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Abstract
Coordination can destroy scalability in parallel program-
ming. A comprehensive library of scalable synchroniza-
tion primitives is therefore an essential tool for exploiting
parallelism. Unfortunately, such primitives do not easily
combine to yield solutions to more complex problems. We
demonstrate that a concurrency library based on Fournet and
Gonthier’s join calculus can provide declarative and scalable
coordination. By declarative, we mean that the programmer
needs only to write down the constraints of a coordination
problem, and the library will automatically derive a correct
solution. By scalable, we mean that the derived solutions
deliver robust performance both as the number of proces-
sors increases, and as the complexity of the coordination
problem grows. We validate our claims empirically on seven
coordination problems, comparing our generic solution to
specialized algorithms from the literature.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms Algorithms, Languages, Performance

Keywords message passing, concurrency, parallelism

1. Introduction
Parallel programming is the art of keeping many processors
busy with real work. But except for embarrassingly-parallel
cases, solving a problem in parallel requires coordination be-
tween threads, which entails waiting. When coordination is
unavoidable, it must be carried out in a way that minimizes
both waiting time and interprocessor communication. Effec-
tive implementation strategies vary widely, depending on the
coordination problem. Asking an application programmer to
grapple with these concerns—without succumbing to con-
currency bugs—is a tall order.
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� �
var j = Join.Create();
Synchronous.Channel[] hungry;
Asynchronous.Channel[] chopstick;
j.Init(out hungry, n); j.Init(out chopstick, n);
for (int i = 0; i < n; i++) {

var left = chopstick[i];
var right = chopstick[(i+1) % n];
j.When(hungry[i]).And(left).And(right).Do(() => {

eat(); left(); right(); // replace chopsticks
});

}� �
Figure 1. Dining Philosophers, declaratively

The proliferation of specialized synchronization primi-
tives is therefore no surprise. For example, java.util.con-
current [13] contains a rich collection of carefully engi-
neered classes, including various kinds of locks, barriers,
semaphores, count-down latches, condition variables, ex-
changers and futures, together with nonblocking collections.
Several of these classes led to research publications [14, 15,
26, 28]. A JAVA programmer faced with a coordination prob-
lem covered by the library is therefore in great shape.

Inevitably, though, programmers are faced with new
problems not directly addressed by the primitives. The prim-
itives must be composed into a solution. Doing so correctly
and scalably can be as difficult as designing a new primitive.

Take the classic Dining Philosophers problem [3], in
which philosophers sitting around a table must coordinate
their use of the chopstick sitting between each one; such
competition over limited resources appears in many guises
in real systems. The problem has been thoroughly studied,
and there are solutions using primitives like semaphores that
perform reasonably well. There are also many natural “so-
lutions” that do not perform well—or do not perform at all.
Naive solutions may suffer from deadlock, if for example
each philosopher picks up the chopstick to their left, and
then finds the one to their right taken. Correct solutions may
scale poorly with the number of philosophers (threads). For
example, using a single global lock to coordinate philoso-
phers is correct, but will force non-adjacent philosophers to
take turns through the lock, adding unnecessarily sequential-
ization. Avoiding these pitfalls takes experience and care.



In this paper, we demonstrate that Fournet and Gonthier’s
join calculus [4, 5] provides the basis for a declarative and
scalable coordination library. By declarative, we mean that
the programmer needs only to write down the constraints for
a coordination problem, and the library will automatically
derive a correct solution. By scalable, we mean that the
derived solutions deliver robust, competitive performance
both as the number of processors or cores increase, and as
the complexity of the coordination problem grows.

Figure 1 shows a solution to Dining Philosophers using
our library, which is a drop-in replacement for Russo’s C]

JOINS library [24]. The library uses the message-passing
paradigmn of the join calculus. For Dining Philosophers, we
use two arrays of channels (hungry and chopstick) to carry
value-less messages; being empty, these messages represent
unadorned events. The declarative aspect of this example is
the join pattern starting with j.When. The declaration says
that when events are available on the channels hungry[i],
left, and right, they may be simultaneously and atomically
consumed. When the pattern fires, the philosopher, having
obtained exclusive access to two chopsticks, eats and then
returns the chopsticks. In neither the join pattern nor its
body is the order of the chopsticks important. The remaining
details are explained in §2.1

Most implementations of join patterns, including Russo’s,
use coarse-grained locks to achieve atomicity, resulting in
poor scalability (as we show experimentally in §4). Our con-
tribution is a new implementation of the join calculus that
uses ideas from fine-grained concurrency to achieve scala-
bility on par with custom-built synchronization primitives:

• We first recall how join patterns can be used to solve
a wide range of coordination problems (§2), as is well-
established in the literature [2, 4, 5]. The examples pro-
vide basic implementations of some of the java.util.
concurrent classes mentioned above.2 In each case, the
JOINS-based solution is as straightforward to write as the
one for dining philosophers.

• To maximize scalability, we must allow concurrent, in-
dependent processing of messages, avoid centralized
contention, and spin or block intelligently. This must
be done, of course, while guaranteeing atomicity and
progress for join patterns.
We meet these challenges by (1) using lock-free [9] data
structures to store messages, (2) treating messages as
resources that threads can race to take possession of,
(3) avoiding enqueuing messages when possible (“lazy”
queuing and specialized channel representations), and (4)
allowing barging (“message stealing”).

1 By default, our implementation provides only probabilistic fairness (and
hence probabilistic starvation freedom); see §3.6 for more detail.
2 Our versions lack some features of the real library, such as timeouts and
cancellation, but these should be straightforward to add (§3.6).

We present our algorithm incrementally, both through
diagrams and through working C] code (§3).

• We validate our scalability claims experimentally on
seven different coordination problems (§4). For each co-
ordination problem we evaluate a joins-based implemen-
tation running in both Russo’s lock-based library and our
new fine-grained library. We compare these results to the
performance of direct, custom-built solutions.
In all cases, our new library scales significantly better
than Russo’s. We scale competitively with—sometimes
better than—the custom-built solutions, though we suffer
from higher constant-time overheads in some cases.

• We state and sketch proofs for the key safety and liveness
properties characterizing our algorithm (§5).

Our goal is not to replace libraries like java.util.con-
current, but rather to complement them, by exposing some
of their insights in a way easily and safely useable by ap-
plication programmers. We discuss this point further, along
with related work in general, in the final section.

2. The JOINS library
Russo’s Joins [24] is a concurrency library derived from
Fournet and Gonthier’s join calculus [4, 5], a process algebra
similar to Milner’s π-calculus but conceived for efficient
implementation. In this section, we give an overview of the
library API and illustrate it using examples drawn from the
join calculus literature [2, 4, 5].

The join calculus takes a message-passing approach to
concurrency where messages are sent over channels and
channels are themselves first-class values that can be sent as
messages. What makes the calculus interesting is the way
messages are received. Programs do not actively request
to receive messages from a channel. Instead, they employ
join patterns (also called chords [2]) to declaratively specify
reactions to message arrivals. The power of join patterns lies
in their ability to respond atomically to messages arriving
simultaneously on several different channels.

Suppose, for example, that we have two channels Put and
Get, used by producers and consumers of data. When a pro-
ducer and a consumer message are available, we would like
to receive both simultaneously, and transfer the produced
value to the consumer. Using Russo’s Joins API, we write:� �
class Buffer<T> {

public readonly Asynchronous.Channel<T> Put;
public readonly Synchronous<T>.Channel Get;
public Buffer() {

Join j = Join.Create(); // allocate a Join object
j.Init(out Put); // bind its channels
j.Init(out Get);
j.When(Get).And(Put).Do // register chord

(t => { return t; });
}

}� �



This simple example introduces many aspects of the API.
First, we are using two different kinds of channels: Put

is an asynchronous channel that carries messages of type
T, while Get is a synchronous channel that returns T replies
but takes no argument. A sender never blocks on an asyn-
chronous channel, even if the message cannot immediately
be received through a join pattern. For the Buffer class, that
means that a single producer may send many Put messages,
even if none of them are immediately consumed. Because
Get is a synchronous channel, on the other hand, senders will
block until or unless a pattern involving it is enabled. Syn-
chronous channels also return a reply to message senders;
the reply is given as the return value of join patterns.

Join patterns are declared using When. The single join pat-
tern in Buffer stipulates that when one Get request and one
Put message are available, they should both be consumed.
After specifying the involved channels through When and And,
the Do method is used to give the body of the join pattern. The
body is a piece of code to be executed whenever the pattern
is matched and relevant messages consumed. It is given as a
delegate (C]’s first-class functions), taking as arguments the
contents of the messages. In Buffer, the two channels Get

and Put yield only one argument, because Get messages take
no argument. The body of the pattern simply returns the ar-
gument t (from Put), which then becomes the reply to the
Get message. Altogether, each time the pattern is matched,
one Get and one Put message are consumed, and the argu-
ment is transferred from Put to the sender of Get.

Channels are represented as delegates, so that messages
are sent by simply invoking a channel as a function. From a
client’s point of view, Put and Get look just like methods of
Buffer. If buf is an an instance of Buffer, a producer thread
can post a value t by calling buf.Put(t), and a consumer
thread can request a value by calling buf.Get().

