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Abstract
Efficient communication and synchronization is crucial for fine-
grained parallelism. Libraries providing such features, while indis-
pensable, are difficult to write, and often cannot be tailored or com-
posed to meet the needs of specific users. We introduce reagents,
a set of combinators for concisely expressing concurrency algo-
rithms. Reagents scale as well as their hand-coded counterparts,
while providing the composability existing libraries lack.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming; D.3.3 [Language constructs
and features]: Concurrent programming structures

General Terms Design, Algorithms, Languages, Performance

Keywords fine-grained concurrency, nonblocking algorithms,
monads, arrows, compositional concurrency

1. Introduction
Programs are what happens between cache misses.

The problem
Amdahl’s law tells us that sequential bottlenecks fundamentally
limit our profit from parallelism. In practice, the effect is amplified
by another factor: interprocessor communication, often in the form
of cache coherence. When one thread waits on another, the program
pays the cost of lost parallelism and an extra cache miss. The extra
misses can easily accumulate to yield parallel slowdown, more than
negating the benefits of the remaining parallelism.

Cache, as ever, is king.
The easy answer is: avoid communication. In other words, par-

allelize at a coarse grain, giving threads large chunks of indepen-
dent work. But some work doesn’t easily factor into large chunks,
or equal-size chunks. Fine-grained parallelism is easier to find, and
easier to sprinkle throughout existing sequential code.

Another answer is: communicate efficiently. The past two
decades have produced a sizable collection of algorithms for syn-
chronization, communication, and shared storage which mini-
mize the use of memory bandwidth and avoid unnecessary wait-
ing. This research effort has led to industrial-strength libraries—
java.util.concurrent (JUC) the most prominent—offering a
wide range of primitives appropriate for fine-grained parallelism.
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Such libraries are an enormous undertaking—and one that must
be repeated for new platforms. They tend to be conservative, im-
plementing only those data structures and primitives likely to fulfill
common needs, and it is generally not possible to safely combine
the facilities of the library. For example, JUC provides queues, sets
and maps, but not stacks or bags. Its queues come in both blocking
and nonblocking forms, while its sets and maps are nonblocking
only. Although the queues provide atomic (thread-safe) dequeuing
and sets provide atomic insertion, it is not possible to combine these
into a single atomic operation that moves an element from a queue
into a set.

In short, libraries for fine-grained concurrency are indispens-
able, but hard to write, hard to extend by composition, and hard to
tailor to the needs of particular users.

Our contribution
We have developed reagents, which abstractly represent fine-
grained concurrent operations. Reagents are expressive and com-
posable, but when invoked retain the scalability and performance
of existing algorithms:

Expressive Reagents provide a basic set of building blocks for
writing concurrent data structures and synchronizers. The building
blocks include isolated atomic updates to shared state, and inter-
active synchronous communication through message passing. This
blend of isolation and interaction is essential for expressing the full
range of fine-grained concurrent algorithms (§3.3). The building
blocks also bake in many common concurrency patterns, like op-
timistic retry loops, backoff schemes, and blocking and signaling.
Using reagents, it is possible to express sophisticated concurrency
algorithms at a higher level of abstraction, while retaining the per-
formance and scalability of direct, hand-written implementations.

Composable Reagents also provide a set of composition opera-
tors, including choice, sequencing and pairing. Using these oper-
ators, clients can extend and tailor concurrency primitives without
knowledge of the underlying algorithms. For example, if a reagent
provides only a nonblocking version of an operation like dequeue,
a user can easily tailor it to a version that blocks if the queue is
empty; this extension will work regardless of how dequeue is de-
fined, and will continue to work even if the dequeue implementa-
tion is changed. Similarly, clients of reagent libraries can sequence
operations together to provide atomic move operations between ar-
bitrary concurrent collections—again, without access to or knowl-
edge of the implementations. Compositionality is also useful to al-
gorithm designers, since many sophisticated algorithms can be un-
derstood as compositions of simpler ones (§3.3, §3.4).

We begin in §2 by illustrating, through examples, some of the
common patterns, tradeoffs and concerns in designing fine-grained
concurrent algorithms. The two subsequent sections contain our
core technical contributions:



• The design of the reagent combinators is given in §3. Each com-
binator is motivated by specific needs and patterns in concurrent
algorithms; the section shows in particular how to write all of
the algorithms described in §2 concisely and at a higher-than-
usual level of abstraction.

• The implementation of reagents is detailed in §5, via both
high-level discussion and excerpts from our code in Scala.
It reveals the extent to which reagents turn patterns of fine-
grained concurrency into a general algorithmic framework. It
also shows how certain choices in the design of reagents enable
important optimizations in their implementation.

Reagents have a clear cost model that provides an important guar-
antee: they do not impose extra overhead on the atomic updates
performed by individual concurrent algorithms. That is, a reagent-
based algorithm manipulates shared memory in exactly the same
way as its hand-written counterpart, even if it reads and writes
many disparate locations. This is a guarantee not generally pro-
vided by concurrency abstractions like software transactional mem-
ory (STM), which employ redo or undo logs or other mechanisms
to support composable atomicity. Reagents only impose overheads
when multiple algorithms are sequenced into a large atomic block,
e.g. in an atomic transfer between collections.

In principle, then, reagents offer a strictly better situation than
with current libraries: when used to express the algorithms pro-
vided by current libraries, reagents provide a higher level of ab-
straction yet impose negligible overhead; nothing is lost. But unlike
with current libraries, the algorithms can then be extended, tailored,
and combined. Extra costs are only paid when the new atomic com-
positions are used.

We test this principle empirically in §6 by comparing multi-
ple reagent-based collections to their hand-written counterparts, as
well as to lock-based and STM-based implementations. The bench-
marks include both single operations used in isolation (where little
overhead for reagents is expected) and combined atomic transfers.
We compare at both high and low levels of contention. Reagents
perform universally better than the lock- and STM-based imple-
mentations, and are indeed competitive with hand-written lock-free
implementations.

Finally, it is worth noting in passing that reagents generalize
both Concurrent ML [22] and Transactional Events [4], yielding
the first lock-free implementation for both. We give a thorough
discussion of this and other related work—especially STM—in §7.

A prototype implementation of reagents, together with the
benchmarks and benchmarking harness we used, can be found at

https://github.com/aturon/ChemistrySet

2. Background
Broadly, we are interested in data structures and algorithms for
communication, synchronization, or both. This section gives a brief
survey of the most important techniques for communication and
synchronization in a fine-grained setting—exactly the techniques
that reagents abstract and generalize. Readers already familiar with
Treiber stacks [28], elimination-backoff stacks [9], dual stacks [24],
and MCS locks [19] can safely skip to §3.

Given our target of cache-coherent, shared-memory architec-
tures, the most direct way of communicating between threads is
modifying shared memory. The challenge is to provide both atom-
icity and scalability: communications must happen concurrently
both without corruption and without clogging the limited memory
bandwidth, even when many cores are communicating. A simple
way to provide atomicity is to associate a lock with each shared
data structure, acquiring the lock before performing any operation.

class TreiberStack [A] {
private val head = new AtomicReference[List[A]](Nil)
def push(a: A) {
val backoff = new Backoff
while (true) {
val cur = head.get()
if (head.cas(cur , a :: cur)) return
backoff .once()
}
}
def tryPop(): Option[A] = {
val backoff = new Backoff
while (true) {
val cur = head.get()
cur match {
case Nil ⇒ return None
case a :: tail ⇒

if (head.cas(cur , tail )) return Some(a)
}
backoff .once()
}
}
}

Figure 1. Treiber’s stack (in Scala)

The prevailing wisdom1 is that such coarse-grained locking is in-
herently unscalable:

• It forces operations on the data structure to be serialized, even
when they could be performed in parallel.

