
All-Termination(T)?

Panagiotis Manolios and Aaron Turon

Northeastern University {pete,turon}@ccs.neu.edu

Abstract. We introduce the All-Termination(T) problem: given a
termination solver T and a collection of functions F , find every sub-
set of the formal parameters to F whose consideration is sufficient to
show, using T , that F terminates. An important and motivating appli-
cation is enhancing theorem proving systems by constructing the set of
strongest induction schemes for F , modulo T . These schemes can be
derived from the set of termination cores, the minimal sets returned
by All-Termination(T), without any reference to an explicit measure
function. We study the All-Termination(T) problem as applied to
the size-change termination analysis (SCT), a PSpace-complete prob-
lem that underlies many termination solvers. Surprisingly, we show that
All-Termination(SCT) is also PSpace-complete, even though it sub-
stantially generalizes SCT . We develop a practical algorithm for All-
Termination(SCT), and show experimentally that on the ACL2 regres-
sion suite (whose size is over 100MB) our algorithm generates stronger
induction schemes on 90% of multiargument functions.

1 Introduction

Reasoning about recursion requires induction. But there may be several induc-
tion schemes that apply to a given recursive function, and different theorems
may require the use of different induction schemes. Finding induction schemes
for a given function is particularly important for automated theorem provers that
perform induction heuristically. In this context, Boyer and Moore explored the
strong relationship between termination and both recursion and induction [1].
They showed that proving termination is the key to justifying function defini-
tions and induction schemes, and developed methods for doing so mechanically.
This was one of the major insights that led to the success of the Boyer-Moore
family of theorem provers, which includes ACL2 [2].

In this paper, we introduce a generalization of the classic termination prob-
lem: All-Termination. The motivating application for this problem is its use
in mechanically deriving and justifying as many induction schemes for a func-
tion as possible, using methods like Boyer and Moore’s. Each induction scheme
is closely tied to the pattern of recursion in the function, so the schemes are
likely to be useful in automated reasoning about the function.

? This research was funded in part by NASA Cooperative Agreement NNX08AE37A
and NSF grants CCF-0429924, IIS-0417413, and CCF-0438871.

We begin with a few examples, first using traditional induction schemes, and
then describing the schemes we can derive through All-Termination analysis.
Consider the function even, which determines whether a natural number is even:

even n = if n = 0 then T else if n = 1 then F else even (n - 2)

To show the correctness of even, there are a few induction principles we might
apply. An obvious first choice is standard induction over the naturals. However,
this principle does not suffice for proving the theorem, because it is not possible
to prove that even(n) is correct assuming only that even(n − 1) is correct; we
need instead that even(n − 2) is correct. On the other hand, we could employ
strong induction on the naturals. We would then have to show

〈∀m < n :: even(m) iff bm/2c = m/2〉 =⇒ (even(n) iff bn/2c = n/2)

where n is implicitly universally quantified, a shorthand we will use throughout
this section. While this is a reasonable choice of induction scheme, it is a bit ad
hoc. In particular, it is hard to see how to derive such an induction scheme from
the definition of even in an automated way.

What Boyer and Moore propose instead is to derive an induction scheme
from the pattern of recursion in the function body. For the even function, we
can derive following induction scheme for proving 〈∀n :: ϕ(n)〉:

ϕ(0), ϕ(1), n 6= 0, n 6= 1, ϕ(n− 2) =⇒ ϕ(n)

How do we know that the induction scheme is sound? By proving that even
terminates on all inputs. Since the induction scheme corresponds directly to the
recursion of even, knowing that the recursion terminates allows us to apply well-
founded induction and soundly derive the induction scheme above. Notice that
the induction scheme can be applied to any ϕ, not just ϕ involving even. But
the derivation of the scheme was mechanically guided by the definition of even.

Now we turn to a more interesting example: the function zip, which takes a
pair of lists and produces a list of pairs:

zip xs ys = if nil?(xs) or nil?(ys) then nil
else cons (head x, head y) (zip (tail xs) (tail ys))

Recall that a measure µ on a function f is another function, on the same domain,
that maps into a well-ordered structure1 such that whenever f(a) calls f(b), we
have µ(a) > µ(b). Because the successive values of µ cannot decrease infinitely, f
cannot recur infinitely. We say a set P of formal parameter names for a function
is measurable if there exists a measure on that function that uses only those
arguments. Suppose length measures the length of a list. For zip, the sets
{xs, ys}, {xs}, and {ys} are measurable, because length(xs) + length(ys),
length(xs), and length(ys), respectively, are measures. Ignoring the measures
themselves, we can use measurable sets of a function to derive induction schemes.
For instance, here are two induction schemes for zip:
1 A set with a total order that has no infinite descending chains x1 > x2 > · · · .