Finally, each channel must be associated with an instance
of the Join class.3 Such instances are created using the
static factory method Join.Create, which optionally takes
the maximum number of required channels. Channels are
bound using the Init method of the Join class, which ini-
tializes them using an out-parameter. These details are not
important for the overall design, and are elided from subse-
quent examples. The full API—including the determination
of types for join pattern bodies—is given in Appendix A.

As we have seen, when a single pattern mentions several
channels, it forces synchronization:� �
Asynchronous.Channel<A> Fst;
Asynchronous.Channel<B> Snd;
Synchronous<Pair<A,B>>.Channel Both;
// create j and init channels (elided)
j.When(Both).And(Fst).And(Snd).Do((a,b) =>

new Pair<A,B>(a,b));� �
3 This requirement retains compatibility with Russo’s original JOINS li-
brary; we also use it for the stack allocation optimization described in §3.6.

The pattern will consume messages Fst(a), Snd(b) and
Send() atomically, when all three are available. Only the
first two messages carry arguments, so the body of the pat-
tern takes two arguments. Its return value, a pair, becomes
the return value of the call to Both().

On the other hand, several patterns may mention the same
channel, expressing choice:� �
Asynchronous.Channel<A> Fst;
Asynchronous.Channel<B> Snd;
Synchronous<Sum<A,B>>.Channel Either;
// create j and init channels (elided)
j.When(Either).And(Fst).Do(a => new Left<A,B>(a));
j.When(Either).And(Snd).Do(b => new Right<A,B>(b));� �
Each pattern can fulfill a request on Either(), by consuming
a message Fst(a) or a message Snd(b), and wrapping the
value in a variant of a disjoint sum.

Using what we have seen, we can build a simple (non-
recursive) Lock. As in the dining philosophers example, we
use void-argument, void-returning channels as signals. The
Release messages are tokens that indicate that the lock is
free to be acquired; it is initially free. Clients must follow
the protocol of calling Acquire() followed by Release()

to obtain and relinquish the lock. Protocol violations will
not be detected by this simple implementation. However,
when clients follow the protocol, the code will maintain the
invariant that at most one Release() token is pending on the
queues and thus at most one client can acquire the lock.� �
class Lock {

public readonly Synchronous.Channel Acquire;
public readonly Asynchronous.Channel Release;
public Lock() {

// create j and init channels (elided)
j.When(Acquire).And(Release).Do(() => { });
Release(); // initially free

}
}� �

With a slight generalization, we can obtain a semaphore:� �
class Semaphore {

public readonly Synchronous.Channel Acquire;
public readonly Asynchronous.Channel Release;
public Semaphore(int n) {

// create j and init channels (elided)
j.When(Acquire).And(Release).Do(() => { });
for (; n > 0; n--) Release(); // initially n free

}
}� �
A semaphore allows at most n clients to Acquire the resource
and proceed; further acquisitions must wait until another
client calls Release(). We arrange this by priming the basic
Lock implementation with n initial Release() tokens.

We can also generalize Buffer to a synchronous channel
that exchanges data between threads:



� �
class Exchanger<A, B> {
readonly Synchronous<Pair<A, B>>.Channel<A> left;
readonly Synchronous<Pair<A, B>>.Channel<B> right;
public B Left(A a) { return left(a).Snd; }
public A Right(B b) { return right(b).Fst; }
public Exchanger() {

// create j and init channels (elided)
j.When(left).And(right).Do((a,b) =>

new Pair<A,B>(a,b));
}

}� �
Dropping message values, we can also implement an n-way
barrier that causes n threads to wait until all have arrived:� �
class SymmetricBarrier {
public readonly Synchronous.Channel Arrive;
public SymmetricBarrier(int n) {

// create j and init channels (elided)
var pat = j.When(Arrive);
for (int i = 1; i < n; i++) pat = pat.And(Arrive);
pat.Do(() => { });

}
}� �
This example is unusual in that its sole join pattern mentions
a single channel n times: the pattern is nonlinear. This rep-
etition means that the pattern will not be enabled until the
requisite n threads have arrived at the barrier, and our use of
a single channel means that the threads need not distinguish
themselves by invoking distinct channels (hence “symmet-
ric”). On the other hand, if the coordination problem did call
for separating threads into groups (eg. gender is useful in a
parallel genetic algorithm [26]), it is easy to do so. We can
construct a barrier requiring n threads of one kind and m
threads of another, simply by using two channels.

We can also implement a tree-structured variant of an
asymmetric barrier, which breaks a single potentially large
n-way coordination problem into O(n) two-way problems:� �
class TreeBarrier {
public readonly Synchronous.Channel[] Arrive;
private readonly Join j; // create j, init chans ...
public TreeBarrier(int n) {Wire(0, n-1, () => {});}
private void Wire(int low, int high, Action Done) {

if (low == high) j.When(Arrive[low]).Do(Done);
else if (low + 1 == high)

j.When(Arrive[low]).And(Arrive[high]).Do(Done);
else { // low + 1 < high

Synchronous.Channel Left, Right; // init chans
j.When(Left).And(Right).Do(Done);
int mid = (low + high) / 2;
Wire(low, mid, () => Left());
Wire(mid + 1, high, () => Right());

}
}

}� �

Such tree-structured barriers (or more generally, combin-
ers) have been studied in the literature (see [9] for a survey);
the point here is just that adding tree-structured coordina-
tion is straightforward using join patterns. As we show in §4,
the tree-structured variant performs substantially better than
the flat barrier, although both variants easily outperform the
.NET Barrier class (a standard sense-reversing barrier).

Finally, we can implement a simple reader-writer lock [2],
using private asynchronous channels (idle and shared) to
track the internal state of a synchronization primitive:� �
class ReaderWriterLock {

private readonly Asynchronous.Channel idle;
private readonly Asynchronous.Channel<int> shared;
public readonly Synchronous.Channel AcqR, AcqW,

RelR, RelW;
public ReaderWriterLock() {

// create j and init channels (elided)
j.When(AcqR).And(idle).Do(() => shared(1));
j.When(AcqR).And(shared).Do(n => shared(n+1));
j.When(RelR).And(shared).Do(n => {

if (n == 1) idle(); else shared(n-1);
});
j.When(AcqW).And(idle).Do(() => { });
j.When(RelW).Do(() => idle());
idle(); // initially free

}
}� �

While we have focused on the simplest synchronization
primitives as a way of illustrating JOINS, join patterns can be
used to declaratively implement more complex concurrency
patterns, from Larus and Parks-style cohort-scheduling [2],
to Erlang-style agents or active objects [2], to stencil compu-
tations with systolic synchronization [25], as well as classic
synchronization puzzles [1].

3. Scalable join patterns
We have seen, through a range of examples, how the join
calculus allows programmers to solve coordination problems
by merely writing down the relevant constraints. Now we
turn to the primary concern of this paper: an implementation
that solves these constraints in a scalable way.

The chief challenge in implementing the join calculus is
providing atomicity when firing patterns: messages must be
noticed and withdrawn from multiple collections simulta-
neously. A simple way to ensure atomicity, of course, is to
use a lock, and this is what most implementations do (§6).4

For example, Russo’s original library associates a single
lock with each Join object. Each sender must acquire the
lock and, while holding it, enqueue their message and de-
termine whether any patterns are thereby enabled. Russo
puts significant effort into shortening the critical section: he
uses bitmasks summarizing message availability to accel-
erate pattern matching [12], represents void asynchronous

4 Some implementations use STM [29], which we discuss in §6.



channels as counters, and permits “message stealing” to in-
crease throughput—all the tricks from Benton et al. [2].

Unfortunately, even with relatively short critical sections,
such coarse-grained locking inevitably limits scalability. The
scalability problems with locks are well-documented [19],
and they are especially pronounced if we use the JOINS li-
brary to implement low-level synchronization primitives. At
a high level, the problem with coarse-grained locking is that
it serializes the process of matching and firing chords: at
most one thread can be performing that work at a time. In
cases like the exchanger and Dining Philosophers, a much
greater degree of concurrency is both possible and desir-
able. At a lower level, coarse-grained locking can drastically
increase interprocessor communication, because all threads
processing related messages are reading and writing to a sin-
gle shared location—the lock status. Since memory band-
width tends to be quite limited, this extra traffic inhibits scal-
ability, especially for low-level coordination (§4).

In summary, we want an implementation of JOINS that
matches and fires chords concurrently while minimizing
costly interprocessor communication.

3.1 Overview
We need to permit highly-concurrent access to the col-

lection of messages available on a given channel. Therefore,
we use lock-free [9] bags to represent channels which allow
truly concurrent examination and alteration of data. The re-
sult is that, for example, two threads can be simultaneously
adding separate messages to the same channel bag, while a
third examines a message already stored in the bag—without
any of the threads waiting on any other, and in many cases
without any memory bus traffic. In choosing a bag rather
than, say, a queue, we sacrifice message ordering guarantees
to achieve greater concurrency: FIFO ordering imposes a se-
quential bottleneck on queues. The original join-calculus did
not provide any ordering guarantees, and relaxed ordering is
typical in implementations [2, 4, 24]. This choice is not fun-
damental, and ordered channels are easily provided (§3.6).
None of our examples rely on ordering.

