.

Another proposed design of traits for JAVA is Featherweight
Trait JAVA (FTJ) [LS04], which adds traits to Featherweight
JAVA [IPW01]. This system is fairly similar to the Fisher-Reppy
trait calculus (with some technical differences), and does not sup-
port either deep renaming or private methods at the trait level.

There are strong similarities between traits and mixins [BC90,
FKF98, OAC+04], which are another mechanism designed to give
many of the benefits of multiple inheritance without the complica-

7 Strictly speaking, one has to reformulate the flattening property for our
system, since we do not have a mechanism for defining methods directly in
a class.

tions. The main difference between mixins and traits is that mixins
force a linear order in their composition (it is this order that avoids
the complexities of the diamond property). This linear order intro-
duces fragility problems and may make code maintenance more
difficult [SDNB03]. Mixin mechanisms must also deal with con-
structor functions, which can be another source of fragility, since it
is hard to predict what the interface of the super-class construc-
tor will be. A solution to this problem is to define the mixin’s
constructors at the point of mixin application [ALZ03]. This is-
sue does not affect traits, since they are not defining or initializ-
ing object state. Personalities are another trait-like mechanism de-
signed for JAVA, although they are much more limited in their ex-
pressiveness [Bla98] and they do not have a formal model. The
language Scala has a special form of abstract class called a trait
class [OAC+04]. Trait classes are used as mixins and also to sup-
port family polymorphism, but they do not support the trait opera-
tions such as exclusion, or our deep renaming.

Bracha’s Jigsaw framework is often cited as the first formal ac-
count of mixins [Bra92]. Like our calculus, and unlike the other
trait systems discussed above, Jigsaw supports deep renaming
(Bracha calls it global renaming) and method hiding. His system
also has a static binding mechanism (called freezing). Bracha gave
a dynamic semantics and a type system for Jigsaw, but did not
prove type soundness. While it is possible that our metaprogram-
ming idiom could be applied to mixins in the Jigsaw framework,
we believe that traits are a better fit.

Examples like the TSync trait closely resemble the use of as-
pects [KLM+97] to specify “cross-cutting” concerns. While traits
have always had some overlap with aspects, trait-based metapro-
gramming brings the two even closer. Both traits and aspects are
specified outside of the classes to which they are applied; the pri-
mary difference between the two is how they are applied to classes.
Aspects specify points of application via pointcuts, which pick out
join points in the target classes; hence, aspects are in control of
their own application. On the other hand, traits are completely in-
ert unless they are explicitly inlined during class formation, leaving
control to the class implementor.

9. Conclusion
Traits provide a promising mechanism for constructing class hierar-
chies from reusable components. We have introduced two new trait
operations, method hiding and renaming, which are the deep coun-
terparts to method exclusion and aliasing. These operations provide
new ways of resolving conflicts in trait composition. Furthermore,
they support privacy at the trait level and trait-based metaprogram-
ming. Our formal model gives a detailed semantics to these oper-
ations in a statically typed setting, while also improving the gran-
ularity of the type system over previous calculi. There are several
remaining questions for a concrete language design built around
our calculus, which we briefly raise:

• In a language with a rich module system, it is not yet clear
how traits should interact with features such as signatures and
functors. One can imagine using signature ascription to imple-
ment method hiding in traits (as done in MOBY at the class
level [FR99]).

• While the type system we have presented in this paper is flex-
ible, it is also verbose, since each method provided by a trait
specifies its own requirements. This granular type information
can be inferred from a trait definition, but introducing traits into
a module system will require a programmer to explicitly write
down trait signatures, and it is not clear what form such signa-
tures should take.

• The most important questions posed by our work regard the
design of a trait metalanguage. At the least, such a language
should include an explicit abstraction mechanism for trait
method names, but the design space is large and essentially
unexplored. We plan to first implement the trait calculus of this
paper in the language MOBY, which will allow us to gain expe-
rience with trait programming and manual trait-based metapro-
gramming. We hope that programming experience will lead to
the recognition of patterns and idioms that can then be codified
into a trait metalanguage.

Acknowledgments We would like to thank Kathleen Fisher, who
provided helpful feedback on an early draft and insight into the type
theory for the paper. The anonymous reviewers gave thorough feed-
back on the formal system and good insights on the presentation;
their work is appreciated.

