
TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 1

All-Termination(T)

Aaron Turon
Northeastern University

turon@ccs.neu.edu

(joint work with Pete Manolios)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 2

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 3

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 4

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

 m1(i, item, list) = |i|

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 5

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

 m1(i, item, list) = |i|
 m2(i, item, list) = length(list)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 6

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

 m1(i, item, list) = |i|
 m2(i, item, list) = length(list)
 m3(i, item, list) = |i| + length(list)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 7

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

 m1(i, item, list) = |i|
 m2(i, item, list) = length(list)
 m3(i, item, list) = |i| + length(list)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 8

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

 m1(i, item, list) = |i|
 m2(i, item, list) = length(list)
 m3(i, item, list) = |i| + length(list)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 9

Consider a recursive list-insertion procedure:

 define insert(i, item, list) =
 if i <= 0 or empty(list)
 then cons(item, list)
 else cons(first(list),
 insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

 m1(i, item, list) = {i}
 m2(i, item, list) = {list}
 m3(i, item, list) = {i,list}

Measured subsets
for insert

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 10

Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 11

Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i}
 φ(0,item,list)
 [y,z :: ∀ φ(i,y,z)] ⇒ φ(i+1,item,list)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 12

Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i}
 φ(0,item,list)
 [y,z :: ∀ φ(i,y,z)] ⇒ φ(i+1,item,list)
Measured subset {list}
 φ(i,item,nil)
 [x,y :: ∀ φ(x,y,list)] ⇒ φ(i,item,cons(a,list))

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 13

Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i}
 φ(0,item,list)
 [y,z :: ∀ φ(i,y,z)] ⇒ φ(i+1,item,list)
Measured subset {list}
 φ(i,item,nil)
 [x,y :: ∀ φ(x,y,list)] ⇒ φ(i,item,cons(a,list))
Measured subset {i,list}
 φ(0,item,nil)
 [x :: ∀ φ(i,x,list)] ⇒ φ(i+1,item,cons(a,list))

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 14

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover:

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 15

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover:

Prove
termination

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 16

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover:

Prove
termination

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 17

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover:

Termination
analysis

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 18

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover:

Restricted
termination

analysis

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 19

Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

[A better] life with a theorem prover:

All-Termination
analysis

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 20

The rest of the talk:

● All-Termination(T)
– definition
– research program

● Size-change termination (SCT)
● All-Termination(SCT)

– complexity results
– experimental results

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 21

The rest of the talk:

● All-Termination(T)
– definition

– research program

● Size-change termination (SCT)
● All-Termination(SCT)

– complexity results
– experimental results

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 22

Termination analysis
● Termination undecidable
● Sound, incomplete analyses:

T : Programs → Bool predicate such that
if T(P) then P terminates on all inputs

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 23

Termination analysis
● Termination undecidable
● Sound, incomplete analyses:

T : Programs → Bool predicate such that
if T(P) then P terminates on all inputs

Restricted termination analysis

T : Programs ╳ 2Variables → Bool
such that

if T(P,V) then V is a measured subset for P

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 24

Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V
then V is a measured subset for P

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 25

Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V
then V is a measured subset for P

All-Termination(T) analysis

All-Termination(T)(P) ≝ minimal{V | T(P,V)}

where T is a restricted termination analysis.

The “termination cores of P modulo T”.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 26

Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V
then V is a measured subset for P

All-Termination(T) analysis

All-Termination(T)(P) ≝ minimal{V | T(P,V)}

where T is a restricted termination analysis.

Warning

|All-Termination(T)(P)| can be exponential in |P|.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 27

Theorem:

if T is in PSPACE then AllTermination(T) is in PSPACE.