Lock-free bags allow messages to be added and inspected
concurrently, but they do not solve the central problem of
atomically consuming a pattern’s worth of messages. To
provide atomic matching, we equip messages with a Status

field of the following type:

enum Stat { PENDING, CLAIMED, CONSUMED };

Statuses are determined according to an optimistic protocol:

• Each message is PENDING to begin with, meaning that it is
available for matching and firing.

• Matching consists of finding sufficiently many PENDING

messages, then using CAS (see below) to try to change
them one by one to from PENDING to CLAIMED.

• If matching is successful, each message can be marked
CONSUMED without issuing a memory fence. If it is un-

Example When(A).And(B).And(C).Do(...), send on C

Legend

 Lozenges are messages (with last read status)
Double border: about to CAS to CLAIMED
Shaded interior: won CAS race; CLAIMED by us

Snapshot 1 Found PENDING messages in each relevant bag,
including our own message. About to CAS, trying to claim
the message from channel A:

?

?

PENDING

?

PENDING

CONSUMED PENDING

Channel A Channel B Channel C
(my message)

Snapshot 2 Failed to claim the message (CLAIMED by an-
other thread), but succeeded in claiming another message on
A and one on B. About to CAS the final message:

?

CLAIMED

?

CONSUMED PENDING

Channel A Channel B Channel C
(my message)

CLAIMED

CLAIMED

Snapshot 3 Failed to claim the message (CLAIMED by an-
other thread). Rollback our CLAIMED messages to PENDING:

?

CLAIMED

?

CONSUMED CLAIMED

Channel A Channel B Channel C
(my message)

PENDING

PENDING

Takeaway When running the protocol, the only things
we know for sure are: our CLAIMED messages (the shaded
lozenges) will remain CLAIMED, and any CONSUMED messages
will remain CONSUMED. New messages may appear any time.

Figure 2. Example: failing to fire

successful, each CLAIMED message is reverted to PENDING,
again without a fence.

We use compare-and-swap (CAS) to ensure correct mutual
exclusion: CAS atomically updates a memory location when
its current value matches some expected value. Thus, the
status field acts as a kind of lock, but one tied to individual
messages rather than an entire instance of Join. Further,
if we fail to “acquire” a message, we do not immediately
spin or block. Instead, we can continue looking through the
relevant bag of messages for another message to claim—or,
more generally, for another join pattern to match (§3.3).

Figure 2 walks through an example run of the protocol.



� �
// Msg implements:
Chan Chan { get; };
Stat Status { get; set; };
bool TryClaim(); // CAS from PENDING to CLAIMED
Signal Signal { get; };
Match ShouldFire { get; set; };
object Result { get; set; };� �� �

// Chan<A> implements:
Chord[] Chords { get; };
bool IsSync { get; };
Msg AddPending(A a);
Msg FindPending(out bool sawClaims);� �� �

// Match implements:
Chord Chord { get; };
Msg[] Claims { get; };� �

Figure 3. The interfaces to our key data structures

There are three reasons the above is just an “overview”
and not the full algorithm:

• Knowing when to terminate the above protocol with the
result of “no pattern matched” turns out to be subtle:
because of the concurrent nature of the message bags,
new potential matches can occur at any time. Terminat-
ing the protocol is important for returning control to an
asynchronous sender, or deciding to block a synchronous
sender. But terminating too soon can result in dropped
(undetected, but enabled) matches, which can lead to
deadlock. The full protocol, including its termination
condition, is given in §3.3.

• Patterns involving synchronous channels add further
complexity: if an asynchronous message causes such a
pattern to be fired, it must alert a synchronous waiter,
which must in turn execute the pattern body. Likewise,
if there are multiple synchronous senders in a given pat-
tern, they must be coordinated so that only one executes
the body and communicates the results to the others. We
cover these details in §3.4.

• Two “optimizations” of the protocol turn out to be cru-
cial for achieving scalability: lazy queueing and message
stealing. The details of these optimizations are spelled
out in §3.5, while their ramifications on scalability are
examined empirically in §4.

3.2 Representation
Next we give our implementation using a simplified version
of its C] code. We begin the interfaces for key data struc-
tures, in Figure 3. The get and set keywords are used to
specify getters and setters for properties in .NET.

The Msg class, in addition to carrying a message payload,
includes a Chan field tying it to a particular channel, and the

Status field discussed above. The Chan field is just a conve-
nience for the presentation in this paper. The remaining Msg

fields (Signal, ShouldFire and Result) are used for blocking
on synchronous channels (§3.4).

The Chan<A> class implements a lock-free bag of mes-
sages of type A. The key operations on a channel are:

• AddPending, which takes a message payload and atomi-
cally adds a Msg with PENDING status to the bag.

• FindPending, which returns (but does not remove) some
message in the bag observed to have a PENDING status; of
course, by the time control is returned to the caller, the
status may have been altered by a concurrent thread. If
no PENDING messages were observed at some linearization
point,5 null is returned, and the out-parameter sawClaims
reflects whether any CLAIMED messages were observed at
that linearization point.

Notice that Chan<A> does not provide any direct means of
removing messages; in this respect, it is not a traditional
bag. Any message with status CONSUMED is considered logi-
cally removed from the bag, and will be physically removed
from the data structure when convenient. Our JOINS imple-
mentation obeys the invariant that once a message is marked
CONSUMED, its status is never changed again. We do not de-
tail our bag implementation here; it is similar to a lock-free
queue [18], except of course that FindPending can traverse
the whole bag. A more aggressive bag implementation could
increase concurrency further.

Match is a simple, immutable class used to communicate
data making up a matched pattern: a chord, and an array of
CLAIMED messages sufficient to fire it.

3.3 The core algorithm: resolving a message
We have already discussed the key safety property for a
JOINS implementation: pattern matching should be atomic.
In addition, an implementation should ensure at least the
following liveness property (assuming a fair scheduler):

If a chord can fire, eventually some chord is fired.6

Our strategy is to drive the firing of chords by the concurrent
arrival of each message: each sender must resolve its own
message. We consider a message resolved if:

1. It is marked CLAIMED by the sending thread, along with
sufficiently many other messages to fire a chord; or

2. It is marked CONSUMED by another thread, and hence was
used to fire a chord; or

3. No pattern can be matched using only the message and
messages that arrived prior to it.

Ensuring that each message is eventually resolved is tricky,
because message bags and statuses are constantly, concur-

5 A linearization point [10] is the moment at which an operation that is
observably atomic, but not actually atomic, is considered to take place.
6 Notice that this property does not guarantee fairness; see §5.



� �
1 Match Resolve(Msg msg) {
2 var backoff = new Backoff();
3 while (true) {
4 bool retry = false;
5 foreach (var chord in msg.Chan.Chords) {
6 Msg[] claims = chord.TryClaim(msg, ref retry);
7 if (claims != null)
8 return new Match(chord, claims);
9 }

10 if (!retry || msg.Status == Stat.CONSUMED)
11 return null;
12 backoff.Once();
13 }
14 }� �

Figure 4. Resolving a message

rently in flux. In particular, just as one thread determines that
its message msg does not enable any chord, another message
in another thread may arrive that enables a chord involving
msg. The key is that each sender need only take responsibility
for the messages that came before its own; if a later sender
enables a chord, that later sender is responsible for it.

Given the highly concurrent nature of message bags, what
does it mean for one message to arrive before another?

There is no need to provide a direct way of asking this
question. Instead, we rely on the linearizability [10] of the
bag implementation. Linearizability means that we can think
of calls to AddPending and FindPending (along with CASes
to Status) as being executed atomically, in some global
sequential order. The result is that all messages—even those
added to distinct bags—are implicitly ordered by the time of
their insertion. The bag interface does not provide a way to
directly observe this ordering, but FindPending respects it: if
one thread executes

Msg m1 = bag1.AddPending(x);
bool sawClaims;
Msg m2 = bag2.FindPending(out sawClaims);

then m2 == null only if no message in bag2 prior to m1 is
PENDING. This is the only guarantee we need in order to safely
stop looking for matches.

Figure 4 gives our implementation of resolution. The
Resolve method takes a message msg that has already been
added to the appropriate channel’s bag and loops until the
message has been resolved. We first attempt to “claim” a
chord involving msg, successively trying each chord in which
msg’s channel is involved (lines 5–9). The Chord class’s
TryClaim method either returns an array of messages (which
includes msg) that have all been CLAIMED by the current
thread, or null if claiming failed. In the latter case, the retry

by-ref parameter is set to true if any of the involved message
bags contained a message CLAIMED by another thread.