References
[ALZ03] Ancona, D., G. Lagorio, and E. Zucca. Jam—designing a java

extension with mixins. ACM Transactions on Programming
Languages and Systems, 25(5), September 2003, pp. 641–712.

[BC90] Bracha, G. and W. Cook. Mixin-based inheritance. In
ECOOP’90, New York, NY, October 1990. ACM, pp. 303–
311.

[Bla98] Blando, L. Designing and programming with personalities.
Master’s dissertation, Northeastern University, Boston, MA,
December 1998. Available as Technical Report NU-CCS-98-
12.

[Bra92] Bracha, G. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. dissertation,
University of Utah, March 1992.

[BSD03] Black, A. P., N. Schärli, and S. Ducasse. Applying traits to the
Smalltalk collection classes. In OOPSLA’03, New York, NY,
October 2003. ACM, pp. 47–64.

[FKF98] Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In POPL’98, New York, NY, January 1998. ACM, pp.
171–183.

[FR99] Fisher, K. and J. Reppy. The design of a class mechanism
for Moby. In PLDI’99, New York, NY, May 1999. ACM, pp.
37–49.

[FR03] Fisher, K. and J. Reppy. Statically typed traits. Technical
Report TR-2003-13, Dept. of Computer Science, U. of
Chicago, Chicago, IL, December 2003.

[FR04] Fisher, K. and J. Reppy. A typed calculus of traits. In FOOL11,
January 2004.

[IPW01] Igarashi, A., B. C. Pierce, and P. Wadler. Featherweight java:
a minimal core calculus for java and gj. ACM Transactions
on Programming Languages and Systems, 23(3), 2001, pp.
396–450.

[KLM+97] Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka (eds.), ECOOP’97,
vol. 1241 of LNCS, pp. 220–242. Springer-Verlag, New York,
NY, 1997.

[LS04] Liquori, L. and A. Spiwack. Featherweight-trait java: A trait-
based extension for FJ. Technical Report RR-5247, Institut
National de Recherche en Informatique et en Automatique,
June 2004.

[NDS06] Nierstrasz, O., S. Ducasse, and N. Schärli. Flattening traits.
Journal of Object Technology, 5(3), May 2006. (to appear).

[OAC+04] Odersky, M., P. Altherr, V. Cremet, B. Emir, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. The
Scala Language Specification (Draft). Programming Methods
Laboratory, EPFL, Switzerland, February 2004. Available
from lamp.epfl.ch/scala.

[Qui04] Quitslund, P. J. Java traits — improving opportunities for
reuse. Technical Report CSE 04-005, OGI School of Science
& Engineering, September 2004.

[RS02] Riecke, J. G. and C. A. Stone. Privacy via subsumption.
Information and Computation, 172(1), January 2002, pp. 2–
28. A preliminary version appeared in FOOL5.

[RT06] Reppy, J. and A. Turon. A foundation for trait-based
metaprogramming (extended version). Technical report, Dept.
of Computer Science, U. of Chicago, Chicago, IL, 2006.

[SD05] Smith, C. and S. Drossopoulou. Chai: Traits for Java-like
languages. In ECOOP’05, LNCS, New York, NY, July 2005.
Springer-Verlag.

[SDN+02] Schärli, N., S. Ducasse, O. Nierstrasz, R. Wuyts, and A. Black.
Traits: The formal model. Technical Report CSE 02-013, OGI
School of Science & Engineering, November 2002. (revised
February 2003).

[SDNB03] Schärli, N., S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. In ECOOP’03, vol. 2743 of
LNCS, New York, NY, July 2003. Springer-Verlag, pp. 248–
274.

[Str94] Stroustrup, B. The Design and Evolution of C++. Addison-
Wesley, Reading, MA, 1994.

A. Additional typing judgments

Subtyping: Γ ` τ1 <: τ2

Γ ` τ ok

Γ ` τ <: τ

Γ ` 〈l : τl
l∈L1〉 ok L2 ⊂ L1

Γ ` 〈l : τl
l∈L1〉 <: 〈l : τl

l∈L2〉

Γ ` τ ′2 <: τ ′1 Γ ` τ ′′1 <: τ ′′2
Γ ` τ ′1 → τ ′′1 <: τ ′2 → τ ′′2

Expression typing: Γ ` e : τ

Γ ` ok x ∈ dom(Γ)
Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λ(x : τ).e : τ1 → τ2

Γ ` e1 : τ ′ → τ
Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` C : τ → {| l : τl
l∈L |}

Γ ` e : τ

Γ ` new C e : 〈l : τl
l∈L〉

Γ ` ok
Γ ` self : Γ(self)

Γ ` Γ(super) <: 〈m : τm〉
Γ ` super.m : τm

Γ ` ok
Γ ` () : unit

Γ ` e1 : τ Γ ` τ <: 〈f : τf 〉
Γ ` e2 : τf

Γ ` e1.f := e2 : unit

Γ ` ok Γ ` ef : τf ∀f ∈ F
Γ ` {f = ef

f∈F} : {f : τf
f∈F}

Γ ` e1 : {f = ef
f∈F1}

Γ ` e2 : {f = ef
f∈F2} F1 t F2

Γ ` e1 ⊕ e2 : {f = ef
f∈F1∪F2}

Γ ` e : τ
Γ ` τ <: 〈l : τl〉

Γ ` e.l : τl

Γ ` e : τ Γ ` τ <: τ ′

Γ ` e : τ ′

Declaration typing: Γ ` D ⇒ Γ′

t /∈ dom(Γ) Γ, ~α ` T : θ

Γ ` t = (~α)T ⇒ Γ, t : Λ(~α).θ

c /∈ dom(Γ) Γ ` C : χ

Γ ` c = C ⇒ Γ, c : χ

x /∈ dom(Γ) Γ ` e : τ

Γ ` x = e ⇒ Γ, x : τ

Program typing: Γ `P P : τ

Γ ` D ⇒ Γ′ Γ′ `P P : τ

Γ `P D; P : τ

Γ ` e : τ

Γ `P e : τ

B. Additional evaluation rules
Program evaluation: E, S ` P −→ ev , E′, S′

E, S ` D −→ E′, S′

E′, S′ ` P −→ ev , E′′, S′′

E, S ` D; P −→ ev , E′′, S′′
E, S ` e −→ ev , S′

E, S ` e −→ ev , E, S′

Declaration evaluation: E, S ` D −→ E′, S′

E ` T −→ tv t /∈ dom(E)

E, S ` t = (~α)T −→ E[t 7→ (~α)tv], S

E ` C −→ cv c /∈ dom(E)

E, S ` c = C −→ E[c 7→ cv], S

E, S ` e −→ ev x /∈ dom(E)

E, S ` x = e −→ E[x 7→ ev], S′

Expression evaluation: E, S ` e −→ ev , S′

x ∈ E

E, S ` x −→ E(x), S E, S ` λ(x : τ).e −→
[E; λ(x : τ).e], S

E, S ` e1 −→ [E′; λ(x : τ).e], S1

E, S1 ` e2 −→ ev2, S2

E′[x 7→ ev2], S2 ` e −→ ev , S3

E, S ` e1 e2 −→ ev , S3

E, S ` e −→ (a, φ), S′ S′(a) = 〈fv ; Mv〉 fv(f) = evf

E, S ` e.f −→ evf , S′

E, S ` e1 −→ (a, φ), S1 E, S1 ` e2 −→ ev2, S2

S2(a) = 〈{f = evf
f∈F}; Mv〉

S3 = S2[a 7→ 〈{f = evf
f∈F\f ′

, f ′ = ev2}; Mv〉]
E, S ` e1.f := e′2 −→ (), S3

E, S ` e1 −→ {f = evf
f∈F1}, S1

E, S1 ` e2 −→ {f = evf
f∈F2}, S2

E, S ` e1 ⊕ e2 −→ {f = evf
f∈F1∪F2}, S2

E, S ` e1 −→ ev1, S1

...
E, Sn−1 ` en −→ evn, Sn

E, S ` {f1 = e1, . . . , fn = en} −→
{f1 = ev1, . . . , fn = evn}, Sn

E, S ` {} −→ {}, S E, S ` () −→ (), S