• It adds extra cache-coherence traffic, since each core must ac-
quire the same lock’s cache line in exclusive mode before oper-
ating. For fine-grained communication, that means at least one
cache miss per operation.

• It is susceptible to preemptions or stalls of a thread holding a
lock, which prevents other threads from making progress.

To achieve scalability, data structures employ finer-grained
locking, or eschew locking altogether. Fine-grained locking as-
sociates locks with small, independent parts of a data structure,
allowing those parts to be manipulated in parallel. Lockless (or
nonblocking) data structures instead perform updates directly, using
hardware-level operations (like compare-and-set) to ensure atomic-
ity. Doing the updates directly means that there is no extra commu-
nication or contention for locks, but it also generally means that the
entire update must consist of changing a single word of memory—a
constraint which is often quite challenging to meet.

Fig. 1 gives a classic example of a fine-grained concurrent data
structure: Treiber’s lock-free stack [28]. The stack is represented
as an immutable linked list. Mutation occurs solely through the
head pointer, represented here as an AtomicReference. The head
is mutated using compareAndSet (here abbreviated as cas), which
takes an expected value and a new value, and atomically updates the
reference if it has the expected value. It returns true iff the update
was successful.

A word about Scala: the syntax
exp match { case pat1 ⇒ body1 ... case patN ⇒ bodyN }

denotes pattern matching, where the value of exp is matched in
order against pat1 up to patN. In Fig. 1, we use the two list
constructors Nil and :: (an inline cons) in patterns.

1 With some dissenting opinions, as in the recent work on flat combin-
ing [10].



The push and tryPop operations are implemented in a typical
optimistic style: they take a snapshot of the head, perform some
local computation with it, and then attempt to update it accordingly.
The computation is optimistic because it is performed without
holding a lock. The head might concurrently change, invalidating
the cas intended to update it. To account for possible interference,
the snapshot-compute-update code executes within a retry loop.
While the loop may retry forever, it can only do so by repeatedly
failing to cas, which in turn means that an unlimited number of
other operations on the stack are succeeding. In other words, push
and tryPop are formally lock free.

To successfully cas, a core must acquire the relevant cache line
in exclusive mode, or something conceptually equivalent. When
several cores attempt to cas a common reference, they must co-
ordinate at the hardware level, using precious memory bandwidth
and wasting processor cycles. A failed cas is evidence that there
is contention over a common location. To increase the cas success
rate and conserve memory bandwidth, fine-grained concurrent al-
gorithms employ a backoff scheme, which here we have abstracted
into a lightweight Backoff class. The class encapsulates the sim-
plest scheme: busy-wait for a random amount of time that grows
exponentially each time once is invoked.

Treiber’s stack scales better than a lock-based stack mainly be-
cause it decreases the amount of shared data that must be updated
per operation: instead of acquiring a shared lock, altering a shared
stack pointer, and releasing the shared lock, Treiber’s stack does
a single CAS to update the shared pointer directly. However, that
pointer is still a centralized source of contention. While exponential
backoff helps relieve the contention, we can do better by paralleliz-
ing stack operations—which is counterintuitive, given that they all
involve modifying the top of the stack.

Parallelization requires a change of perspective. Normally, we
view concurrent operations on the same part of a data structure as
competing to atomically update that data structure; we want the
operations to be isolated. On the other hand, sometimes operations
can “help” each other: a push and a tryPop effectively cancel
each other out. This insight leads to a scheme called elimination
backoff [9, 26]. Operations first try the usual cas-based code. If the
cas fails, rather than busy-waiting, the operations advertise their
presence on a side-channel, reducing the contention for the head
pointer. If a push and tryPop detect their mutual presence, the push
can pass its argument directly to tryPop through the side-channel,
and no change to the head pointer is necessary. Atomicity is not
violated, because had the push and pop executed in sequence, the
head pointer would have been returned to its original value anyway.
On the other hand, if no dual operation is detected during backoff,
the operation withdraws its offer and tries once more to cas the
head.

Both push and tryPop are total operations: they can succeed no
matter what state the stack is in, and fail (and retry) only due to
active interference from concurrent threads. A true pop operation,
on the other hand, is partial: it is undefined when the stack is empty.
Often this is taken to mean that the operation should block until
another thread moves the stack into a state on which the operation
is defined. Partial operations introduce considerable complexity,
because all operations on the data structure must potentially signal
blocked threads, depending on the changes being performed. In
some cases, it is possible to cleverly treat signaling in essentially
the same way as atomic updates [24].

Synchronization and signaling is also subject to cache and mem-
ory bandwidth concerns, but it would take us too far afield to dis-
cuss these in depth. Mellor-Crummey and Scott pioneered the now-
common techniques for grappling with these concerns [19], and we
apply their techniques in implementing the blocking and signaling
protocols for reagents (§5).

// Shared state
upd: Ref[A] ⇒ (A × B ⇀ A × C) ⇒ Reagent[B,C]

// Message passing
swap: Endpoint[A,B] ⇒ Reagent[A,B]

// Composition
+ : Reagent[A,B] × Reagent[A,B] ⇒ Reagent[A,B]
>> : Reagent[A,B] × Reagent[B,C] ⇒ Reagent[A,C]
* : Reagent[A,B] × Reagent[A,C] ⇒ Reagent[A, B × C]

// Post−commit actions
postCommit: (A ⇒ Unit) ⇒ Reagent[A,A]

Figure 2. The core reagent combinators

3. Reagents: the core combinators

Reagents are a new instance of an old idea: representing computa-
tions as data. The computations being represented are fine-grained
concurrent operations, so a value of type Reagent[A,B] represents
a function from A to B that internally interacts with a concurrent
data structure through mutation, synchronization, or both. Because
the computations are data, however, they can be combined in ways
that go beyond simple function composition. Each way of com-
bining reagents corresponds to a way of combining their internal
interactions with concurrent data structures. Existing reagents—for
example, those built by a concurrency expert—can be composed by
library users, without those users knowing their internal implemen-
tation. This way of balancing abstraction and composition was pio-
neered with Concurrent ML [22], and is now associated with mon-
ads [30] and arrows [14]. Our contribution is giving a set of combi-
nators appropriate for expressing and composing fine-grained con-
current algorithms, with a clear cost semantics and implementation
story (§5).

The reagent combinators encompass a blend of duals:

Shared state versus Message passing

Given the goal of using reagents to express algorithms like Treiber’s
stack (§2), it is not surprising that reagents include primitives from
shared-state concurrency. But what about message passing? Under-
lying the shared state/message passing duality is a deeper one:

Isolation versus Interaction

Operations on shared state are generally required to be atomic,
which means in particular that they are isolated from one another;
concurrent shared-state operations appear to be linearizable [13]
into a series of nonoverlapping, sequential operations. Synchronous
message passing is just the opposite: rather than appearing to not
overlap, sends and receives are required to overlap. Fine-grained
concurrent operations straddle these two extremes, appearing to
be isolated while internally tolerating (or exploiting) interaction.
Elimination backoff (§2) provides a striking example of this phe-
nomenon, and reagents can capture it concisely (§3.3).