Proof:
All-Termination(T)(P):
 for each V ⊆ vars(P)
 if T(P,V) then
 minimal := true
 for each U ⊊ V
 if T(P,U) then minimal := false
 if minimal then output(V)

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 28

Research program
● Begin with standard termination analysis, A
● Define restricted version, T, so that

[∃ V :: T(P,V)] ⇔ A(P)

● Instrument A to produce a “certificate” C
● Implement All-Termination(T)(P) by

– running A on P to produce C

– extracting termination cores from C

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 29

The rest of the talk:

● All-Termination(T)
– definition
– research program

● Size-change termination (SCT)
● All-Termination(SCT)

– complexity results
– experimental results

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 30

Size-change termination [Lee et al, POPL01] works by
analyzing a safe abstraction of the program.

 ack(0,n) = n+1
 ack(m,0) = 1ack(m-1, 1)
 ack(m,n) = 2ack(m-1, 3ack(m, n-1))

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 31

Size-change termination [Lee et al, POPL01] works by
analyzing a safe abstraction of the program.

 ack(0,n) = n+1
 ack(m,0) = 1ack(m-1, 1)
 ack(m,n) = 2ack(m-1, 3ack(m, n-1))

ack

1

2 3

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 32

Size-change termination [Lee et al, POPL01] works by
analyzing a safe abstraction of the program.

 ack(0,n) = n+1
 ack(m,0) = 1ack(m-1, 1)
 ack(m,n) = 2ack(m-1, 3ack(m, n-1))

ack

1

2 3

m
n

m
n

1

>

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 33

Size-change termination [Lee et al, POPL01] works by
analyzing a safe abstraction of the program.

 ack(0,n) = n+1
 ack(m,0) = 1ack(m-1, 1)
 ack(m,n) = 2ack(m-1, 3ack(m, n-1))

ack

1

2 3

m
n

m
n

m
n

m
n

1 2

> >

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 34

Size-change termination [Lee et al, POPL01] works by
analyzing a safe abstraction of the program.

 ack(0,n) = n+1
 ack(m,0) = 1ack(m-1, 1)
 ack(m,n) = 2ack(m-1, 3ack(m, n-1))

ack

1

2 3

m
n

m
n

m
n

m
n

m
n

m
n

1 2 3

> > ≥
>

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 35

Size-change graph composition

x
y

x
y

> x
y

x
y

≥
; = x

y
x
y

>

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 36

Size-change graph composition

x
y

x
y

> x
y

x
y

≥
; = x

y
x
y

>

x
y

x
y

> ; = x
y

x
y

x
y

x
y

>

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 37

Size-change graph composition

x
y

x
y

> x
y

x
y

≥
; = x

y
x
y

>

x
y

x
y

> ; = x
y

x
y

x
y

x
y

>

x
y

x
y

≥
> ; =x

y
x
y

≥
>

x
y

x
y

≥
> Idempotent

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 38

Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition: ACG is size-change terminating if every
idempotent in cl(ACG) has a strict self-edge.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 39

Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition: ACG is size-change terminating if every
idempotent in cl(ACG) has a strict self-edge.

cl{1,3} = {1,3}

1,3 are idempotent, and have strict self-edges

ack

1

2 3

m
n

m
n

m
n

m
n

1,2 3

> ≥
>

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 40

Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition: ACG is size-change terminating if every
idempotent in cl(ACG) has a strict self-edge.

Size-change termination is PSPACE-complete.

But size-change analysis needs an ACG.

We use Calling Context Graphs [Manolios, Vroon
CAV2006] to find ACGs.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 41

The rest of the talk:

● All-Termination(T)
– definition
– research program

● Size-change termination (SCT)
● All-Termination(SCT)

– complexity results

– experimental results

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 42

The restricted version of SCT

Let restrict(ACG, V) be ACG, but with only size-
change edges relating variables in V.