Cumulatively, the retry flag records whether an externally-
CLAIMED message was seen in any failing chord. We must

� �
1 partial class Chord {
2 Chan[] Chans; // the channels making up this chord
3
4 Msg[] TryClaim(Msg msg, ref bool retry) {
5 var msgs = new Msg[Chans.length]; // cached
6
7 // locate enough pending messages to fire chord
8 for (int i = 0; i < Chans.Length; i++) {
9 if (Chans[i] == msg.Chan) {

10 msgs[i] = msg;
11 } else {
12 bool sawClaims;
13 msgs[i] = Chans[i].FindPending(out sawClaims);
14 retry = retry || sawClaims;
15 if (msgs[i] == null) return null;
16 }
17 }
18
19 // try to claim the messages we found
20 for (int i = 0; i < Chans.Length; i++) {
21 if (!msgs[i].TryClaim()) {
22 // another thread won the race; revert
23 for (int j = 0; j < i; j++)
24 msgs[j].Status = Stat.PENDING;
25 retry = true;
26 return null;
27 }
28 }
29
30 return msgs; // success: each message CLAIMED
31 }
32 }� �

Figure 5. Racing to claim a chord involving msg

track such CLAIMED messages because they are unstable, in
the sense that they may be reverted to PENDING, possibly en-
abling a chord for which the sender is still responsible.

The first way a message can be resolved—by claim-
ing it and enough other messages to make up a chord—
corresponds to the return on line 8. The second two ways
correspond to the return on line 11. If none of the three
conditions hold, we must try again. We perform exponential
backoff (line 12) in this case, because repeated retrying can
only be caused by high contention over messages. Resolu-
tion may fail to terminate, but only if the system as a whole is
making progress (according to our liveness property above);
see §5 for a proof sketch.

Figure 5 gives the code for TryClaim, which works in two
phases. In the first phase (lines 8–17), we first try to locate
sufficiently many PENDING messages to fire the chord. We are
required to claim msg in particular. If we are unable to find
enough messages, we exit (line 15) without having written
to memory. Otherwise, we enter the second phase (lines 20–
28), wherein we race to claim each message. The message-
level TryClaim method performs a CAS on the Status field,



� �
1 void AsyncSend<A>(Chan<A> chan, A a){
2 Msg myMsg = chan.AddPending(a);
3 Match m = Resolve(myMsg);
4
5 if (m == null) return; // no chord to fire
6 ConsumeAll(m.Claims);
7
8 if (m.Chord.IsAsync) {
9 // asynchronous chord: fire in a new thread

10 new Thread(m.Fire).Start();
11 } else {
12 // synchronous chord: wake a synchronous caller
13 for (int i = 0; i < m.Chord.Chans.Length; i++) {
14 // pick the first synchronous caller
15 if (m.Chord.Chans[i].IsSync) {
16 m.Claims[i].ShouldFire = m;
17 m.Claims[i].Signal.Set(); // assumed fence
18 return;
19 }
20 }
21 }
22 }� �

� �
23 R SyncSend<R, A>(Chan<A> chan, A a) {
24 Msg myMsg = chan.AddPending(a);
25 Match m = Resolve(myMsg);
26
27 if (m == null) { // myMsg CONSUMED, or no match
28 myMsg.Signal.Block();
29 m = myMsg.ShouldFire;
30 if (m == null) return myMsg.Result; // rendezvous
31 } else {
32 ConsumeAll(m.Claims);
33 }
34
35 var r = m.Fire();
36 for (int i = 0; i < m.Chord.Chans.Length; i++) {
37 if (m.Chord.Chans[i].IsSync && // rendezvous
38 m.Claims[i] != myMsg) {
39 m.Claims[i].Result = r; // transfer result
40 m.Claims[i].Signal.Set(); // assumed fence
41 }
42 }
43 return (R)r;
44 }� �

Figure 6. Sending a message

ensuring that only one thread will succeed in claiming a
given message. If at any point we fail to claim a message,
we roll back all of the messages claimed so far (lines 23–
24). The implementation ensures that the Chans arrays for
each chord are ordered consistently, so that in any race at
least one thread entering the second phase will complete the
phase successfully (§5).

Note that the code in Figure 5 is a simplified version
of our implementation that does not handle patterns with
repeated channels, and does not stack-allocate or recycle
message arrays. These differences are discussed in §3.6.

3.4 Firing, blocking and rendezvous
Message resolution does not depend on the (a)synchrony of
a channel, but the rest of the message-sending process does.

The code for sending messages is shown in Figure 6, with
separate entry points AsyncSend and SyncSend. The actions
taken while sending depend, in part, on the result of message
resolution:

Send We CLAIMED They CONSUMED No match

Async
(AC) Spawn (10)
(SC) Wake (13–20)

Return (5) Return (5)

Sync Fire (35) Wait for result (28) Block (28)

where AC and SC, respectively, stand for asynchronous
chord (no synchronous channels) and synchronous chord
(at least one synchronous channel).

First we follow the path of an asynchronous message,
which begins by adding and resolving the message (lines 2–
3). If either the message was CONSUMED by another thread (in

which case that thread is responsible for firing the chord)
or no pattern is matchable, we immediately exit (line 5). In
both of these cases, we are assured that any chords involving
the message will be (or has been) dealt with elsewhere, and
since the message is itself asynchronous, we need not wait
for this to occur.

On the other hand, if we resolved the message by claim-
ing it and enough other messages to fire a chord, we pro-
ceed by consuming all involved messages (which does not
require a memory fence). If the chord’s pattern involved only
asynchronous channels (line 10) we spawn a new thread to
execute the chord body asynchronously. Otherwise we must
communicate with a synchronous sender, telling it to execute
the body.

A key difference from asynchronous senders is that syn-
chronous sending should not return until a relevant chord
has fired. Moreover, synchronous chord bodies should be
executed by a synchronous caller, rather than by a newly-
spawned thread. Since multiple synchronous callers can be
combined in a single chord, exactly one of them should be
chosen to execute the chord, and then share the result with
(and wake up) all the others (we call this “rendezvous”).

Each synchronous message has a Signal associated with
it. Signals provide methods Block and Set, allowing syn-
chronous senders to block7 and be woken. Calls to Set atom-
ically trigger the signal. If a thread has already called Block,
it is awoken and the signal is reset. Otherwise, the next call

7 It spins a bit first; see §3.6



to Block will immediately return, again resetting the signal.
We ensure that Block and Set are each called by at most one
thread; the implementation ensures that waking only occurs
as a result of triggering the signal (no “spurious wakeups”).

If an asynchronous sender consumed a synchronous
sender’s message (line 6), the synchronous sender will be
blocked waiting to be informed of this event (line 28). The
asynchronous sender chooses one such synchronous sender
to wake (lines 15–18), telling it which chord and messages
to fire (line 16).

Now we consider synchronous senders. Just as before, we
first add and resolve the message (lines 24–25). If the mes-
sage was resolved by claiming enough additional messages
to fire a chord, all relevant messages are immediately con-
sumed (line 32). Otherwise, the sender must block (line 28).

There are two ways a blocked, synchronous sender can
be woken: by an asynchronous sender or by another syn-
chronous sender (rendezvous). In the former case, the (ini-
tially null) ShouldFire field will contain a match that the
synchronous caller is responsible for firing. In the latter
case, ShouldFire remains null, but the Result field will con-
tain the result of a chord body as executed by another syn-
chronous sender, which is immediately returned (line 30).

If a synchronous sender does execute a chord body (line
35), it must then wake up any other synchronous senders
involved in the chord and inform them of the result (lines 36–
42). For simplicity, we ignore the possibility that the chord
body raises an exception, but proper handling is easy to add
and is addressed by the benchmarked implementation.

3.5 Lazy queuing, counter channels, and message
stealing

To achieve competitive scalability, we make three enhance-
ments to the above implementation. The importance of these
enhancements is shown empirically in §4.

First, we do not always need to allocate or enqueue a
message when sending. For example, in the Lock class when
sending an Acquire message, we could first check to see
whether a corresponding Release message is available, and if
so, immediately claim and consume it without ever touching
the Acquire bag. This shortcut saves both on allocation and
potentially on interprocessor communication.

More generally, we provide an optimistic fast-path that
attempts to immediately match the remaining messages to
fire a chord. We call this lazy queuing. Implementing lazy
queuing is relatively straightforward, so we do not provide
the code here.

The second enhancement applies to void, asynchronous
channels (e.g. Lock.Release). Sophisticated lock-based im-
plementations of join patterns typically optimize the rep-
resentation of such channels to a simple counter, neatly
avoiding the cost of allocation for messages used just as
signals [2]. We have implemented a similar optimization,
adapted to suit our protocol.

The main challenge in employing the counter representa-
tion is that, in our fine-grained protocol, it must be possible
to tentatively decrement the counter (the analog of claim-
ing a message), in such a way that other threads do not in-
correctly assume the message has actually been consumed.
Our approach is to represent void, asynchronous message
bags as a word sized pair of half-words, separately count-
ing claimed and pending messages. Implementations of, for
example, Chan.AddPending and Msg.TryClaim are specialized
to atomically update the shared-state word by CASing in a
classic read-modify-try-update loop. For example, we claim
a “message” as follows:� �
bool TryClaim() {

uint startState = chan.state; // shared state
uint curState = startState;
while (true) {

startState = curState;
ushort claimed;
ushort pending = Decode(startState, out claimed);
if (pending > 0) {

var nextState = Encode(++claimed, --pending);
curState = CAS(ref chan.state,

comparand: startState,
value: nextState);

if (curState == startState)
return true;

} else return false;
}

}� �
More importantly, Chan.FindPending no longer needs to tra-
verse a data structure but can merely atomically read the
bag’s encoded state once, setting sawClaimed if the claimed

count is non-zero.
While the counter representation avoids allocation, it

does lead to more contention over the same shared state
(compared with a proper bag). It also introduces the possi-
bility of overflow, which we ignored here. Nevertheless, we
have found it to be beneficial in practice (§4), especially for
non-singleton resources like Semaphore.Release messages.