There is also duality in reagent composition:

Disjunction versus Conjunction

In particular, we can combine two reagents by requiring exactly one
of them to take effect (choice), or by requiring both of them to take
effect in a single atomic step (join).

Finally, reagents, like functions, are inert. To be useful, they
must be invoked. Reagents offer two means of invocation:

Active (reactants) versus Passive (catalysts)



In chemistry, a reagent is a participant in a reaction, and reagents
are subdivided into reactants, which are consumed during reaction,
and catalysts, which enable reactions but are not consumed by
them. Similarly for us. Invoking a reagent as a reactant is akin to
calling it as a function: its internal operations are performed once,
yielding a result or blocking until it is possible to do so. Invoking it
as a catalyst instead makes it passively available as a participant in
reactions. Because catalysts are not “used up,” they can participate
in many reactions in parallel.

In the rest of this section, we introduce the core reagent combi-
nators and use them to build a series of increasingly complex con-
current algorithms. By the end, we will have seen how to implement
all of the algorithms described in §2, and several more besides.

3.1 Atomic updates on Refs
Memory is shared between reagents using the type Ref[A] of
atomically-updatable references. The upd combinator (Fig. 2) rep-
resents atomic updates to references. It takes an update function,
which tells how to transform a snapshot of the reference cell and
some input into an updated value for the cell and some output.
Using upd, we can rewrite TreiberStack in a more readable and
concise way:
class TreiberStack [A] {
private val head = new Ref[List[A]]( Nil )
val push: Reagent[A, Unit] = upd(head) {
case (xs , x) ⇒ (x::xs, ())
}
val tryPop: Reagent[Unit, Option[A]] = upd(head) {
case (x :: xs , ()) ⇒ (xs, Some(x))
case (Nil , ()) ⇒ (Nil, None)
}
}

In Scala, anonymous partial functions are written as a series of
cases enclosed in braces. For push and tryPop, the case analyses
are exhaustive, so the update functions are in fact total. Unit is akin
to void: it is a type with a single member, written ().

Being reagents, push and tryPop are inert values. They can
be invoked as reactants using the ! method, which is pronounced
“react.” For a Reagent[A,B] the ! method takes an A and returns
a B. Scala permits infix notation for methods, so we can use a
TreiberStack s by writing s .push ! 42. The key point is that
when we invoke these reagents, we are executing exactly the same
algorithms written by hand in §2, including the retry loop with
exponential backoff; reagents systematize and internalize common
patterns of fine-grained concurrency. By exposing push and tryPop
as reagents rather than methods, we allow further composition and
tailoring by a user of the data structure (§3.3, §3.4).

While tryPop handles both empty and nonempty stacks, we can
write a variant that drops the empty case:
val pop: Reagent[Unit, A] =

upd(head) { case (x :: xs , ()) ⇒ (xs, x) }

Now our update function is partial. An invocation s .pop ! () will
block the calling thread unless or until the stack is nonempty.

In general, there are two ways a reagent can fail to react: tran-
siently or permanently. Transient failures arise when a reagent loses
a race to CAS a location; they can only be caused by active inter-
ference from another thread. A reagent that has failed transiently
should retry, rather than block, following the concurrency patterns
laid out in §2. Permanent failures arise when a reagent places re-
quirements on its environment—such as the requirement, with pop
above, that the head reference yield a nonempty list. Such failures
are permanent in the sense that only activity by another thread can
enable the reagent to proceed. When faced with a permanent fail-

ure, a reagent should block until signaled that the underlying state
has changed. Blocking and signaling are entirely handled by the
reagent implementation; there is therefore no risk of lost wakeups.

The reagent upd(f) reagent can fail permanently only for those
inputs on which f is undefined.

3.2 Synchronization: how reagents react
With reagents, updates to shared memory are isolated, so they
cannot be used for interaction in which the parties are mutually
aware. Reagents interact instead through synchronous swap chan-
nels, which consist of two complementary endpoints. The method
mkChan[A,B] returns a pair of type

(Endpoint[A,B], Endpoint[B,A])

The combinator for communication is swap (see Fig. 2), which
lifts an Endpoint[A,B] to a Reagent[A,B]. When two reagents
communicate on opposite endpoints, they provide messages of
complementary type (A and B, for example) and receive each
other’s messages. We call a successful communication a reaction
between reagents. On the other hand, if no complementary message
is available, swap will block until a reaction can take place—a
permanent failure.

3.3 Disjunction of reagents: choice
If r and s are two reagents of the same type, their choice r + s
will behave like one of them, nondeterministically, when invoked.
The most straightforward use of choice is waiting on several signals
simultaneously, while consuming only one of them. For example,
if c and d are endpoints of the same type, swap(c) + swap(d) is
a reagent that will accept exactly one message, either from c or
from d. If neither endpoint has a message available, the reagent
will block until one of them does.

A more interesting use of choice is adding backoff strategies (of
the kind described in §2). For example, we can build an elimination
backoff stack as follows:
class EliminationStack [A] {
private val s = new TreiberStack[A]
private val (elimPop, elimPush) = mkChan[Unit,A]
val push: Reagent[A,Unit] = s.push + swap(elimPush)
val pop: Reagent[Unit,A] = s.pop + swap(elimPop)
}

Choice is left-biased, so when push is invoked, it will first attempt
to push onto the underlying Treiber stack. If the underlying push
fails (due to a lost CAS race), push will attempt to send a message
along elimPush, i.e., to synchronize with a concurrent popper. If it
succeeds, the push reagent completes without ever having modified
its underlying stack.

For choice, failure depends on the underlying reagents. A choice
fails permanently only when both of its underlying reagents have
failed permanently. If either fails transiently, the choice reagent
has failed transiently and should therefore retry. Reasoning along
these lines, we deduce that push never blocks, since the underly-
ing s .push can only fail transiently. On the other hand, pop can
block because s .pop can fail permanently on an empty stack and
swap(elimPop) can fail permanently if there are no offers from
pushers.

When push or pop retry, they will spinwait briefly for another
thread to accept their message along elimPush or elimPop; the
length of the wait grows exponentially, as part of the exponential
backoff logic. Once the waiting time is up, the communication
attempt is canceled, and the whole reagent is retried. This protocol
is elaborated in §5.



3.4 Conjunction of reagents: sequencing and pairing
Choice offers a kind of disjunction on reagents. There are also two
ways of conjoining two reagents, so that the composed reagent has
the effect of both underlying reagents:

• End-to-end composition, via sequencing: if r : Reagent[A,B]
and s : Reagent[B,C] then r >> s: Reagent[A,C].

• Side-by-side composition, via pairing: if r : Reagent[A,B] and
s : Reagent[A,C] then r * s : Reagent[A,(B,C)].

These combinators differ only in information flow. Each guarantees
that the atomic actions of both underlying reagents become a sin-
gle atomic action for the composition. For example, if s1 and s2 are
both stacks, then s1.pop >> s2.push is a reagent that will atomi-
cally transfer an element from the top of one to the top of the other.
The reagent will block if s1 is empty. Similarly, s1.pop * s2.pop
will pop, in one atomic action, the top elements of both stacks, or
block if either is empty.