Measurable set: P = {xs, ys} Measurable set: P = {xs}
1. ϕ([], ys) 1. ϕ([], ys)
2. ϕ(xs, []) 2. ϕ(xs, [])
3. ϕ(xs, ys) =⇒ ϕ(x:xs, y:ys) 3′. 〈∀zs :: ϕ(xs, zs)〉 =⇒ ϕ(x:xs, y:ys)

The intuition is that, if a parameter like ys does not appear in a measurable
set, then that parameter can vary freely without affecting termination; hence,
the parameter can be instantiated freely during induction without invalidating
the induction scheme. The induction scheme based on {xs} is stronger than the
one for {xs, ys}: any theorem proved using the latter can be proved using the
former, but not vice versa.

In practice, Boyer-Moore theorem provers use complex heuristics to propose
an induction scheme that is likely needed to prove a given theorem. The proposed
scheme must then be justified. The key point is that, just as with the simple
examples above, the justification is based on measurable sets. Users can introduce
new measurable sets, but only through a manual process involving a termination
proof. Our goal is to automate the process of justifying induction schemes by
computing all the measurable sets for a given function.

We thus define All-Termination as follows: given a recursive function f ,
find its measurable sets. The All-Termination problem is a generalization of
the classic termination decision problem: a program is terminating iff it has at
least one measurable set. Therefore, All-Termination is undecidable. How-
ever, decades of work on termination have yielded powerful, but decidable, ter-
mination analyses. For any such termination analysis, T , we can pose the All-
Termination(T) problem: given a function f and a termination solver, T , find
as many measurable sets as possible using T .

In this paper, we focus on the size-change termination analysis (SCT [3])
because several powerful termination analyses depend on it (see Section 5 for
examples). An introduction to the size-change framework is given in Section 3.
Then, in Section 4, we study All-Termination(SCT) in detail and show that
its complexity is the same as the complexity of SCT : they are both PSpace-
complete problems. We also develop an algorithm, using dual-horn minimization.
We have implemented this algorithm on a prototype basis, and executed it on
the ACL2 regression suite, consisting of over 11,000 functions. We found that
over 90% of multiargument functions have at least one measurable set that was
smaller than the full set of arguments to the function, and 7% of the multi-
argument functions had multiple, incomparable measurable sets. These results
suggest that All-Termination can increase automation in theorem provers.

An important practical consideration is the tension between termination
analysis and All-Termination analysis. Since termination analysis tends to
be expensive, and theorem provers often require functions to be shown ter-
minating before they can be admitted, the goal is to decide termination as
quickly as possible, using the simplest analysis [4]. On the other hand, we can
get better All-Termination results by employing heavyweight methods, even
when simpler methods suffice to show termination—but this involves more work.
The algorithm we develop takes this tension into account and is responsive: it

answers the basic termination question first, without incurring any additional
overhead. Only after termination is settled does it proceed with the full All-
Termination(T) analysis. This approach allows a theorem prover to use spare
CPU cycles or cores to detect new induction schemes in the background, after
the function is determined to terminate. It also allows the theorem prover to use
All-Termination(T) analysis in a demand-driven way, asking for induction
schemes when the need arises.

A version of this paper with more detail and full proofs is available online [5].

2 All-Termination(T)

We postulate a universe of programs Prog, but do not specify a particular
syntax or semantics. Intuitively, a program F ∈ Prog is a mutually-recursive
nest of functions; F terminates iff each function in F terminates on every input.
Formally, we require that for every program F ∈ Prog, there is a corresponding
transition system CF , called the semantic call graph of F , which terminates
iff F does and whose states are function names with actual arguments. Given
universes of function names F , parameter names P, and values V, we say:

Definition 1 A semantic call graph C is a pair (S,→) with S ⊆ F × (P ⇀ V)
the set of states and → ⊆ S × S the transition relation. The elements of
P ⇀ V are the partial functions from P to V.

Definition 2 A semantic call graph C is terminating if it contains no infinite
sequence of transitions s1→s2→· · · .

The Fibonacci function and its semantic call graph are:

fib 0 = 1
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

fib(0) fib(1) fib(2)BCD@GA?? BCD@GA?? fib(3)

ECD@GF
��

ECD@GF
��

· · ·

A semantic call graph records the actual function calls made in order to compute
a given function application. In general, CF is an infinite, undecidable structure:
even determining whether there is a transition between two states is undecid-
able. We can express termination of semantic call graphs in terms of measure
functions, the standard tool for proving termination, as follows.