The final enhancement is only relevant to synchronous
channels. When an asynchronous sender matches a syn-
chronous chord, it consumes all the relevant messages, and
then wakes up one of the synchronous senders. If the syn-
chronous caller is actually blocked—so that waking requires
a context switch—significant time may lapse before the
chord is actually fired.

Since we do not provide a fairness guarantee, we can in-
stead permit “stealing”: we can wake up one synchronous
caller, but roll back the rest of the messages to PENDING

status, putting them back up for grabs by currently-active
threads—including the thread that just sent the asynchronous
message. In low-traffic cases, messages are unlikely to be
stolen; in high-traffic cases, stealing is likely to lead to bet-
ter throughput. This strategy is similar to the one taken in



� �
1 bool foundSleeper = false;
2 for (int i = 0; i < m.Chord.Chans.Length; i++) {
3 if (m.Chord.Chans[i].IsSync && !foundSleeper) {
4 foundSleeper = true;
5 m.Claims[i].AsyncWaker = myMsg; // hand over msg
6 m.Claims[i].Status = Stat.WOKEN;
7 m.Claims[i].Signal.Set(); // assumed fence
8 } else {
9 m.Claims[i].Status = Stat.PENDING; // relinquish

10 }
11 }� �

Figure 7. Waking a synchronous sender while allowing
stealing; replaces lines 12–20 of AsyncSend

Polyphonic C] [2], as well as the “barging” allowed by the
java.util.concurrent synchronizer framework [15].

Some care must be taken to ensure our key liveness prop-
erty still holds: when an asynchronous message wakes a
synchronous sender, it moves from a safely resolved state
(CLAIMED as part of a chord) to an unresolved state (PENDING).
There is no guarantee that the woken synchronous sender
will be able to fire a chord involving the original asyn-
chronous message (see [2] for an example). Yet AsyncSend
simply returns to its caller. We must somehow ensure that
the original asynchronous message is successfully resolved.
Thus, when a synchronous sender is woken, we record the
asynchronous message that woke it, transferring responsi-
bility for the message.

The new code for an asynchronous sender notifying a
synchronous waiter is shown in Figure 7; it replaces lines
12–20 of AsyncSend. We introduce a new status, WOKEN. A
synchronous message is marked WOKEN if an asynchronous
sender is transferring responsibility, and CONSUMED if a syn-
chronous sender is going to fire a chord involving it. In both
cases, the signal is set after the status is changed; in the latter
case, it is set after the chord is actually fired and the return
value is available. Resolve is revised to return null at any
point that the message is seen at status WOKEN or CONSUMED.

The WOKEN status ensures that a blocked synchronous
caller is woken only once, which is important both for our
use of Signal, and to ensure that the synchronous sender will
only be responsible for one waking asynchronous message.
The message field AsyncWaker replaces ShouldFire, and is
used to inform the woken thread which asynchronous mes-
sage woke it up.

Figure 8 gives the revised code for sending a synchronous
message in the presence of stealing; it is meant to replace
lines 27–33 in the original implementation. A synchronous
sender loops until its message is resolved by claiming a
chord (exit on line 6), or by another thread consuming it (exit
on line 13). In each iteration of the loop, the sender blocks
(line 10); even if its message has already been CONSUMED, it
must wait for the signal to get its return value. In the case

� �
1 Msg waker = null;
2 var backoff = new Backoff();
3 while (true) {
4 m = Resolve(myMsg);
5
6 if (m != null) break; // claimed a chord; exit
7 if (waker != null)
8 RetryAsync(waker); // retry last async waker
9

10 myMsg.Signal.Block();
11
12 if (myMsg.Status == Stat.CONSUMED) {
13 return myMsg.Result; // rendezvous
14 } else { // status is Stat.WOKEN
15 waker = myMsg.AsyncWaker; // will retry later
16 myMsg.Status = Stat.PENDING;
17 backoff.Once();
18 }
19 }
20
21 ConsumeAll(claims);
22 // retry last async waker, *after* consuming myMsg
23 if (waker != null) RetryAsync(waker);� �

Figure 8. Sending a synchronous message while coping
with stealing; replaces lines 27–23 of SyncSend

that the synchronous sender is woken by an asynchronous
message (lines 15–17), it records the waking message and
ultimately tries once more to resolve its own message. We
perform exponential backoff every time this happens, since
continually being awoken only to find messages stolen indi-
cates high traffic.

After every resolution of the synchronous sender’s mes-
sage (myMsg), the sender retries sending the last asynchronous
message that woke it, if any (lines 7–8, 22). Doing so fulfills
the liveness requirements outlined above: the synchronous
sender has become responsible for the message that woke it.
We use RetryAsync, which is similar to AsyncSend but uses
an already-added message rather than adding a new one.
We are careful to avoid calling RetryAsync while myMsg is
CLAIMED by the calling thread; doing so could result in the
retry code forever waiting for us to revert or consume the
claim. On the other hand, it is fine to retry the message even
if it has already been successfully consumed as part of a
chord; RetryAsync will simply exit in this case.

3.6 Pragmatics and extensions
There are a few smaller differences between the presented
code and the actual implementation:

• We avoid boxing (allocation) and downcasts whenever
possible: on .NET, additional polymorphism (beyond
what the code showed) can help avoid uses of object.

• We do not allocate a fresh message array every time
TryClaim is called; in fact, we do not heap-allocate mes-



sage arrays at all. Instead, we stack-allocate an array8 in
SyncSend and AsyncSend, and reuse this array for every
call to TryClaim.

• We handle nonlinear patterns, in which a single channel
appears multiple times. The code is straightforward.

An important pragmatic point is that the Signal class first
performs some spinwaiting before blocking. Spinning is per-
formed on a memory location associated with the signal, so
each spinning thread will wait on a distinct memory location
whose value will only be changed when the thread should
be woken, an implementation strategy long known to per-
form well on cache-coherent architectures [17]. The amount
of spinning performed is determined adaptively on a per-
thread, per-channel basis.

We expect it to be straightforward to add timeouts and
nonblocking attempts for synchronous sends to our imple-
mentation, because we can always use CAS to consume a
message we have added to a bag to abort a send (which will,
of course, also discover if the send has already succeeded).

Finally, to add channels with ordering constraints one
needs only use a queue or stack rather than a bag. Switch-
ing from bags to fair queues and disabling message stealing
yields per-channel fairness for joins. In Dining Philosophers,
for example, queues will guarantee that requests from wait-
ing philosophers are fulfilled before those of philosophers
that have just eaten. Such guarantees come at the cost of sig-
nificantly decreased parallelism, since they entail sequential
matching of join patterns. At an extreme, programmers can
enforce a round-robin scheme for matching patterns using
an additional internal channel [25].

4. Performance
In this section we provide empirical support for the claims
that our implementation is (1) scalable and (2) competitive
with purpose-built solutions.

4.1 Methodology
To evaluate our implementation, we constructed a series
of microbenchmarks for seven classic coordination prob-
lems: dining philosophers, producers/consumers, mutual ex-
clusion, semaphores, barriers, rendezvous, and reader-writer
locking.

Our solutions for these problems are fully described in
the first two sections of the paper. They cover a spectrum of
shapes and sizes of join patterns. In some cases (producer/-
consumer, locks, semaphores, rendezvous) the size and num-
ber of join patterns stays fixed as we increase the number
of processors, while in others a single pattern grows in size
(barriers) or there are an increasing number of fixed-size pat-
terns (philosophers).

8 Stack-allocated arrays are not directly provided by .NET, so we use a
custom value type built by polymorphic recursion.

Each benchmark follows standard practice for evaluating
synchronization primitives: we repeatedly synchronize, for a
total of k synchronizations between n threads [17]. We use
k ≥ 100,000 and average over three trials for all bench-
marks. To test interaction with thread scheduling preemp-
tion, we let n range up to 96—twice the 48 cores in our
benchmarking machine.

Each benchmark has two variants for measuring different
aspects of synchronization:

PARALLEL SPEEDUP In the first variant, we simulate
doing a small amount of work between synchronization
episodes (and during the critical section, when appropri-
ate). By performing some work, we can gauge to what
extent a synchronization primitive inhibits or allows par-
allel speedup. By keeping the amount of work small, we
gauge in particular speedup for fine-grained parallelism,
which presents the most challenging case for scalable co-
ordination.

PURE SYNCHRONIZATION In the second variant, we
synchronize in a tight loop, yielding the cost of synchro-
nization in the limiting case where the actual work is neg-
ligible. In addition to providing some data on constant-
time overheads, this variant serves as a counterpoint to
the previous one: it ensures that scalability problems
were not hidden by doing too much work between syn-
chronization episodes. Rather than looking for speedup,
we are checking for slowdown.