Here we begin to see the benefits of the reagent abstraction.
Both of the example combinations work regardless of how the
underlying stacks are implemented. If both stacks use elimination
backoff, the conjoined operations will potentially use elimination
on both simultaneously. This behavior is entirely emergent; it does
not require any code on the part of the stack author, and it does not
require the stack user to know anything about the implementation.
Reagents can be composed in unanticipated ways.

Conjunctions provide a solution to the Dining Philosophers
problem: to consume two resources atomically, one simply con-
joins two reagents that each consume a single resource. For ex-
ample, if c and d are endpoints of type Unit to A and B respec-
tively, then swap(c) * swap(d) is a reagent that receives messages
on both endpoints simultaneously and atomically. There is no risk
of introducing a deadlock through inconsistent acquisition order-
ing, because the reagents implementation is responsible for the ul-
timately acquisition order, and will ensure that this order is globally
consistent.

The failure behavior of conjunctions is dual to that of disjunc-
tions: if either conjunct fails permanently, the entire conjunction
fails permanently.

The implementation details for conjunctions are discussed
later (§5), but a key point is that the performance cost is pay as
you go. Single atomic reagents like push and pop execute a sin-
gle CAS—just like the standard nonblocking algorithms they are
meant to implement—even though these operations can be com-
bined into larger atomic operations. The cost of conjunction is only
incurred when a conjoined reagent is actually used. This is a crucial
difference from STM, which generally incurs overheads regardless
of the size of the atomic blocks; see §7 for more discussion.

3.5 Catalysts: persistent reagents
The ! operator invokes a reagent as a reactant: the invocation lasts
for a single reaction, and any messages sent by the reagent are con-
sumed by the reaction. But sometimes it is useful for reagent invo-
cations to persist beyond a single reaction, i.e., to act as catalysts.
For example, the following function creates a catalyst that merges
input from two endpoints and sends the resulting pairs to another
endpoint:
def zip(in1 : Endpoint[Unit, A], in2 : Endpoint[Unit, B],

out: Endpoint[(A,B), Unit ]) =
dissolve ((swap(in1) * swap(in2)) >> swap(out))

The dissolve function takes a Reagent[Unit, Unit] and intro-
duces it as a catalyst.2 Operationally, in this example, that just

2 For simplicity, we have not given a way to cancel catalysts after they have
been introduced, but cancellation is easy to add.

means sending messages along in1 and in2 that are marked as cat-
alyzing messages, and hence are not consumed during reaction. The
upshot is that senders along in1 will see the catalyzing messages,
look for messages along in2 to pair with, and ultimately send mes-
sages along out (and similarly in the other order).

Catalysts could instead be expressed using a thread that re-
peatedly invokes a reagent as a reactant. Allowing direct expres-
sion through dissolve is more efficient (since it does not tie up a
thread) and allows greater parallelism (since, as with the zip exam-
ple above, multiple reagents can react with it in parallel).

Catalysts are not limited to message passing. The zip example
above could be rephrased in terms of arbitrary reagents rather than
just endpoints.

3.6 Post-commit actions
Reagents support “post commit actions”, which comprise code
to be run after a reaction has successfully taken place, e.g. for
signaling or spawning another thread after an operation completes.
The postCommit combinator (Fig. 2) takes a function from A to
Unit and produces a Reagent[A,A]. The post-commit action will
be recorded along with the input of type A, which is passed along
unchanged. Once the reaction completes, the action will be invoked
on the stored input. The combinator is meant to be used in sequence
with other combinators that will produce the appropriate input. For
example, the reagent pop >> postCommit(println) will print the
popped element from a stack after the pop has completed.

3.7 Case study: the join calculus
Fournet and Gonthier’s join calculus [6] provides an interesting
example of the expressive power of reagents. The join calculus is
based on message passing, but instead of a simple “receive” prim-
itive on channels, programmers write join patterns. The join pat-
terns for a set of channels say, once and for all, how to react to mes-
sages along those channels. Each pattern c1(x1)& · · ·&cn(xn) . b
consists of a sequence of channels ci with names xi for the mes-
sages along those channels, and a body b in which the names xi are
bound. A join pattern matches if messages are available on each of
the listed channels, and it fires by atomically consuming all of the
messages and then running the body. Since several patterns may be
given for the same channels, the choice of which pattern to fire may
be nondeterministic.

The join pattern c1(x1) & · · · & cn(xn) . b can be interpreted
directly as a catalyst. The join operator & is interpreted as a con-
junction * , the channel names as appropriate swap instances, and
the body b as a post-commit action. Altogether, the reagent corre-
sponding to the pattern is

(swap(c1) * · · · * swap(cn)) >> postCommit(b)

A set of join patterns governing a set of channels can all be writ-
ten in this way and dissolved as catalysts, which is equivalent to
dissolving the choice of all the patterns. Thus, reagents provide a
scalable implementation of the join calculus, along the lines of the
one developed in previous work with Russo [29].

3.8 Atomicity guarantees
Because conjunction distributes over disjunction, every reagent
built using the core combinators (Fig. 2) can be viewed as a dis-
junction of conjunctions, where each conjunction contains some
combination of updates and swaps. For such a reagent, reactions
atomically execute all of the conjuncts within exactly one of the
disjuncts. This STM-like guarantee is too strong for algorithms
which read shared memory without requiring the reads to be “visi-
ble” (i.e., to participate in an atomic transaction). The next section
will introduce computed reagents which allow invisible reads and
writes, trading weaker guarantees for better performance.



// Low−level shared state combinators
read: Ref[A] ⇒ Reagent[Unit, A]
cas : Ref[A] × A × A ⇒ Reagent[Unit, Unit]

// Computational combinators
ret : A ⇒ Reagent[Unit,A]
computed: (A ⇀ Reagent[Unit, B]) ⇒ Reagent[A,B]

Figure 3. The low-level and computational combinators

When reagents interact through message passing, their atomic-
ity becomes intertwined: they must react together in a single atomic
step. This requirement raises an important but subtle question: what
should happen when isolation and interaction conflict? Consider
two reagents that interact over a channel, but also each update the
same shared reference. The atomicity semantics demands that both
reagents involved in the reaction atomically commit, but the isola-
tion on references demands that the updates be performed in sepa-
rate atomic steps.

For both simplicity and performance, we consider such situa-
tions to be illegal, and throw an exception in such cases. Ideally,
the static types of reagents would somehow track the necessary
information to determine whether compositions are safe, but we
leave such a type discipline for future work. In practice, this rules
out only compositions of certain operations within the same data
structure, which are much less common than compositions across
data structures. It is also straightforward to adopt an alternative ap-
proach, e.g. the one taken by Communicating Transactions (§7),
which treats isolation/interaction conflicts as transient failures.

4. Low-level and computational combinators
4.1 Computed reagents
The combinators introduced in §3 are powerful, but they impose
a strict phase separation: reagents are constructed prior to, and in-
dependently from, the data that flows through them. Phase separa-
tion is useful, because it allows reagent execution to be optimized
based on complete knowledge of the computation to be performed
(see §5). But in many cases the choice of computation to be per-
formed depends on the input or other dynamic data. The computed
combinator (Fig. 3) expresses such cases. It takes a partial func-
tion from A to Reagent[Unit,B] and yields a Reagent[A,B]. When
the reagent computed(f) is invoked, it is given an argument value
of type A, to which it applies the function f. If f is not defined
for that input, the computed reagent issues a permanent (blocking)
failure, similarly to the upd function. Otherwise, the application of
f will yield another, dynamically-computed reagent, which is then
invoked with (), the unit value.