Proposition 1 (S,→) is terminating iff there exists a well-ordered set (W,>)
and a measure µ, i.e., a map µ : S →W such that if s→t then µ(s) > µ(t).

This proposition follows from basic results in set theory, showing that every
terminating relation can be extended to a well-order and that every well-order
is order-isomorphic to a unique ordinal number.

If (f, V) is a state in a semantic call graph C, the values of the formal ar-
guments in dom(V) are the observations available to a measure on C. Thus, to
restrict the arguments a measure can observe, and thereby force it to ignore
certain arguments, we restrict the domain of V :

Definition 3 Given V : P ⇀ V, f ∈ F and P ⊆ P, we define the restrictions

(V �P)(x) =

{
V (x) x ∈ dom(V) ∩ P,
undefined otherwise

(f, V)�P = (f, V �P)

Informally, a set of formal parameter names P is measurable if there is a measure
that “uses” only those arguments. We can formalize this idea using restriction.

Definition 4 P is a measurable set for C = (S,→) if there exists a measure
µ : S →W such that, if s, t ∈ S and s�P = t�P , then µ(s) = µ(t).

Note that if C has any measurable set, then in particular C is terminating. Ter-
mination analyses are usually formulated so that they imply the termination of
a program, but not the existence of any particular measurable set. To define
All-Termination(T), we need to limit the analysis T to “use” only a certain
set of formal parameters, just as for measures.

Definition 5 A termination analysis T is a predicate such that, if T (F, P),
then P is a measurable set for CF .

Finally, given a termination analysis T and a program F , the termination cores
of F modulo T are the minimal P such that T (F, P). That is,

All-Termination(T)(F) = min{P ⊆ P : T (F, P)}

3 The size-change framework

The semantic call graph CF precisely captures the recursive behavior of F , at the
cost of undecidability. A fruitful approach to termination analysis is to consider
safe approximations of CF . This section describes the size-change framework
of Lee, Jones, and Ben-Amram [3]. The main result, Theorem 1, is not new.
However, our presentation of the framework includes some innovations that are
needed for studying All-Termination(SCT): we give a fuller account of the
connection between SCT and semantic call graphs (including a notion of simu-
lation), and we make explicit the notion of evaluation.

Example Consider the well-known total function ack:

ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

Traditionally, to prove that ack terminates, a measure µ is introduced corre-
sponding to a lexicographic order on the arguments. The size-change framework
takes an alternative perspective, focusing on the change in size of each argu-
ment independently, without having to concoct a single measure on the tuple of
arguments. We first observe that in every recursive call to ack, either the first

argument decreases, or the first argument does not increase while the second
decreases. We display this size-change data as follows:

G1:
m

> // m

n n

G2:
m

≥ // m

n
> // n

It follows that any putative infinite recursion would involve an infinite sequence
of argument size changes of the form above—but we can show that this is not
possible. If size change G1 occurs infinitely often, then m decreases infinitely,
which is impossible under a well-order. Otherwise, since we are considering an
infinite sequence of size changes, it must be that size change G2 occurs unin-
terrupted as an infinite suffix of the sequence. But then n decreases infinitely,
which is again impossible. Hence, ack terminates. The size-change framework
reformulates such reasoning into a decidable analysis.

For simplicity, we postulate a single well-ordering > on all values in V.2 The
notion of size-change “data” above is formalized into a structure called a size-
change graph. An annotated call graph (ACG) is a directed graph with function
names as nodes, and an edge from f to g for each call to g that occurs in the
body of f . The edges of an ACG are labeled by size-change graphs, which record
the size relationship between the arguments of f and g. More formally, we write

p, q, r ∈ Lab = {>,≥} size-change label
G,H ∈ SCG = 2P×Lab×P size-change graph
G,H ∈ ACG = 2F×SCG×F annotated call graph

We write x r−→ y for (x, r, y) ∈ G and f G−→ g for (f,G, g) ∈ G. We also sometimes
write G ∈ G for f G−→ g if the function names f and g are unimportant.

The annotated call graph for ack is: ackG1 77 G2gg . The intuitive demon-
stration that ack terminates was based on sequences of argument size changes
during recursive function calls. A potential sequence of function calls is just a
path through an ACG.

Definition 6 A multipath π through an ACG G is a (potentially infinite) se-
quence of edges from G, connected at nodes: π = f0

G1−−→ f1
G2−−→ f2

G3−−→ · · · .