To simulate work, we use .NET’s Thread.SpinWait method,
which spins in a tight loop for a specified number of times
(and ensures that the spinning will not be optimized away).
To make the workload a bit more realistic—and to avoid
“lucky” schedules—we randomize the number of spins be-
tween each synchronization, which over 100,000 iterations
will yield a normal distribution of total work with very small
standard deviation. We ensure that the same random seeds
are provided across trials and compared algorithms, so we
always compare the same amount of total work. The mean
spin counts are determined per-benchmark and given in the
next section.

For each problem we compare performance between:

• a join-based solution using our fully-optimized imple-
mentation (S-Join, for “scalable joins”),

• a join-based solution using Russo’s library (L-Join, for
“lock-based joins”),

• at least one purpose-built solution from the literature or
.NET libraries (label varies), and

• when relevant, our implementation with some or all op-
timizations removed to demonstrate the effect of the op-
timization (e.g., S-J w/o S,C for dropping the Stealing
and Counter optimizations; S-J w/o L for dropping the
Lazy queuing optimization).

We detail the purpose-built solutions below.



Figure 9. Speedup on simulated fine-grained workloads: throughput versus threads
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Figure 10. Pure synchronization performance: throughput versus threads
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Two benchmarks (rendezvous and barriers) required ex-
tending Russo’s library to support multiple synchronous
channels in a pattern; in these cases, and only in these cases,
we use a modified version of the library.

Our benchmarking machine has four AMD “Magny-
Cours” Opteron 6100 Series 1.7GHz processors, with 12
cores each (for a total of 48 cores), 32GB RAM, and runs
Windows Server 2008 R2 Datacenter. All benchmarks were
run under the 64-bit CLR.

4.2 The benchmarks
The results for all benchmarks appear in Figure 9 (for paral-
lel speedup) and Figure 10 (for pure synchronization). The
axes are consistent across all graphs: the x-axis measures the
number of threads, and the y-axis measures throughput (as
iterations performed every 10µs). Larger y values reflect bet-
ter performance.

For measuring parallel speedup, we used the following
mean spin counts for simulated work:

Benchmark In crit. section Out of crit. section
Philosophers 25 5,000
Prod/Cons N/A producer 5,000

consumer 500
Lock 50 200
Semaphore 25 100
Rendezvous N/A 5,000
Barrier N/A 10,000
RWLock 50 200

With too little simulated work, there is no hope of speedup;
with too much, the parallelism becomes coarse-grained
and thus insensitive to the performance of synchronization.
These counts were chosen to be high enough that at least one
implementation showed speedup, and low enough to yield
significant performance differences.

The particulars of the benchmarks are as follows, where n
is the number of threads and k the total number of iterations
(so each thread performs k/n iterations):

Philosophers Each of the n threads is a philosopher; the
threads are arranged around a table. An iteration consists of
acquiring and then releasing the appropriate chopsticks. We
compare against Dijkstra’s original solution, using a lock
per chopstick, acquiring these locks in a fixed order, and
releasing them in the reverse order.

Producer/consumer We let n/2 threads be producers and
n/2 be consumers. Producers repeatedly generate trivial
output and need not wait for consumers, while consumers
repeatedly take and throw away that output. We compare
against the .NET 4 BlockignCollection class, which trans-
forms a nonblocking collection into one that blocks when
attempting to extract an element from an empty collec-
tion. We wrap the BlockingCollection around the .NET
4 ConcurrentQueue class (a variant of Michael and Scott’s
classic lock-free queue [18]) and ConcurrentBag.

Lock An iteration consists of acquiring and then releasing
a single, global lock. We compare against both the built-in
.NET lock (which is a highly-optimized part of the CLR im-
plementation itself) and System.Threading.SpinLock (which
is implemented in .NET).

Semaphore We let the initial semaphore count be n/2;
An iteration consists of acquiring and then releasing the
semaphore. We compare to two .NET semaphores: the
Semaphore class, which wraps kernel semaphores, and Sema-
phoreSlim, a faster, pure .NET implementation of semaphores.

Rendezvous The n threads perform a total of k syn-
chronous exchanges as quickly as possible. Unfortunately,
.NET 4 does not provide a built-in library for rendezvous, so
we ported Scherer et al.’s exchanger [26] from JAVA; this is
the exchanger included in java.util.concurrent.

Barriers An iteration consists of passing through the bar-
rier. We show results for both the tree and the flat versions
of the join-based barrier. We compare against the .NET 4
Barrier class, a standard sense-reversing barrier.

RWLock An iteration consists of (1) choosing at random
whether to be a reader or writer and (2) acquiring, and then
releasing, the appropriate lock. We give results for 50-50 and
75-25 splits between reader and writers. We compare against
two .NET implementations: the ReaderWriterLock class,
which wraps the kernel RWLocks, and the ReaderWriterLock-
Slim class, which is a pure .NET implementation.

4.3 Analysis
The results of Figure 9 demonstrate that our scalable join
patterns are competitive with—and can often beat—state of
the art custom libraries. Application-programmers can solve
coordination problems in the simple, declarative style we
have presented here, and expect excellent scalability, even
for fine-grained parallelism.

In evaluating benchmark performance, we are most in-
terested in the slope of the throughput graph, which mea-
sures scalability with the number of cores (up to 48) and then
scheduler robustness (from 48 to 96). In the parallel speedup
benchmarks, both in terms of scalability (high slope) and ab-
solute throughput, we see the following breakdown:

S-Join clear winner Producer/consumer,
Semaphore, Barrier

S-Join competitive Philosophers, Lock,
Rendezvous, RWLock 50/50

.NET clear winner RWLock 75/25

The .NET concurrency library could benefit from replacing
some of its primitives with ones based on the joins imple-
mentation we have shown—the main exception being locks.
With further optimization, it may be feasible to build an en-
tire scalable synchronization library around joins.

The performance of our implementation is mostly robust
as we oversubscribe the machine. The Barrier benchmark



is a notable exception, but this is due to the structure of
the problem: every involved thread must pass through the
barrier at every iteration, so at n > 48 threads, a context
switch is required for every iteration. Context switches are
very expensive in comparison to the small amount of work
we are simulating.

Not all is rosy, of course: the pure synchronization bench-
marks show that scalable join patterns suffer from constant-
time overheads in some cases, especially for locks. The table
below approximates the overhead of pure synchronization in
our implementation compared to the best .NET solution, by
dividing the scalable join pure synchronization time by the
best .NET pure synchronization time:

Overhead compared to best custom .NET solution
n Phil Pr/Co Lock Sema Rend Barr RWL
6 5.2 0.7 6.5 2.9 0.7 1.5 4.2
12 5.2 0.9 7.4 4.0 1.7 0.3 3.9
24 1.9 0.9 6.6 3.0 1.1 0.2 1.8
48 1.6 1.2 7.4 2.3 1.0 0.2 1.4

(n threads; smaller is better)

Overheads are most pronounced for benchmarks that use
.NET’s built-in locks (Philosophers, Lock). This is not sur-
prising: .NET locks are mature and highly engineered, and
are not themselves implemented as .NET code. Notice, too,
that in Figure 10 the overhead of the spinlock (which is im-
plemented within .NET) is much closer to that of scalable
join patterns. In the philosophers benchmark, we are able to
compensate for our higher constant factors by achieving bet-
ter parallel speedup, even in the pure-synchronization ver-
sion of the benchmark.

One way to decrease overhead, we conjecture, would be
to provide compiler support for join patterns. Our library-
based implementation spends some of its time travers-
ing data structures representing user-written patterns. In
a compiler-based implementation, these runtime traversals
could be unrolled, eliminating a number of memory ac-
cesses and conditional control flow. Removing that overhead
could put scalable joins within striking distance of the ab-
solute performance of .NET locks. On the other hand, such
an implementation would probably not allow the dynamic
construction of patterns that we use to implement barriers.

In the end, constant overhead is trumped by scalabil-
ity: for those benchmarks where the constant overhead is
high, our implementation nevertheless shows strong parallel
speedup when simulating work. The constant overheads are
dwarfed by even the small amount of work we simulate. Fi-
nally, even for the pure synchronization benchmarks, our im-
plementation provides competitive scalability, in some cases
extracting speedup despite the lack of simulated work.

Effect of optimizations Each of the three optimizations
discussed in §3.5 is important for achieving competitive
throughput. Stealing tends to be most helpful for those prob-
lems where threads compete for limited resources (Philoso-
phers, Locks), because it minimizes the time between re-

source release and acquisition, favoring threads that are in
the right place at the right time.9 Lazy queuing improves
constant factors across the board, in some cases (Produc-
er/Consumer, Rendezvous) also aiding scalability. Finally,
the counter representation provides a considerable boost for
benchmarks, like Semaphore, in which the relevant channel
often has multiple pending messages.