In functional programming terms, the core reagent combinators
of §3 can be viewed in terms of arrows [14], which are abstract,
composable computations whose structure is statically determined.
With the addition of computed, reagents can also be viewed in
terms of monads [30], which extend arrows with dynamic deter-
mination of computational structure.

In the remainder of this section, we introduce a handful of
lower-level combinators which are useful in connection with com-
puted reagents. We close with a case study: Michael and Scott’s
lock-free queue [20].

4.2 Shared state: read and cas

Although the upd combinator is convenient, it is sometimes neces-
sary to work with shared state with a greater degree of control. To
this end, we include two combinators, read and cas (see Fig. 2),

class MSQueue[A] {
private case class Node(data: A, next: Ref[Node])
private val head = new Ref(new Node(null)) // sentinel
private val tail = new Ref(read(head) ! ()) // sentinel
val tryDeq: Reagent[Unit, Option[A]] = upd(head) {
case (Node( , Ref(n@Node(x, ))), ()) ⇒ (n, Some(x))
case (emp, ()) ⇒ (emp, None)
}
private def findAndEnq(n: Node): Reagent[Unit,Unit] =

read( tail ) ! () match {
case ov@Node( , r@Ref(null)) ⇒ // found true tail

cas(r , null , n) >>
postCommit { cas(tail , ov, n)? ! () }

case ov@Node( , Ref(nv)) ⇒ // not the true tail
cas( tail , ov, nv)? ! (); // catch up tail ref
findAndEnq(n)

}
val enq: Reagent[A, Unit] = computed {

(x: A) ⇒ findAndEnq(new Node(x, new Ref(null)))
}
}

Figure 4. The Michael-Scott queue, using reagents

for working directly on Ref values. Together with the computed
combinator described in §4.1, read and cas suffice to build upd.

The read combinator is straightforward: if r has type Ref[A],
then read(r) has type Reagent[Unit, A] and, when invoked, re-
turns a snapshot of r. The cas combinator takes a Ref[A] and two
A arguments, giving the expected and updated values, respectively.
Unlike its counterpart for AtomicReference, a cas reagent does not
yield a boolean result. A failure to CAS is transient, and therefore
results in a retry.

4.3 Constant and tentative reagents
The ret combinator (Fig. 2) always succeeds, immediately return-
ing the given value.

Because choice is left-biased, it can be used together with
the remaining combinators to express tentative reagents: if r is
a Reagent[A,B] then r? is a Reagent[A,Option[B]] that first tries
r (wrapping its output with Some) and then tries ret (None), which
always succeeds. This allows a reaction to be attempted, without
retrying it when it fails.

4.4 Case study: the Michael-Scott queue
To illustrate the use of computed, we now show how to implement
the classic Michael-Scott lock-free queue [20]. Unlike a stack, in
which all activity focuses on the head, queues have two loci of
updates. That means, in particular, that the Refs used by its reagents
may vary depending on the current state of the queue. The strategy
we employ to implement it readily scales to more complicated
examples, such as concurrent skiplists or the lazy, lock-free set
algorithm [11]. With any of these examples, we reap the usual
benefits: a concise, composable and extensible exposition of the
algorithm.

Here is a brief overview of the Michael-Scott algorithm. The
queue is represented as a mutable linked list, with a sentinel node at
the head (front) of the queue. The head pointer always points to the
current sentinel node; nodes are dequeued by a CAS to this pointer,
just like Treiber stacks (but lagged by one node). The true tail of the
queue is the unique node, reachable from the head pointer, with a
null next pointer; thanks to the sentinel, such a node is guaranteed
to exist. If the queue is empty, the same node will be the head
(sentinel) and tail. Finally, as an optimization for enqueing, a tail



pointer is maintained with the invariant that the true tail node is
always reachable from it. The tail pointer may lag behind the true
tail node, however, which allows the algorithm to work using only
single-word CAS instructions.

Our reagent-based implementation of the Michael-Scott queue
is shown in Fig. 4. The node representation is given as an inner case
class. In Scala, case classes provide two features we take advantage
of. First, the parameters to their constructors (here data and next)
are automatically added as final fields to the class, which are initial-
ized to the constructor argument values. Second, they extend pat-
tern matching through case so that instances can be deconstructed.
A pattern like case Node(d, n) matches any instance of the node
class, binding d to its data field and n to its next field.

The head and tail references of the queue are initialized to
the same sentinel node. Here we use the read combinator (§4.2) to
extract the sentinel value from the head when constructing the tail.
The read reagent in tail ’s initializing expression is immediately
executed during construction of an MSQueue instance.

The tryDeq reagent is very similar to the tryPop reagent in
TreiberStack, modulo the sentinel node. The reagent pattern
matches on the sentinel node, ignoring its data field by using ,
the wildcard. The next field is then matched to a nested pattern,
Ref(n@Node(x, )). This pattern immediately reads the current
value of the reference stored in next, binds that value to n, and then
matches the pattern Node(x, ) against n. If the pattern matches—
which it will any time the next field of the sentinel is non-null—the
node n becomes the new head (and hence the new sentinel).

Since the location of the tail node is determined dynamically by
the data in the queue, the enq reagent must itself be determined dy-
namically. For enq, we compute a dynamic reagent by first taking
the given input x, creating a node with that data, and then calling
a private function findAndEnq that will locate the tail of the queue
and yield a reagent to update it to the new node. Since findAndEnq
is private and tail-recursive, Scala will compile it to a loop.

The findAndEnq function searches for the true tail node (whose
next field is null ) starting from the tail pointer, which may lag.
To perform the search, findAndEnq must read the tail pointer,
which it does using the read combinator. There is a subtle but
important point here: this read occurs while the final reagent is
being computed. That means, in particular, that the read is not
part of the computed reagent; it is a side-effect of computing the
reagent. The distinction is important: such a read is effectively
“invisible” to the outer reagent being computed, and thus is not
guaranteed to happen atomically with it. Invisible reads and writes
are useful for avoiding compound atomic updates, but must be
employed carefully to ensure that the computed reagent provides
appropriate atomicity guarantees.

Once the tail pointer has been read, its value is pattern-matched
to determine whether it points to the true tail. If it does, findAndEnq
yields a cas reagent (§4.2) that will update the next field of the tail
node from null to the new node. The attached post-commit action
attempts to catch up the tail pointer through a cas. Since the cas
fails only if further nodes have been enqueued by other concur-
rent threads, we perform it tentatively (§4.3); it is not necessary or
desirable to retry on failure.

If, on the other hand, the tail pointer is lagging, findAndEnq
performs an invisible cas to update it. Since it may be racing with
other enqueuers to catch up the tail, a failure to CAS is ignored
here. Regardless of the outcome of the cas, the findAndEnq func-
tion will restart from a freshly-read tail pointer. Notice that in this
case, an entire iteration of findAndEnq is executed with no visi-
ble impact or record on the final computed reagent—there is no
extended redo log or compound atomic transaction.

5. Implementation
Having seen the design and application of reagents, we now turn to
their implementation. We begin with a high-level overview (§5.1)
introducing the key techniques and data structures we use. We then
delve into the core code of our Scala implementation, beginning
with the primary entry point (the ! method, §5.4) and continuing
with the key combinators. For space reasons, we do not discuss the
implementation of catalysts, which is fairly straightforward.