We write Gω for the set of nonempty multipaths over G and G+ for the set
of finite, nonempty ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a
multipath when the function names are irrelevant.

The reason π = 〈Gi〉 is a multipath and not just a path is that the elements
Gi of the sequence are themselves graph structures. In particular, a multipath
may contain many threads through its size-change graphs.

Definition 7 A thread in a multipath π = 〈Gi〉 is a sequence of size-change
edges 〈xi−1

ri−→ xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

2 Multiple orders can also be handled [4].

For example, consider the multipath ack
G1−−→ ack

G2−−→ ack
G1−−→ ack in Gack.

Its only thread is m >−→ m
≥−→ m

>−→ m. On the other hand, the multipath
ack

G2−−→ ack
G2−−→ ack has two threads: m ≥−→ m

≥−→ m and n
>−→ n

>−→ n.
Threads track a given value as it flows through the arguments of successive

function calls. A value being tracked by a thread can never increase, but it
must decrease any time it passes through a >-labeled size-change edge. Size-
change termination analysis works by considering all potential infinite multipaths
through an ACG, and demonstrating that each of them contains an infinite
thread that forces its value to decrease infinitely often. By well-foundedness,
such infinite decreases cannot occur, and so all infinite multipaths are ruled out.

Definition 8

(1) An infinite thread 〈xi−1
ri−→ xi〉 has infinite descent if ri = > for infinitely-

many i.
(2) A multipath π has infinite descent if it has a thread with infinite descent.
(3) G is size-change terminating if every infinite multipath π ∈ Gω has a

suffix with infinite descent.

We have motivated ACGs in terms of function calls, but it remains to for-
mally connect ACGs to semantic call graphs. An ACG G can be seen as a finite
description of a semantic call graph CG that relates states according to the pos-
sible size changes given in G:

Definition 9 The semantic call graph determined by G is CG = (S,→),
where S = F × (P ⇀ V) and

(f, V)→(g, U) iff 〈∃f G−→ g ∈ G :: 〈∀x r−→ y ∈ G :: V (x) r U(y)〉〉

In order to use the size-change termination of G to show the termination of F ,
we must relate CG and CF . The relation we use is a form of simulation.

Definition 10 Given two semantic call graphs C1 = (S1,→1) and C2 = (S2,→2),
a simulation between C1 and C2 is a relation R ⊆ S1 × S2 such that

– for each s1 there is some s2 with s1 R s2
– if s1 R s2 then s1 = (f, V) and s2 = (f, U) with f ∈ F and U = V �dom(U)
– if s1 R s2 and s1→1s

′
1 then there exists an s′2 such that s2→2s

′
2 and s′1 R s′2

We say C′ simulates C, written C v C′, if there exists a simulation R between C
and C′. Intuitively, if C′ simulates C, then C′ admits at least as many behaviors
as C. We say G is safe for F if CF v CG . In general, finding a safe ACG G for
a program F is difficult, and is a problem that the size-change framework does
not address (but see [4]). For our purposes, it is sufficient to postulate a function
analyze : Prog→ ACG such that analyze(F) is safe for F .

The next two propositions allow us to conclude that if G is safe for F and G
is size-change terminating then F terminates.

Proposition 2 G is size-change terminating iff CG is terminating.

Proposition 3 If C v C′ and C′ is terminating then C is terminating.

Deciding size-change termination for an ACG G is a PSpace-complete prob-
lem, but the standard algorithm used in practice needs exponential space in the
worst case [3]; we present this algorithm next.

Suppose G is an ACG. If f0
G1−−→ · · · Gn−−→ fn is a multipath in G+, we know

that according to G, a call to f0 could result in a call to fn. But what can we say
about the size of the arguments to fn in terms of the arguments to f0? What
we want is a way to compose size-change graphs along a multipath.

Definition 11 We define composition of size-change labels and graphs by

p · q =

{
≥ p = ≥ and q = ≥
> otherwise.

G ·H = {x p·q−−→ z : x
p−→ y ∈ G, y q−→ z ∈ H}

Definition 12 The evaluation of π = 〈G1, . . . , Gn〉 ∈ G+ is JπK = G1· · · · ·Gn.

Note that composition is associative, so evaluation is well-defined. The evaluation
of a multipath π is useful because it compactly summarizes the threads in π:

Proposition 4 x
r−→ y ∈ JπK iff there exists a thread 〈x r1−→ z1

r2−→ · · · rn−1−−−→
zn−1

rn−→ y〉 in π, with r = r1 · · · · · rn.