Performance of lock-based joins Russo’s lock-based im-
plementation of joins is consistently—often dramatically—
the poorest performer for both parallel speedup and pure
synchronization. On the one hand, this result is not surpris-
ing: the overserialization induced by coarse-grained locking
is a well-known problem. On the other hand, Russo’s im-
plementation is fairly sophisticated in the effort it makes to
shorten critical sections. The implementation includes all the
optimizations proposed for POLYPHONIC C] [2], including
a form of stealing, a counter representation for void-async
channels (simpler than ours, since it is lock-protected), and
bitmasks approximating the state of messages queues for fast
matching. Despite this sophistication, it is clear that lock-
based joins do not scale.

We consider STM-based join implementations in §6.2.

5. Correctness
There are many ways to characterize correctness of concur-
rent algorithms. The most appropriate specification for our
algorithm is something like the process-algebraic formula-
tion of the join calculus [4]. In that specification, multiple
messages are consumed—and a chord is fired—in a single
step. A full proof that our implementation satisfies this spec-
ification is too much to present here, and we have not yet
carried out such a rigorous proof. We have, however, identi-
fied what we believe are the key lemmas for performing such
a proof. We take for granted that our bag implementation
is linearizable [10] and lock-free [9]; roughly, this means
that operations on bags are observably atomic and dead/live-
lock free even under unfair scheduling. There are a pair of
key properties—one safety, one liveness—characterizing the
Resolve method:

Lemma 1 (Resolution Safety). Assume that msg has been
inserted into a channel. If a subsequent call to Resolve(msg)

returns, msg is in a resolved state; moreover, the return value
correctly reflects how the message was resolved.

Lemma 2 (Resolution Liveness). Assume that threads are
scheduled fairly. If a sender is attempting to resolve a mes-
sage, eventually some message is resolved by its sender.

Recall that there are three ways a message can be re-
solved: it and a pattern’s worth of messages can be marked
CLAIMED by the calling thread; it can be marked CONSUMED by
another thread; and it can be in an arbitrary status when it is

9 This is essentially the same observation Doug Lea made about barging for
abstract synchronizers [15].



determined that there are not enough messages prior to it to
fire a chord.

Safety for the first two cases is fairly easy to show: we
can assume that CAS works properly, and can see that

• Once a message is CLAIMED by a thread, the next change
to its status is by that thread.

• Once a message is CONSUMED, its status never changes.

These facts mean that interference cannot “unresolve” a
message that has been resolved in those three ways. The
other fact we need to show is that the retry flag is only false

if, indeed, no pattern is matched using only the message and
messages that arrived before it. Here we use the linearizabil-
ity assumptions about bags, together with the facts about the
status flags just given.

Now we turn to the liveness property. Notice that a call to
Resolve fails to return only if retry is repeatedly true. This
can only happen as a result of messages being CLAIMED. We
can prove, using the consistent ordering of channels during
the claiming process, that if any thread reaches the claiming
process (lines 33–42), some thread succeeds in claiming a
pattern’s worth of messages. The argument goes: claiming
by one thread can fail only if claiming/consuming by another
thread has succeeded, which means that the other thread has
managed to claim a message on a higher-ranked channel.
Since there are only finitely-many channels, some thread
must have succeeded in claiming the last message it needed
to match a pattern.

Using both the safety and liveness property for Resolve,
we expect the following overall liveness property to hold:

Conjecture 1. Assume that threads are scheduled fairly. If
a chord can be fired, eventually some chord is fired.

The key point here is that if a chord can be fired, then
in particular some message, together with its predecessors,
does match a pattern, which rules out the possibility that the
message is resolved with no pattern matchable.

6. Related work
6.1 Join calculus
Fournet and Gonthier originally proposed the join calculus
as an asynchronous process algebra designed for efficient
implementation in a distributed setting [4, 5]. It was posi-
tioned as a more practical alternative to Milner’s π-calculus.

The calculus has been implemented many times, and in
many contexts. The earliest implementations include Four-
net et al.’s JOCAML [7] and Odersky’s FUNNEL [21] (the
precursor to SCALA), which are both functional languages
supporting declarative join patterns. JOCAML’s runtime is
single-threaded so the constructs were promoted for concur-
rency control, not parallelism. Though it is possible to run
several communicating JOCAML processes in parallel, pat-
tern matching will always be sequential. FUNNEL targeted
the JAVA VM, which can exploit parallelism, but we could

find no evaluation of its performance on parallel hardware.
Benton, Cardelli and Fournet proposed an object-oriented
version of join patterns for C] called POLYPHONIC C] [2];
around the same time, von Itzstein and Kearney indepen-
dently described JOINJAVA [11], a similar extension of JAVA.
The advent of generics in C] 2.0 led Russo to encapsu-
late join pattern constructs in the JOINS library [24], which
served as the basis for our library. There are also implemen-
tations for ERLANG [22], C++ [16], and VB [25].

All of the above implementations use coarse-grained
locking to achieve the atomicity present in the join calcu-
lus semantics. In some cases (e.g. POLYPHONIC C], Russo’s
library) significant effort is made to minimize the critical
section, but as we have shown (§4) coarse-grained locking
remains an impediment to scalability.

By implementing joins as a library we forgo some ex-
pressivity, not just static checking. JOCAML, for example,
supports restricted polymorphic sends: the type of a chan-
nel can be generalized in those type variables that do not
appear in the types of other, conjoined channels [6]. Since
our channels are monomorphic C] delegates, we are, un-
fortunately, unable to capture that polymorphism. Neverthe-
less, one can still express a wide range of useful generic ab-
stractions (e.g. Buffer<T>, Swap<A,B>). Another difference is
that our rendezvous patterns are more restrictive than JO-
CAML’s. Our implementation only allows us to return a sin-
gle value to all synchronous channels, instead of returning
separately typed values to each synchronous channel. In ef-
fect, we strike a compromise between the power of JOCAML
and limitations of POLYPHONIC C] (which allowed at most
one synchronous channel per pattern). As a consequence,
our coding of swap channels is clumsier than JOCAML’s,
requiring wrapper methods to extract the relevant half of the
common return value. JOCAML instead supports (the equiv-
alent of) selective return statements, allowing one to write,
e.g. return b to Left; return a to Right; within the
same chord. The static semantics of selective returns are dif-
ficult to capture in a library, so we have avoided them. Note
that forcing all channels to wait on a single return statement,
as we do, also sacrifices some concurrency.

6.2 STM
We are aware of two join-calculus implementations that do
not employ a coarse-grained locking strategy, instead us-
ing HASKELL’s software transactional memory (STM [8]).
Singh’s implementation builds directly on the STM library,
using transacted channels and atomic blocks to provide
atomicity [30]; the goal is to provide a simple implemen-
tation, and no performance results are given. In unpublished
work, Sulzmann and Lam suggest a hybrid approach, saying
that “an entirely STM-based implementation suffers from
poor performance” [31]. Their hybrid approach uses a non-
blocking collection to store messages, and then relies on
STM for the analog to our message resolution process. In
addition to basic join patterns, Sulzmann and Lam allow
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Figure 11. Comparison with Haskell-STM implementations on 48-core machine. Note log scale.

guards and propagated clauses in patterns, and to handle
these features they spawn a thread per message; HASKELL
threads are lightweight enough to make such an approach
viable. The manuscript provides some performance data, but
only on a four core machine, and does not provide compar-
isons against direct solutions to the problems they consider.

The simplest—but perhaps most important—advantage
of our implementation over STM-based implementations is
that we do not require STM, making our approach more
portable. STM is an active area of research, and state-of-the-
art implementations require significant effort.

The other advantage over STM is the specificity of our
algorithm. An STM implementation must provide a general
mechanism for declarative atomicity, conflict-resolution and
contention management. Since we are attacking a more con-
strained problem, we can employ a more specialized (and
likely more efficient and scalable) solution. For example,
in our implementation one thread can be traversing a bag
looking for PENDING messages, determine that none are avail-
able, and exit message resolution all while another thread is
adding a new PENDING message to the bag. Or worse: two
threads might both add messages to the same bag. It is not
clear how to achieve the same degree of concurrency with
STM: depending on the implementation, such transactions
would probably be considered conflicting, and one aborted
and retried. While such spurious retries might be avoidable
by making STM aware of the semantics of bags, or by care-
fully designing the data structures to play well with the STM
implementation, the effort involved is likely to exceed that of
the relatively simple algorithm we have presented.

To test our suspicions about the STM-based join imple-
mentations, we replicated the pure synchronization bench-
marks for producer/consumer and locks, on top of both
Singh and Sulzmann’s implementations. Figure 11 gives the
results on the same 48-core benchmarking machine we used
for §4. Note that, to avoid losing too much detail, we plot the
throughput in these graphs using a log scale. The comparison
is, of course, a loose one, as we are comparing across two

very different languages and runtime systems. However, it
seems clear that the STM implementations suffer from both
drastically increased constant overheads, as well as much
poorer scalability. Surprisingly, of the two STM implemen-
tations, Singh’s much simpler implementation was the better
performer.

Given these results, and the earlier results for lock-based
implementations, our JOINS implementation is the only one
we know to scale when used for fine-grained parallelism.