5.1 The basic approach
When invoked, reagents attempt to react, which is conceptually a
two phase process: first, the desired reaction is built up; second, the
reaction is atomically committed. We emphasize “conceptually”
because, as discussed in the introduction, reagents are designed to
avoid this kind of overhead in the common case. We first discuss
the general case (which imposes overhead) but return momentarily
to the common (no overhead) case.

An attempt to react can fail during either phase. A failure dur-
ing the first phase, i.e. a failure to build up the desired reaction, is
always a permanent failure (§3.3). Permanent failures indicate that
the reagent cannot proceed given current conditions, and should
therefore block until another thread intervenes and causes condi-
tions to change. On the other hand, a failure during the second
phase, i.e. a failure to commit, is always a transient failure (§3.3).
Transient failures indicate that the reagent should retry, since the
reaction was halted due to active interference from another thread.
In general, a reaction encompasses three lists: the CASes to be per-
formed, the messages to be consumed, and the actions to be per-
formed after committing. It thus resembles the redo log used in
some STM implementations [15].

In the common case that a reagent performs only one visi-
ble (§4.1) CAS or message swap, those components of the reaction
are not necessary and hence are not used. Instead, the CAS or swap
is performed immediately, compressing the two phases of reaction.
Aside from avoiding extra allocations, this key optimization means
that in the common case a cas or upd in a reagent leads to exactly
one executed CAS during reaction, with no extra overhead. When
a reaction encompasses multiple visible CASes, a costlier kCAS
protocol must be used to ensure atomicity. We discuss the kCAS
protocol in §5.5, and the common case single CAS in §5.6.

In the implementation, Reagent[A,B] is an abstract class all of
whose subclasses are hidden. The subclasses roughly correspond
to the combinator functions (which are responsible for instantiating
them), and instances of the subclasses store the arguments given to
their corresponding combinator. Each subclass provides an imple-
mentation of the tryReact method, which is an abstract method of
Reagent[A,B] with the following signature:
def tryReact(a: A, rx : Reaction, offer : Offer [B]): Any

The Any type in Scala lies at the top of the subtyping hierarchy,
akin to Object in Java. Here we are using Any to represent a union
of the type B with the type Failure , where the latter has just two
singleton instances, Block and Retry, corresponding to permanent
and transient failures.

In other words, tryReact takes the input (type A) to the reagent
and the reaction built up so far, and either completes the reaction,
returning a result (type B), or fails, returning one of the failure
singletons (Block or Retry). The remaining argument, offer , is
used for synchronization and communication between reagents,
which we explain next.

5.2 Offers
Message passing between reagents is synchronous, meaning that
both reagents take part in a single, common reaction. In the im-
plementation, this works by one reagent placing an offer to react



def !(a: A): B = {
val backoff = new Backoff
def withoutOffer (): B =

tryReact(a, empty, null ) match {
case Block ⇒ withOffer()
case Retry ⇒

backoff .once()
if (maySync) withOffer() else withoutOffer()

case ans ⇒ ans.asInstanceOf[B]
}

def withOffer (): B = {
val offer = new Offer[B]
tryReact(a, empty, offer ) match {
case (f : Failure ) ⇒

if (f == Block) park() else backoff .once( offer )
if ( offer . rescind ) withOffer () else offer .answer

case ans ⇒ ans.asInstanceOf[B]
}
}
withoutOffer()
}

Figure 5. The ! method, defined in Reagent[A,B]

in a location visible to the other. The reagent making the offer ei-
ther spinwaits or blocks until the offer is fulfilled; if it spinwaits, it
may later decide to withdraw the offer. The reagent accepting the
offer combines the accumulated reactions of both reagents, and at-
tempts to commit them together. Fulfilling the offer means, in par-
ticular, providing a final “answer” value that should be returned by
the reagent that made the offer. Each offer includes a status field,
which is either Pending, Rescinded, or a final answer. Hence, the
Offer class is parameterized by the answer type; a Reagent[A,B]
will use Offer [B]. When fulfilling an offer, a reagent CASes its
status from Pending to the desired final answer.

In addition to providing a basic means of synchronization, the
offer data structure is used to resolve external choices. For example,
the reagent swap(ep1) + swap(ep2) may resolve its choices inter-
nally by fulfilling an existing offer on ep1 or ep2; but if no offers
are available, the reagent will post a single offer to both endpoints,
allowing the choice to be resolved externally. Reagents attempting
to consume that offer will race to change a single, shared status
field, thereby ensuring that such choices are resolved atomically.

Offers are made as part of the same tryReact process that builds
and commits reactions. The offer argument to tryReact is non-null
whenever an offer is to be made.

5.3 Continuations
For implementing backtracking choice and message passing, it is
necessary for each reagent to know and have control over the
reagents that are sequenced after it. Thus we do not represent
the reagent sequencing combinator >> with its own class. In-
stead, each reagent records its own continuation, which is another
reagent. Thus, for example, while the cas combinator produces a
reagent of type Reagent[Unit,Unit] , the CAS class has a parame-
ter k of type Reagent[Unit,R], and CAS extends Reagent[Unit,R]
rather than Reagent[Unit,Unit] . The R stands for (final) result.

The combinator functions are responsible for mapping from the
user-facing API, which does not use continuations, to the internal
reagent subclasses, which do. Each reagent initially begins with
the empty continuation, called Commit, the behavior of which is
explained in §5.5. The sequencing combinator then merely plumbs
together the continuation arguments of its parameters.

5.4 The entry point: reacting
The code for performing a reaction is given in the ! method def-
inition for Reagent[A,B], shown in Fig. 5. This method provides
two generalized versions of the optimistic retry loops we described
in §2. The retry loops are written as a local, tail-recursive functions,
which Scala compiles down to loops.

The first retry loop, withoutOffer, attempts to perform the re-
action without making visible offers to other reagents. It may, how-
ever, find and consume offers from other reagents as necessary for
message passing. To initiate the reaction, withoutOffer calls the
abstract tryReact method with the input a, an empty reaction to
start with, and no offer. If the reaction fails in the first phase (a
permanent failure, represented by Block), the next attempt must
be made with an offer, to set up the blocking/signaling protocol.
If the reaction fails in the second phase (a transient failure, rep-
resented by Retry), there is likely contention over shared data. To
reduce the contention, withoutOffer performs one cycle of expo-
nential backoff before retrying. If the reagent includes communica-
tion attempts, the retry is performed with an offer, since doing so
increases chances of elimination (§3.3) without further contention.
Finally, if both phases of the reaction succeed, the final answer is
returned.

The second retry loop, withOffer, is similar, but begins by al-
locating an Offer object to make visible to other reagents. Once
the offer had been made, the reagent can actually block when faced
with a permanent failure; the offer will ensure that the attempted re-
action is visible to other reagents, which may complete it. Blocking
is performed by the park method provided by Java’s LockSupport
class. On a transient failure, the reagent spinwaits, checking the of-
fer’s status. In either case, once the reagent has finished waiting it
attempts to rescind the offer, which will fail if another reagent has
fulfilled the offer.3

Initially, the reaction is attempted using withoutOffer, repre-
senting optimism that the reaction can be completed without mak-
ing a visible offer.

5.5 The exit point: committing
As mentioned in §5.2, the initial continuation for reagents is the
Commit continuation, shown in Fig. 6. The tryReact method of
Commit makes the transition from building up a Reaction object
to actually committing it.