Theorem: if
● ACG is a valid annotated call graph for P
● SCT(restrict(ACG,V))

then V is a measured subset for P.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 43

Another example

dswap(0,y) = y
dswap(x,0) = x
dswap(x,y) = dswap(y-1,x-1)

x
y

x
y

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 44

Another example

dswap(0,y) = y
dswap(x,0) = x
dswap(x,y) = dswap(y-1,x-1)

x
y

x
y

x
y

x
y

x
y

x
y; =

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 45

Strategy: annotate edges with the variables they use

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 46

Strategy: annotate edges with the variables they use

In general, need sets of sets of variables:

The final y-to-y edge may involve {x,y} or just {y}.

x
y

x
y

x
y

x
y

x
y

x
y

; =

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 47

Strategy: annotate edges with the variables they use

In general, need sets of sets of variables:

The final y-to-y edge may involve {x,y} or just {y}.

For programs such as insert, the graphs are simple:

x
y

x
y

x
y

x
y

x
y

x
y

; =

i
item

list

i
item
list

{{i}}

{{list}}

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 48

Composition of edge-annotated graphs
● results in same edges as before
● new edge annotations are union-of-crossproduct

Let acl(ACG) denote the annotated closure of ACG.

{W1, ..., Wn} {V1, ..., Vm} ; = {W1∪V1, W1∪V2 ,..., Wn∪Vm}

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 49

Key Theorem:

SCT(restrict(ACG,V))

iff

every idempotent in acl(ACG)
has a strict self-edge,

labeled with some set {W1, ..., Wn},
such that Wi ⊆ V for some I

This shows we can extract measured subsets from the
instrumented analysis.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 50

After running SCT with edge annotations, we have:
● A set of idempotent size-change graphs
● Each of which has a set of strict self-edges
● Each of which has a set of variable sets

To find a single measured subset, we choose:
● One set of variables per strict self-edge
● From one strict self-edge per graph

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 51

After running SCT with edge annotations, we have:
● A set of idempotent size-change graphs
● Each of which has a set of strict self-edges
● Each of which has a set of variable sets

To find a single measured subset, we choose:
● One set of variables per strict self-edge
● From one strict self-edge per graph

The measured subset is the union of the
annotations we chose.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 52

To find all the (minimal) measured subsets:
● Build a boolean constraint system φ that captures

the measured subset requirements
● |φ| = O(acl|ACG|)
● φ can be made dual-horn: can find ψ that is

– equisatisfiable to φ
– conjunction of clauses,
– each clause a disjunction of literals
– at most one negative literal per clause

● min solutions to φ can be found from ψ efficiently

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 53

Complexity result

Output may be exponential, so what can we say?

Can look for output-sensitive complexity: running
time reflects actual number of outputs.

Theorem:

After computing φ, we can find k elements of All-
Termination(SCT)(P) in time O(|acl(ACG)|k)

This leads to a pay-as-you-go, incremental algorithm
for finding termination cores.

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 54

Experimental results

We implemented our algorithm for ACL2, on top of
calling context graphs.

ACL2 has a large regression suite:
● >100MB
● >11,000 function definitions (each of which must

be proved terminating)
● Code ranging from bit-vector libraries to model

checkers

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 55

Experimental results

The setup: we ran CCG + All-Termination(SCT) on the
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3

Running time (not including CCG): 30 seconds

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 56

Experimental results

The setup: we ran CCG + All-Termination(SCT) on the
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3

Running time (not including CCG): 30 seconds

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 57

Experimental results

The setup: we ran CCG + All-Termination(SCT) on the
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3 (note: this is the k parameter)

Running time (not including CCG): 30 seconds

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 58

Further work
● Study All-Termination(T) for additional T

– We've explored polynomial size-change

● Extend our prototype to the ACL2 Sedan
– Will help our freshman users at Northeastern

● Explore new applications of measured subsets
– We've got a few in mind, but want to hear yours

TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 59

Conclusion
● Measured sets known, but unstudied until now
● We introduced All-Termination(T):

find all measurable sets for a program P, modulo T

● We studied All-Termination(SCT), showed it
– PSPACE-complete
– Workable in practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