The key step for the size-change termination algorithm is to compute the closure
of an annotated call graph G under composition: the set {JπK | π ∈ G+}. The
closure is formally defined as a least fixpoint. The algorithm looks for certain
“maximal” size-change graphs in the closure, called idempotents.

Definition 13

(1) The closure of G under · is the smallest set satisfying

cl(G) = G ∪ {f G·H−−−→ h : f
G−→ g, g

H−→ h ∈ cl(G)}

(2) A size-change graph G is idempotent if G ·G = G.

Theorem 1 (Lee et al. [3]) G is size-change terminating iff for every f
G−→

g ∈ cl(G) such that G is idempotent, there is an edge x >−→ x ∈ G.

Example Consider the following function perm, which permutes its two argu-
ments, decreasing one of them, until one of them is zero.

perm 0 y = y
perm x 0 = x
perm x y = perm (y - 1) x

How can we use the theorem above to show that perm terminates? First, we need
to construct Gperm. Since there is only one recursive call in perm, Gperm has only
one node and one edge. The size-change graph G for perm and its powers are:

G:

x ≥

$$JJJJJ x

y >

::ttttt y
G2:

x
> // x

y > // y
G3:

x >

$$JJJJJ x

y >

::ttttt y
G4:

x
> // x

y > // y

Note that G2 is idempotent, so G4 = G2. Consequently, the only distinct size-
change graphs in cl(Gperm) are G, G2, and G3. Since G2 has an edge x >−→ x, and
G2 is the only idempotent graph in cl(Gperm), Gperm is size-change terminating.

The standard algorithm for deciding size-change termination is based on
Theorem 1: compute cl(analyze(F)) as a least fixpoint, and check the strict
self-edge condition on the idempotent elements. To adapt this algorithm for all-
termination, we will record some additional information as size-change graphs
are composed, and build a constraint system from this information after the
algorithm finishes. The minimal solutions to these constraints will be exactly
the termination cores of F .

4 All-Termination(SCT)

Recall that a termination analysis is a predicate T (F, P) that holds only if P is a
measurable set for F . Thus, the first step in studying All-Termination(SCT)
is to formulate such a predicate SCT (F, P), with the property that 〈∃P ::
SCT (F, P)〉 holds exactly when F is size-change terminating. Size-change anal-
ysis, like many termination analyses, does not explicitly construct a measure
witnessing termination; it only implies the existence of one.3 We need a way to
restrict size-change analysis to a set of parameters P , such that this implied mea-
sure only uses parameters from P . To do this, we derive an ACG analyze(F)�P
whose size-change termination implies that P is a measurable set of F . This
restricted ACG simply drops any size-change information not related to to pa-
rameters in P .

Definition 14 Given G, G, and P , we define the restrictions

G�P = {x r−→ y ∈ G : x, y ∈ P} G �P = {f G�P−−→ g : f
G−→ g ∈ G}

Similarly, we introduce a notion of restriction on semantic calls graphs, which
will allow us to derive a useful new characterization of measurable sets.

Definition 15 Given C = (S,→) and P , we define the restriction

C �P =
(
{(f, V �P) : (f, V) ∈ S},

)
where s t iff there exist s′, t′ ∈ C such that s = s′ �P , t = t′ �P , and s′→t′.
3 It is possible to effectively construct a measure from size-change analysis, and thereby

extract a single measurable set, but the size of the measure is exponential [6].

Proposition 5 For all C, G and P ⊆ P we have

(1) P is a measurable set for C iff C �P is terminating,
(2) C v C �P ,
(3) if C v C′ then C �P v C′ �P , and
(4) CG �P ≈ CG�P , where (≈) = (v) ∩ (w).

We now have all the pieces needed to define the SCT predicate:

SCT (F, P) ⇐⇒ analyze(F)�P is size-change terminating

Theorem 2 SCT is a termination analysis.

Proof. Using Proposition 5, CF �P v Canalyze(F) �P ≈ Canalyze(F)�P . If SCT (F, P)
holds then analyze(F) � P is size-change terminating, so Canalyze(F)�P is termi-
nating, and hence so is CF �P . By Proposition 5, P is a measurable set of F .

Deciding SCT (F, P) is PSpace-complete, since the restriction of an ACG
to P can be computed in polynomial time, after which the problem reduces to
size-change termination. Somewhat surprisingly, All-Termination(SCT) has
the same complexity.

Theorem 3 All-Termination(SCT) is PSpace-complete.