While STM can be used to implement joins, it is also pos-
sible to see STM and joins as two disparate points in the
spectrum of declarative concurrency: STM allows arbitrary
shared-state computation to be declared atomic, while joins
only permits highly-structured atomic blocks in the form of
join patterns. From this standpoint, our library is a bit like
k-compare single swap [20] in attempting to provide scal-
able atomicity somewhere between CAS and STM. There
is a clear tradeoff: by reducing expressiveness relative to a
framework like STM, our joins library admits a relatively
simple implementation with robust performance and scala-
bility.

6.3 Coordination in java.util.concurrent

The java.util.concurrent library contains a class called Ab-
stractQueuedSynchronizer that provides basic functionality
for queue-based, blocking synchronizers [15]. Internally, it
represents the state of the synchronizer as a single 32-bit in-
teger, and requires subclasses to implement tryAcquire and
tryRelease methods in terms of atomic operations on that
integer. It is used as the base class for at least six synchroniz-
ers in the java.util.concurrent package, thereby avoiding
substantial code duplication. In a sense, our JOINS library is
a generalization of the abstract synchronizer framework: we
support arbitrary internal state (represented by asynchronous
messages), n-way rendezvous, and the exchange of mes-
sages at the time of synchronization.

Another interesting aspect of java.util.concurrent is its
use of dual data structures [27], in which blocking calls to a



data structure (such as Pop on an empty stack) insert a “reser-
vation” in a nonblocking manner; they can then spinwait to
see whether that reservation is quickly fulfilled, and other-
wise block. Reservations provide an analog to the conditions
used in monitors, but apply to nonblocking data structures.
JOINS provide another perspective on reservations: for us,
Pop can be used as a method, but it is really a message-
send on a synchronous channel. Reservations, spinwaiting
and blocking thus fall out as a natural consequence. With
JOINS, it is also easy to allow such synchronous messages
to be involved in several different patterns, allowing the re-
quests to be fulfilled in multiple ways, each of which can in-
volve complex synchronization; the correct protocol for han-
dling reservations is then automatically provided.

Our benchmarking results indicate that it may be reason-
able to build some parts of a library like java.util.concur-
rent around JOINS; certainly, some of .NET’s concurrency
library could be profitably replaced with a JOINS-based im-
plementation. While this is a nice result, our goal is not to
replace such carefully-engineered libraries. Rather, we want
to push forward the frontier, taking the insights that made
java.util.concurrent successful and putting them in the
hands of application programmers, without exposing their
intricacies.

6.4 Parallel CML
Our algorithm draws some inspiration from Reppy, Russo
and Xiao’s PARALLEL CML, a combinator library for first-
class synchronous events [23]. The difficulty in implement-
ing CML is, in a sense, dual to that of the join calculus: dis-
junctions of events (rather than conjunctions of messages)
must be atomically resolved. PARALLEL CML implements
disjunction (choice) by adding a single event to the queue of
each involved channel. Events have a “state” similar to our
message statuses; event resolution is performed by an opti-
mistic protocol that uses CAS to claim events.

The PARALLEL CML protocol is, however, much sim-
pler than the protocol we have presented: events are resolved
while holding a channel lock. In particular, if an event is of-
fering a choice between sending on channel A and receiving
on channel B, the resolution code will first lock channel A
while looking for partners, then (if no partners are found)
unlock A and lock channel B. These channel locks prevent
concurrent changes to channel queues, allowing the imple-
mentation to avoid subtle questions about when it is safe to
stop running the protocol—exactly the questions we address
in §3.3. The tradeoff for this simplicity is reduced scalability
under high contention due to reduced concurrency, as in our
experimental results for lock-based joins.

7. Conclusion
We have demonstrated that it is possible to place many
of the insights behind scalable synchronization algorithms
directly into the hands of library users—without requiring

those users to understand those insights, to use a fixed set of
primitives, or to give up scalability. There is still much work
to be done, both in evaluation (does declarative coordination
help in real applications?) and scope (can we expand beyond
the join calculus?), but we believe the algorithms presented
in this paper provide a promising foundation for further
exploration.
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A. Library Reference
A new Join instance j is allocated by calling an overload of
factory method Join.Create:

Join j = Join.Create(); or
Join j = Join.Create(size);

The optional integer size is used to explicitly bound the num-
ber of channels supported by Join instance j. An omitted
size argument defaults to 32; size initializes the constant,
read-only property j.Size.

A Join object notionally owns a set channels, each ob-
tained by calling an overload of method Init, passing the
location, channel(s), of a channel or array of channels using
an out argument:

j.Init(out channel);
j.Init(out channels, length);

The second form takes a length argument to initialize loca-
tion channels with an array of length distinct channels.

Channels are instances of delegate types. In all, the library
provides six channel flavors:

// void-returning asynchronous channels
delegate void Asynchronous.Channel();
delegate void Asynchronous.Channel<A>(A a);
// void-returning synchronous channels
delegate void Synchronous.Channel();
delegate void Synchronous.Channel<A>(A a);
// value-returning synchronous channels
delegate R Synchronous<R>.Channel();
delegate R Synchronous<R>.Channel<A>(A a);

The outer class of a channel Asynchronous, Synchronous
or Synchronous<R> should be read as a modifier that speci-
fies its blocking behaviour and optional return type.

When a synchronous channel is invoked, the caller must
wait until the delegate returns (void or some value). When an
asynchronous channel is invoked, there is no result and the
caller proceeds immediately without waiting. Waiting may,
but need not, involve blocking.

Apart from its channels, a Join object notionally owns a
set of join patterns. Each pattern is defined by invoking an
overload of the instance method When followed by zero or
more invocations of instance method And followed by a final
invocation of instance method Do. Thus a pattern definition
typically takes the form:

j.When(c1).And(c2)· · ·.And(cn).Do(d)

Each argument c to When(c) or And(c) can be a single
channel or an array of channels. All synchronous channels
that appear in a pattern must agree on their return type.

The argument d to Do(d) is a continuation delegate that
defines the body of the pattern. Although it varies with the
pattern, the type of the continuation is always an instance of
one of the following delegate types:

delegate R Func<P1, . . . , Pm,R>(P1 p1, . . . , Pm pm);
delegate void Action<P1, . . . , Pm>(P1 p1, . . . , Pm pm);



The precise type of the continuation d, including its num-
ber of arguments, is determined by the sequence of channels
guarding it. If the first channel, c1, in the pattern is a syn-
chronous channel with return typeR, then the continuation’s
return type is R; otherwise the return type is void.

The continuation receives the arguments of channel in-
vocations as delegate parameters P1 p1, . . . , Pm pm, for
m ≤ n. The presence and types of any additional parameters
P1 p1, . . . , Pm pm is dictated by the type of each channel ci:

• If ci is of non-generic type Channel or Channel[] then
When(ci)/And(ci) adds no parameter to delegate d.

• If ci is of generic type Channel<P >, for some type P then
When(ci)/And(ci) adds one parameter pj of type Pj = P
to delegate d.

• If ci is an array of type Channel<P >[] for some type P
then When(ci)/And(ci) adds one parameter pj of array
type Pj = P [] to delegate d.

Parameters are added to d from left to right, in increasing
order of i. In the current implementation, a continuation can
receive at most m ≤ 16 parameters.

A join pattern associates a set of channels with a body d.
A body can execute only once all the channels guarding it
have been invoked. Invoking a channel may enable zero, one
or more patterns:

• If no pattern is enabled then the channel invocation is
queued up. If the channel is asynchronous, then the ar-
gument is added to an internal bag. If the channel is syn-
chronous, then the calling thread is blocked, joining a no-
tional bag of threads waiting on this channel.

• If there is a single enabled join pattern, then the argu-
ments of the invocations involved in the match are con-
sumed, any blocked thread involved in the match is awak-
ened, and the body of the pattern is executed in that
thread. Its result - some value or exception - is broad-
cast to all other waiting threads, awakening them. If the
pattern contains no synchronous channels, then its body
runs in a new thread.

• If there are several enabled patterns, then an unspecified
one is chosen to run.

• Similarly, if there are multiple invocations of a particu-
lar channel pending, which invocation will be consumed
when there is a match is unspecified.

The current number of channels initialized on j is avail-
able as read-only property j.Count; its value is bounded by
j.Size. Any invocation of j.Init that would cause j.Count
to exceed j.Size throws JoinException.

Join patterns must be well-formed, both individually and
collectively. Executing Do(d) to complete a join pattern will
throw JoinException if d is null, the pattern repeats a chan-
nel (and the implementation requires linear patterns), a chan-

nel is null or foreign to this pattern’s Join instance, or the
join pattern is empty. A channel is foreign to a Join instance
j if it was not allocated by some call to j.Init. A pattern is
empty when its set of channels is empty (this can only arise
through array arguments).

Though not discussed in the body of this paper, array
patterns are useful for defining dynamically sized joins, e.g.
an n-way exchanger:� �
class NWayExchanger<T> {

public Synchronous<T[]>.Channel<T>[] Values;
public NWayExchanger(int n) {

var j = Join.Create(n); j.Init(out Values, n);
j.When(Values).Do(vs => vs);

}
}� �


