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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))
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        insert(i-1, item, rest(list)))

How do we prove that insert terminates?
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

    m1(i, item, list) = |i|
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

    m1(i, item, list) = |i|
    m2(i, item, list) = length(list)
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

    m1(i, item, list) = |i|
    m2(i, item, list) = length(list)
    m3(i, item, list) = |i| + length(list)
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

    m1(i, item, list) = |i|
    m2(i, item, list) = length(list)
    m3(i, item, list) = |i| + length(list)
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

    m1(i, item, list) = |i| 
    m2(i, item, list) = length(list)
    m3(i, item, list) = |i| + length(list)
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Consider a recursive list-insertion procedure:

    define insert(i, item, list) =
      if i <= 0 or empty(list)
      then cons(item, list)
      else cons(first(list), 
        insert(i-1, item, rest(list)))

How do we prove that insert terminates?

Are these proofs different in an important way?

    m1(i, item, list) = {i}
    m2(i, item, list) = {list}
    m3(i, item, list) = {i,list}

Measured subsets
for insert
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Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:
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Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i} 
    φ(0,item,list) 
    [ y,z :: ∀ φ(i,y,z)]    ⇒ φ(i+1,item,list)
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Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i} 
    φ(0,item,list) 
    [ y,z :: ∀ φ(i,y,z)]    ⇒ φ(i+1,item,list)
Measured subset {list}
    φ(i,item,nil) 
    [ x,y :: ∀ φ(x,y,list)]    ⇒ φ(i,item,cons(a,list))
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Measured sets ↣ induction schemes [Boyer&Moore, 1979]

To prove i,item,list :: ∀ φ(i,item,list), show:

Measured subset {i} 
    φ(0,item,list) 
    [ y,z :: ∀ φ(i,y,z)]    ⇒ φ(i+1,item,list)
Measured subset {list}
    φ(i,item,nil) 
    [ x,y :: ∀ φ(x,y,list)]    ⇒ φ(i,item,cons(a,list))
Measured subset {i,list}
    φ(0,item,nil) 
    [ x :: ∀ φ(i,x,list)]    ⇒ φ(i+1,item,cons(a,list))
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Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover: 
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Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

Life with a theorem prover: 

Restricted
termination

analysis
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Define functions

Make conjectures

User Theorem prover

Rewriting

Induction

Known functions

Known facts

Proving engine

[A better] life with a theorem prover: 

All-Termination
analysis
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The rest of the talk:

● All-Termination(T )
– definition
– research program

● Size-change termination (SCT)              
● All-Termination(SCT)

– complexity results
– experimental results
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– experimental results
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Termination analysis
● Termination undecidable
● Sound, incomplete analyses:

T : Programs → Bool predicate such that 
if T(P) then P terminates on all inputs
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Termination analysis
● Termination undecidable
● Sound, incomplete analyses:

T : Programs → Bool predicate such that 
if T(P) then P terminates on all inputs

Restricted termination analysis

T : Programs ╳ 2Variables → Bool
such that 

if T(P,V) then V is a measured subset for P
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Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V 
then V is a measured subset for P
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Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V 
then V is a measured subset for P

All-Termination(T) analysis

All-Termination(T)(P)  ≝  minimal{V | T(P,V)}

where T is a restricted termination analysis.

The “termination cores of P modulo T”.



TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 26

Measured sets are upward-closed:

if U is a measured subset for P, and U ⊆ V 
then V is a measured subset for P

All-Termination(T) analysis

All-Termination(T)(P)  ≝  minimal{V | T(P,V)}

where T is a restricted termination analysis.

Warning

|All-Termination(T)(P)|  can be exponential in |P|.
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Theorem:

if T is in PSPACE then AllTermination(T) is in PSPACE.

Proof:
All-Termination(T)(P):
  for each V ⊆ vars(P)
     if T(P,V) then
        minimal := true
        for each U ⊊ V
           if T(P,U) then minimal := false
        if minimal then output(V)



TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 28

Research program
● Begin with standard termination analysis, A
● Define restricted version, T, so that

[∃ V :: T(P,V)]  ⇔  A(P)

● Instrument A to produce a “certificate” C
● Implement All-Termination(T)(P) by

– running A on P to produce C

– extracting termination cores from C
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The rest of the talk:

● All-Termination(T )
– definition
– research program

● Size-change termination (SCT)              
● All-Termination(SCT)

– complexity results
– experimental results
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Size-change termination [Lee et al, POPL01] works by 
analyzing a safe abstraction of the program.

     ack(0,n) = n+1
     ack(m,0) = 1ack(m-1, 1)
     ack(m,n) = 2ack(m-1, 3ack(m, n-1))
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Size-change termination [Lee et al, POPL01] works by 
analyzing a safe abstraction of the program.

     ack(0,n) = n+1
     ack(m,0) = 1ack(m-1, 1)
     ack(m,n) = 2ack(m-1, 3ack(m, n-1))

ack

1

2 3
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Size-change termination [Lee et al, POPL01] works by 
analyzing a safe abstraction of the program.
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Size-change graph composition
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Size-change graph composition
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Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition:  ACG is size-change terminating if every 
idempotent in cl(ACG) has a strict self-edge. 
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Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition:  ACG is size-change terminating if every 
idempotent in cl(ACG) has a strict self-edge. 

cl{1,3}  =  {1,3}

1,3 are idempotent, and have strict self-edges

ack

1

2 3

m
n

m
n

m
n

m
n

1,2 3

> ≥
>



TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 40

Size-change termination

Let cl(ACG) denote the composition closure of ACG.

Definition:  ACG is size-change terminating if every 
idempotent in cl(ACG) has a strict self-edge. 

Size-change termination is PSPACE-complete.

But size-change analysis needs an ACG.

We use Calling Context Graphs [Manolios, Vroon 
CAV2006] to find ACGs.
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The rest of the talk:

● All-Termination(T )
– definition
– research program

● Size-change termination (SCT)              
● All-Termination(SCT)

– complexity results

– experimental results
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The restricted version of SCT

Let restrict(ACG, V) be ACG, but with only size-
change edges relating variables in V.

Theorem: if 
● ACG is a valid annotated call graph for P
● SCT(restrict(ACG,V))

then V is a measured subset for P. 
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Another example

dswap(0,y) = y
dswap(x,0) = x
dswap(x,y) = dswap(y-1,x-1)

x
y

x
y
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Another example

dswap(0,y) = y
dswap(x,0) = x
dswap(x,y) = dswap(y-1,x-1)
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Strategy: annotate edges with the variables they use
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Strategy: annotate edges with the variables they use

In general, need sets of sets of variables:

The final y-to-y edge may involve {x,y} or just {y}.
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Strategy: annotate edges with the variables they use

In general, need sets of sets of variables:

The final y-to-y edge may involve {x,y} or just {y}.

For programs such as insert, the graphs are simple:
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Composition of edge-annotated graphs
● results in same edges as before
● new edge annotations are union-of-crossproduct

Let acl(ACG) denote the annotated closure of ACG.

{W1, ..., Wn} {V1, ..., Vm} ; = {W1∪V1, W1∪V2 ,..., Wn∪Vm}
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Key Theorem: 

SCT(restrict(ACG,V)) 

iff 

every idempotent in acl(ACG) 
has a strict self-edge, 

labeled with some set {W1, ..., Wn}, 
such that Wi  ⊆ V for some I

This shows we can extract measured subsets from the 
instrumented analysis.
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After running SCT with edge annotations, we have:
● A set of idempotent size-change graphs
● Each of which has a set of strict self-edges
● Each of which has a set of variable sets

To find a single measured subset, we choose:
● One set of variables per strict self-edge
● From one strict self-edge per graph
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After running SCT with edge annotations, we have:
● A set of idempotent size-change graphs
● Each of which has a set of strict self-edges
● Each of which has a set of variable sets

To find a single measured subset, we choose:
● One set of variables per strict self-edge
● From one strict self-edge per graph

The measured subset is the union of the 
annotations we chose.



TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 52

To find all the (minimal) measured subsets:
● Build a boolean constraint system φ that captures 

the measured subset requirements
● |φ| = O(acl|ACG|)
● φ can be made dual-horn: can find ψ that is

– equisatisfiable to φ
– conjunction of clauses, 
– each clause a disjunction of literals
– at most one negative literal per clause

● min solutions to φ can be found from ψ efficiently



TACAS 2009 - March 26 Aaron Turon - All-Termination(T) 53

Complexity result

Output may be exponential, so what can we say?

Can look for output-sensitive complexity: running 
time reflects actual number of outputs.

Theorem: 

After computing φ, we can find k elements of All-
Termination(SCT)(P) in time O(|acl(ACG)|k)

This leads to a pay-as-you-go, incremental algorithm 
for finding termination cores.
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Experimental results

We implemented our algorithm for ACL2, on top of 
calling context graphs.

ACL2 has a large regression suite:
● >100MB
● >11,000 function definitions (each of which must 

be proved terminating)
● Code ranging from bit-vector libraries to model 

checkers
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Experimental results

The setup: we ran CCG + All-Termination(SCT) on the 
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3

Running time (not including CCG): 30 seconds
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Experimental results

The setup: we ran CCG + All-Termination(SCT) on the 
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3

Running time (not including CCG): 30 seconds
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Experimental results

The setup: we ran CCG + All-Termination(SCT) on the 
entire regression suite.

Number of functions: >11,000
Proved terminating: 98% (note: same as CCG+SCT)

Multiargument functions:
 Proved terminating 1728
 With “nontrivial” cores 90%
 With multiple cores 7%
 Maximum core count 3 (note: this is the k parameter)

Running time (not including CCG): 30 seconds
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Further work
● Study All-Termination(T) for additional T

– We've explored polynomial size-change

● Extend our prototype to the ACL2 Sedan
– Will help our freshman users at Northeastern

● Explore new applications of measured subsets
– We've got a few in mind, but want to hear yours
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Conclusion
● Measured sets known, but unstudied until now
● We introduced All-Termination(T): 

find all measurable sets for a program P, modulo T

● We studied All-Termination(SCT), showed it 
– PSPACE-complete
– Workable in practice
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