Proof. All-Termination(SCT) is PSpace-hard because 〈∃P :: SCT (F, P)〉
can be reduced to All-Termination(SCT)(F) in constant space by executing
All-Termination(SCT)(F) until it either halts with no output or produces
its first output, and 〈∃P :: SCT (F, P)〉 is PSpace-hard. On the other hand, the
following algorithm solves All-Termination(SCT) in polynomial space:

All-Termination(SCT)(F)

for P ⊆ P do

if SCT (F, P) and 〈∀Q ⊂ P :: SCT (F, Q) = False〉 then output P

The algorithm uses polynomial space because SCT (F, P) is in PSpace, and all
of the loops can be implemented using counters whose size is logarithmic in the
size of 2P , hence linear in the size of P, where P is the set of parameters to
functions in F .

This theorem generalizes to any PSpace-complete termination analysis. Hav-
ing settled the basic complexity question, we now turn to practical considera-
tions. The algorithm above executes SCT at least 2|P| times. The algorithm we
introduce below runs SCT once, gathering information from which it extracts
the termination cores. The key to the algorithm is understanding the threads
and multipaths in (G �P)+ in terms of those in G+. We first observe that each
multipath in (G �P)+ is the restriction of a multipath in G+, as follows.

Definition 16 Given a multipath π = f0
G1−−→ · · · Gn−−→ fn in G+, the restriction

of π to P ⊆ P is π �P = f0
G1�P−−−→ · · · Gn�P−−−→ fn, which is a multipath in (G �P)+.

Proposition 6 Let P ⊆ P.

(1) If π ∈ (G �P)+ then there exists a π′ ∈ G+ such that π = π′ �P .
(2) If π ∈ G+ then the threads of π �P are exactly the threads 〈x0

r1−→ · · · rn−→ xn〉
of π such that each xi is in P .

Notice that as size-change graphs are composed, some information about the
possible threads within them is lost. For example, if x ≥−→ z ∈ G ·H, we know
that there is some y for which x

p−→ y ∈ G and y
q−→ z ∈ H with pq = ≥, but

given only the composed graph G·H it is not possible to determine which choices
of y would suffice. More generally, given a multipath π ∈ G+, we can determine
all of its threads; but, given only x r−→ y ∈ JπK, the most we can say is that there
is some thread in π from x to y (by Proposition 6). Thus, if we want to reason
about the threads of π �P (and hence the edges in Jπ �P K) in terms of JπK, we
need to keep track of which variables contribute to each edge x r−→ y ∈ JπK. We
do this using annotated size-change graphs:

G,H ∈ ASCG = 2P×(Lab×2P)×P annotated size-change graphs

Intuitively, if an edge x r−→
Q
y is in an ASCG G, then there is some thread relating

x to y with size-change r, involving at most the parameters in Q.
If G is a size-change graph in G, and x r−→ y ∈ G, the only parameters needed

to show that there is a thread from x to y are x and y themselves. Thus we have
a simple way of producing initial ASCGs from SCGs:

Definition 17 The ASCG for G is bGc = {x r−−−→
{x,y}

y : x
r−→ y ∈ G}.

Just as with SCGs, we have composition, evaluation, and closure for ASCGs.

Definition 18

(1) Annotated composition and evaluation are defined as follows:

G�H = {x pq−−−→
P∪Q

z : x
p−→
P
y ∈ G, y q−→

Q
z ∈ H}

bG1, . . . , Gnc = bG1c � · · · � bGnc

(2) The annotated closure of G under � is the least set satisfying

acl(G) = {f bGc−−→ g : f G−→ g ∈ G} ∪{f G�H−−−→ h : f G−→ g, g
H−→ h ∈ acl(G)}

We can now reason about the multipaths of (G �P)+ in terms of G+:

Proposition 7 Let π ∈ G+. Then x
r−→ y ∈ Jπ �P K iff there exists a Q ⊆ P such

that x r−→
Q
y ∈ bπc.

Example Returning to the perm example, we ask: is {x} a measurable set for
perm? No: a function taking only the x parameter for perm cannot possibly be a
measure. To see why, consider that perm 1 2 calls perm 1 1. Thus, a measure µ
for perm using only x would have to have the property that µ(1) > µ(1) which is
clearly impossible. A similar argument shows that {y} is not a measurable set.
We can now reanalyze the perm function in using annotated size-change graphs,
to see how they are used to discover that {x} and {y} are not measurable sets.
We begin with the same graph G we had before, but with annotated edges.

G:

x ≥
{x,y}

!!CC
CC

CC
C x

y >
{x,y}

=={{{{{{{
y

G�G:

x
>

{x,y}
// x

y >

{x,y}
// y

As before, G�G is idempotent. The annotations on the edges of G�G, however,
tell us that to justify a decrease from, e.g., x to x in G � G, we must consider
the formal argument y as well.

The next result shows that we have completely characterized size-change
termination for any G �P in terms of the annotated closure acl(G).

Theorem 4 G �P is size-change terminating iff for every f G−→ g ∈ acl(G) such
that G is idempotent, there is an edge x >−→

Q
x ∈ G with Q ⊆ P .

Corollary 1 Let I = {G ∈ acl(analyze(F)) : G idempotent}. We have
All-Termination(SCT)(F) = {P ⊆ P : 〈∀G ∈ I :: 〈∃x >−→

Q
x ∈ G :: Q ⊆ P 〉〉}.

We can use Corollary 1 as the basis for an algorithm as follows. First, compute
acl(analyze(F)) as a least fixpoint, and extract the set of idempotent ASCGs
as I. Then, for each G ∈ I, construct the constraint

∨
x

>−→
Q

x∈G

∧
y∈Q y. The

collection (conjunction) of these constraints is a constraint system ΦF whose
solutions are the elements of All-Termination(SCT). It turns out that by
introducing variables, this constraint system can be expressed in dual-horn form.

This is a useful observation because there is an output-sensitive algorithm for
enumerating the minimal solutions to dual-horn formulas [7]. Output sensitiv-
ity means that the running time of the algorithm is bounded by the number of
outputs it produces, and more-over provides “pay-as-you-go” enumeration. For
dual-horn minimization, the time is exponential in the number of outputs; more-
over, the constraint system ΦF may have an exponential number of minimal so-
lutions. In practice, however, functions have very few termination cores (no more
than 3 in our experiment), whereas they often have many arguments (sometimes
more than 20 in our experiment). Hence we much prefer the annotation-based
algorithm (exponential in the former) than the naive algorithm (exponential in
the latter). Finally, we have developed a version of dual-horn minimization based
on incremental SAT-solving, which we hope will perform well when faced with
a larger number of cores.

The algorithm described above has another appealing property: it can be
made responsive, by which we mean it can answer the basic termination problem
as quickly as the standard size-change algorithm. If the program cannot be shown
to terminate, there is no need to continue. If termination is established, then re-
sponsiveness can be exploited by the theorem prover in various ways, including
the following two. First, the theorem prover can run the All-Termination(T)
algorithm to completion. For interactive theorem proving applications, this can
be done using spare CPU cycles (e.g., by using an underutilized CPU core), be-
cause the user is free to continue as soon as termination has been established, and
any new induction schemes found can be quietly recorded by the theorem prover.
Second, the theorem prover can suspend the All-Termination(T) algorithm,
coming back to it only when it needs new induction schemes, thereby using the
analysis in a demand-driven way. Responsiveness is obtained by controlling the
least fixpoint computation of acl(analyze(F)) so that the size change graphs
needed to compute cl(analyze(F)) are generated first. This process differs from
the basic size-change algorithm only in that we record the size-change graph
annotations required for the annotated closure. Once termination is established,
the fixpoint computation for the annotated closure proceeds.

Experimental results

We have implemented our All-Termination(SCT) algorithm in ACL2, an
industrial-strength theorem proving system. Our implementation served as a
new back-end for the calling context graph (CCG) termination analysis, which is
implemented in the ACL2 Sedan [4, 8]. Normally, CCG analysis uses SCT as a
back-end; by using All-Termination(SCT) instead, we are able to determine
the measurable sets for a function. ACL2 has a large regression suite, with over
11,000 function definitions, each of which must be proved terminating in order to
be admitted into the logic. The regression suite is particularly appealing because
it arises from the work of researchers around the world, with examples ranging
from bit-vector libraries used by AMD, to set theory libraries, graph algorithms
and model checkers. In short, the code in the regression suite provides a large,
realistic sample of ACL2 programs.

We executed our analysis on the entire regression suite The time running
All-Termination(SCT) was negligible compared to the time spent within
CCG’s static analysis, which involves theorem proving. We collected data on
the 1,728 recursive, multiargument functions in the suite. More than 90% of
the functions had at least one termination core that did not include all the ar-
guments to the function, and about 7% of the functions had more than one
termination core. These findings attest to the utility of All-Termination: the
90% of functions with nontrivial termination cores can be given a stronger in-
duction scheme, using All-Termination, than would otherwise be possible.
Thus, by generating stronger induction schemes, our analysis has the potential
to extend the automation provided by theorem provers [1, 2].

5 Related work

The termination problem dates back to Turing, who called it the “Printing Prob-
lem” [9], and there has been steady interest in termination ever since. Here we
can only briefly touch upon the work most directly related to ours.

Boyer and Moore’s work [1], developing the strong relationship between ter-
mination and both recursion and induction the context of automated theorem
proving, provided the impetus for the work we have presented. The idea of All-
Termination, too, can be traced back to Boyer and Moore [1]. However, the
approach they used to find measurable subsets just iterates over their termi-
nation analysis in the naive way: it has exponential complexity and little in
common with the work presented here, beyond the initial motivation. We know
of no other work studying All-Termination.

Termination analysis is currently an active area of research. There is much
interest in termination in the context of term-rewrite systems and logic pro-
grams [10–13]. There is also interest in proving termination of programs written
in imperative languages, such as C. This work tends to focus on semi-algebraic
functions, whose termination behavior is governed by integer arithmetic. Most
of it has been even more narrowly defined, dealing only with systems whose
behavior is linear [14], though there are extensions to programs with polyno-
mial behavior [15]. Also, abstraction-refinement has been applied to termination
analysis, and subsequently used to find bugs in device drivers [16].

This paper has focused on size-change termination analysis [3], which was
introduced in the setting of an applicative language and has since served as
a framework for several other analyses. This includes work on termination in
term-rewrite systems that combines size-change analysis with the dependency
pair method and recursive path orderings [12]. Tools based on these ideas include
AProVE [11]. Another example is work on calling context graphs and measures,
which is used to prove termination of functional programs [4], and has been
implemented in ACL2s [8] and Isabelle [17].

Recently, the problem of conditional termination has been studied [18]. While
we are interested in how we can add behaviors to programs while maintaining
termination, conditional termination asks how to remove behaviors to ensure
termination. This leads to the obvious question: what about All-Conditional-
Termination(T)? Similarly, the non-termination problem [19] gives rise to the
All-Non-Termination(T) problem.

6 Conclusions and future work

We introduced the All-Termination(T) problem and analyzed the complexity
when T is size-change (SCT) analysis. We showed that All-Termination(SCT)
is a PSpace-complete problem, and introduced an algorithm for solving it. The
algorithm imposes no overhead on solving the basic termination problem, and it
can be used to generate a subset of all possible termination cores (up to a user
provided bound). We implemented our algorithm in ACL2 and ran it on the

ACL2 regression suite, consisting of over 100MB of code developed over several
decades by a worldwide user base. Our experiments showed that on over 90% of
multiargument functions in the regression suite, we were able to provide stronger
induction schemes than those obtained with size change analysis. Our primary
focus for future work is analyzing the All-Termination(T) problem for other
termination analyses.

Acknowledgements Alec Heller gave helpful feedback on several drafts.

References

1. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press (1979)
2. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-

proach. Kluwer Academic Publishers (July 2000)
3. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program

termination. In: POPL, ACM Press (2001) 81–92
4. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:

CAV. Volume 4144 of LNCS., Springer (2006) 401–414
5. Manolios, P., Turon, A.: All-Termination(T). Technical Report NU-CCIS-09-01,

Northeastern University (2009)
6. Ben-amram, A.M., Lee, C.S.: Ranking functions for size-change termination II. In:

RDP-WST. (2007)
7. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Annals of Mathe-

matics and Artificial Intelligence 18 (1996) 3–27
8. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: The ACL2 Sedan.

ENTCS 174(2) (2007) 3–18
9. Turing, A.: On computable numbers, with an application to the entscheidungsprob-

lem. In: Proceedings of the London Mathematical Society. Volume 42 of Series 2.
(1936) 230–265

10. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236 (2000) 133–178

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVE. In: RTA. Volume 3091 of LNCS., Springer (2004) 210–220

12. Thiemann, R., Giesl, J.: Size-change termination for term rewriting. Technical
Report AIB-2003-02, RWTH Aachen (January 2003)

13. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming 41(1) (1999) 103–123

14. Tiwari, A.: Termination of linear programs. In: CAV. LNCS 3114, Springer (July
2004) 70–82

15. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: VMCAI. Volume 3385 of
LNCS., Springer (2005) 1–24

16. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, ACM Press (2006) 415–426

17. Krauss, A.: Certified size-change termination. In Pfenning, F., ed.: CADE. Volume
4603 of LNCS., Springer (2007) 460–475

18. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: CAV. LNCS, Springer (2008)

19. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL, ACM (2008) 147–158