If the reagent has made an offer, but has also completed the first
phase of reaction, the offer must be rescinded before the commit
phase is attempted—otherwise, the reaction could complete twice.
As with the ! method, the attempt to rescind the offer is in a race
with other reagents that may be completing the offer. If Commit
loses the race, it returns the answer provided by the offer. Other-
wise, it attempts to commit the reaction, and if successful simply
returns its input, which is the final answer for the reaction.

Committing a reaction requires a kCAS operation: k compare
and sets must be performed atomically. This operation, which
forms the basis of STM, is in general expensive and not available
through hardware. There are several software implementations that
provide nonblocking progress guarantees [1, 7, 18]. Reagents that
perform a multiword CAS will inherit the progress properties of
the chosen implementation.

For our prototype implementation, we have opted to use an ex-
tremely simple implementation that replaces each location to be
CASed with a sentinel value, essentially locking the location. As
the Reaction object is assembled, locations are kept in address or-
der, which guarantees a consistent global order and hence avoids
dead- and live-lock within the kCAS implementation. The advan-

3 Even if the reagent had blocked, it is still necessary to check the status of
its offer, because park allows spurious wakeups.



class Commit[A] extends Reagent[A,A] {
def tryReact(a: A, rx : Reaction, offer : Offer [A]) =

if ( offer != null && !offer. rescind ) offer .answer
else if (rx .commit) a
else Retry

}

class CAS[A,R](ref: Ref[A], ov: A, nv: A, k: Reagent[A,R])
extends Reagent[Unit,R] {
def tryReact(u: Unit, rx : Reaction, offer : Offer [R]) =

if (! rx .hasCAS && !k.hasCAS)
if ( ref .cas(ov, nv)) k.tryReact ((), rx , offer )
else Retry

else
k.tryReact ((), rx .withCAS(ref, ov, nv), offer )

}

class Choice[A,B](r1: Reagent[A,B], r2 : Reagent[A,B])
extends Reagent[A,B] {
def tryReact(a: A, rx : Reaction, offer : Offer [B]) =

r1 . tryReact(a, rx , offer ) match {
case Retry ⇒ r2.tryReact(a, rx , offer ) match {
case ( : Failure ) ⇒ Retry // must retry r1
case ans ⇒ ans
}
case Block ⇒ r2.tryReact(a, rx , offer )
case ans ⇒ ans
}

}

class Computed[A,B](c: A ⇀ Reagent[Unit,B])
extends Reagent[A,B] {
def tryReact(a: A, rx : Reaction, offer : Offer [B]) =

if (c. isDefinedAt(a)) c(a). tryReact ((), rx , offer )
else Block

}

class Swap[A,B,R](ep: Endpoint[A,B], k: Reagent[B, R])
extends Reagent[A,R] {
// NB: this code glosses over some important details
// discussed in the Channels subsection
def tryReact(a: A, rx : Reaction, offer : Offer [R]) = {

if ( offer != null ) // send message if so requested
ep.put(new Message(a, rx, k, offer ))

def tryFrom(cur: Cursor, failMode: Failure ): Any =
cur .getNext match {
case Some(msg, next) ⇒

msg.exchange(k).tryReact(a, rx , offer ) match {
case Retry ⇒ tryFrom(next, Retry)
case Block ⇒ tryFrom(next, failMode)
case ans ⇒ ans

}
case None ⇒ failMode
}

tryFrom(ep.dual . cursor , Retry) // attempt reaction
}

Figure 6. Excerpts from the reagent subclasses

tage of this implementation, other than its simplicity, is that is has
no impact on the performance of single-word CASes to references,
which we expect to be the common case; such CASes can be per-
formed directly, without any awareness of the kCAS protocol. Our
experimental results in §6 indicate that even this simple kCAS im-
plementation provides reasonable performance—much better than

STM or coarse-grained locking—but a more sophisticated kCAS
would likely do even better.

5.6 Shared state
The implementation of the cas combinator is given by the CAS
class, shown in Fig. 6. Its tryReact method is fairly simple, but it
illustrates a key optimization we have mentioned several times: if
neither the reaction so far nor the continuation of the cas are per-
forming a CAS, then the entire reagent is performing a single CAS,
and can thus attempt the CAS immediately. This optimization elim-
inates the overhead of creating a new Reaction object and employ-
ing the kCAS protocol, and it means that lock-free algorithms like
TreiberStack and MSQueue behave just like their hand-written
counterparts. If, on the other hand, the reagent may perform a
kCAS, then the current cas is recorded into a new Reaction object,
which is passed to the continuation. In either case, the continuation
is invoked with the unit value as its argument.

5.7 Choice
The implementation of choice (Fig. 6) is pleasantly simple. It
attempts a reaction with either arm of the choice, going in left to
right order. As explained in §3.3, a permanent failure of choice can
only result from a permanent failure of both arms. Also, note that
the right arm is tried even if the left arm has only failed transiently.

5.8 Computed reagents
The implementation of computed reagents (Fig. 6) is exactly as
described in §4.1: attempt to execute the stored computation c on
the argument a to the reagent, and invoke the resulting reagent
with a unit value. If c is not defined at a, the computed reagent
issues a permanent failure. The implementation makes clear that
the invisible reads and writes performed within the computation
c do not even have access to the Reaction object, and so cannot
enlarge the atomic update performed when it is committed.

5.9 Channels
We represent each endpoint of a channel as a lock-free bag (which
can itself be built using reagents). The lock-freedom allows mul-
tiple reagents to interact with the bag in parallel; the fact that it is
a bag rather than a queue trades a weaker ordering guarantee for
increased parallelism, but any lock-free collection would suffice.

The endpoint bags store messages, which wrap offers with ad-
ditional data from the sender:
case class Message[A,B,C](

payload: A, // sender ’ s actual message data
senderRx: Reaction, // sender ’ s checkpointed reaction
senderK: Reagent[B,C], // sender ’ s reagent continuation
offer : Offer [C]) // sender ’ s offer

Each message is essentially a checkpoint of a reaction in progress,
where the reaction is blocked until the payload (of type A) can be
swapped for a dual payload (of type B). Hence the stored sender
continuation takes a B for input; it returns a C, which matches the
final answer type of the sender’s offer.

The core implementation of swap is shown in the Swap class
in Fig. 6. If an offer is being made, it must be posted in a new mes-
sage on the endpoint before any attempt is made to react with exist-
ing offers. This ordering guarantees that there are no lost wakeups:
each reagent is responsible only for those messages posted prior to
it posting its own message.4

Once the offer (if any) is posted, tryReact peruses messages
on the dual endpoint using the tail-recursive loop, tryFrom. The

4 Our earlier work [29] with Russo on scalable join patterns gives a more
detailed explanation of this protocol and its liveness properties.



loop navigates through the dual endpoint’s bag using a simple
cursor, which will reveal at least those messages present prior
to the reagent’s own message being posted to its endpoint. If a
message is found, tryFrom attempts to complete the reaction; the
exchange method combines the reaction and continuation of the
located message with those of the reagent executing it, and actually
performs the payload swap. If the reaction is successful, the final
result is returned (and the result for the other reagent is separately
written to its offer status). If the reaction fails, tryFrom continues
to look for other messages. If no messages remain, swap behaves
as if it were a disjunction: it fails permanently only if all messages
it encountered led to permanent failures.

The code sketch we have given for channels glosses over several
details of the real implementation, including avoiding fulfilling
one’s own offer or a single offer multiple times, and allowing
multiple interactions between two reagents within a single reaction.

6. Performance
Fine-grained concurrent data structures are usually evaluated by
targeted microbenchmarking, with focus on contention effects and
fine-grained parallel speedup [2, 7, 9, 10, 12, 19, 20, 24]. In ad-
dition to those basic aims, we wish to evaluate (1) the extent to
which reagent-based algorithms can compete with their hand-built
counterparts and (2) whether reagent composition is a plausible ap-
proach for scalable atomic transfers. To this end, we designed a se-
ries of benchmarks focusing on simple lock-free collections, where
overhead from reagents is easy to gauge. Each benchmark consists
of n threads running a loop, where in each iteration they apply one
or more atomic operations on a shared data structure and then sim-
ulate a workload by spinning for a short time. For a high contention
simulation, the spinning lasts for 0.25µs on average, while for a low
contention simulation, we spin for 2.5µs.

In the “PushPop” benchmark, all of the threads alternate push-
ing and popping data to a single, shared stack. In the “StackTrans-
fer” benchmark, there are two shared stacks, and each thread pushes
to one stack, atomically transfers an element from that stack to
the other stack, and then pops an element from the second stack;
the direction of movement is chosen randomly. The “EnqDeq”
and “QueueTransfer” benchmarks are analogous, but work with
queues instead. The stack benchmarks compare our reagent-based
TreiberStack to (1) a hand-built Treiber stack, (2) a mutable stack
protected by a single lock, and (3) a stack using STM. The queue
benchmarks compare our reagent-based MSQueue to (1) a hand-
built Michael-Scott queue, (2) a mutable queue protected by a lock,
and (3) a queue using STM. For the transfer benchmarks, the hand-
built data structures are dropped, since they do not support atomic
transfer; for the lock-based data structures, we acquire both locks
in a fixed order before performing the transfer.

We used the Multiverse STM, a sophisticated open-source im-
plementation of Transaction Locking II [3] which is distributed as
part of the Akka package for Scala.5 Our benchmarks were run on
a 3.46Ghz Intel Xeon X5677 (Westmere) with 32GB RAM and
12MB of shared L3 cache. The machine has two physical proces-
sors with four hyperthreaded cores each, for a total of 16 hardware
threads. L1 and L2 caches are per-core. The software environment
includes Ubuntu 10.04.3 and the Hotspot JVM 6u27.

The results are shown in Fig. 7; the x-axes show thread counts,
while the y-axes show throughput (iterations/µs, so larger numbers
are better). The reagent-based data structures perform universally
better than the lock- or STM-based data structures. The results
show that reagents can plausibly compete with hand-built concur-

5 Although TL2 is intended for more complex data structures than the ones
tested here, it is by far the most readily available production STM in the
Java/Scala ecosystem.

rent data structures, while providing scalable composed operations
that are rarely provided for such data structures.

7. Related work
7.1 Concurrent ML
Concurrent ML [22] was designed to resolve an apparent ten-
sion between abstraction and choice: if protocols are represented
abstractly as functions, it is impossible to express the choice of
two abstract protocols. The solution is higher-order concurrency,
a code-as-data approach in which synchronous message-passing
protocols are represented abstractly as events. CML’s events are
built up from combinators, including a choice combinator, commu-
nication combinators, and combinators for arbitrary computations
not involving communication. Reagents are clearly influenced by
the design of CML’s events, and include variants of CML’s core
event combinators (communication and choice). But where CML
is aimed squarely at capturing synchronous communication pro-
tocols, reagents are designed for writing and tailoring fine-grained
concurrent data structures and synchronization primitives. This dif-
ference in motivation led us to include a number of additional com-
binators, including those dealing directly with shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [23]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication
corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§5). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

7.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [25]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [15]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [12].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §6.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-
troduce no overhead on shared-memory operations; by recoding an
algorithm use reagents, you lose nothing. Yet unlike hand-written
algorithms, reagents can be composed using choice, tailored with
new blocking behavior, or combined into larger atomic blocks.
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Figure 7. Benchmarking results

Haskell’s STM [8] was inspirational in showing that transac-
tions can be represented via monads [21], explicitly composed, and
combined with blocking and choice operators. Reagents also form
a monad, but we have chosen an interface closer to arrows [14],
to encourage static reagent layout wherever possible (§4.1). Like
orElse in Haskell’s STM, our choice operator is left-biased. But
unlike orElse , our choice operator will attempt the right-hand side
even when the left-hand side has only failed transiently (rather than
permanently).6 While the distinction appears technical, it is crucial
for supporting examples like the elimination backoff stack (§3.3).

7.3 Transactions that communicate
A central tenet of transactions is isolation: transactions should not
be aware of concurrent changes to memory from other transactions.
But sometimes it is desirable for concurrent transactions to coor-
dinate or otherwise communicate while executing. Recent papers
have proposed mechanisms for incorporating communication with
STM, in the form of Communicating Transactions [16], Transac-
tion Communicators [17], and Transactions with Isolation and Co-
operation (TIC, [27]). A key question in this line of work is how the
expected isolation of shared memory can safely coexist with con-
current communication. Communicating Transactions use explicit,
asynchronous message passing to communicate; the mechanism is
entirely separate from shared memory, which retains isolation. On
the other hand, Transaction Communicators and TIC allow isola-
tion to be weakened in a controlled way.

Our mixture of message-passing and shared-state combinators
most closely resembles the work on Communicating Transactions.
Of course, the most important difference is in the way we deal
with shared state discussed in §7.2. We also believe that syn-

6 Note that retry in Haskell’s STM signals a permanent failure, rather than
an optimistic retry.

chronous communication is better for expressing patterns like elim-
ination (§3.3), since they rely on participants being mutually-aware.

There has also been work treating pure message-passing in a
transactional way. Transactional Events [4] combines CML with an
atomic sequencing operator. Previously, Transactional Events were
implemented on top of Haskell’s STM, relied on search threads7

for matching communications, and used an STM-based represen-
tation of channels. However, Transactional Events are expressible
using reagents, through the combination of swap and the conjunc-
tion combinators. Doing so yields a new implementation that does
not require search threads, performs parallel matching for commu-
nication, and represents channels as lock-free bags. We are not in a
position to do a head-to-head comparison, but based on the results
in §6, we expect the reagent-based implementation to scale better
on fine-grained workloads.

Another message-passing system with a transactional flavor is
the Join Calculus [6], discussed in §3.7. The treatment of conjunc-
tion, message passing, and catalysis is essentially inherited from
our previous work giving a scalable implementation of the join cal-
culus [29].

7.4 Composing fine-grained concurrent data structures
Most of the literature on fine-grained concurrent data structures
is focused on “within-object” atomicity, for example developing
algorithms for inserting or removing elements into a collection
atomically. However, there has been some recent work studying the
problem of transferring data atomically between such fine-grained
data structures [2]. The basic approach relies on a kCAS operation
in much the same way that reagent sequencing does. The transfer
methods must be defined manually, in advance, and with access to

7 The implementation can be made to work with a single search thread at
the cost of lost parallelism.



the internals of the relevant data structures, whereas reagents allow
arbitrary new compositions, without manual definition, and without
access to the code or internals of the involved data structures.
Nevertheless, the implementation of reagent composition yields an
algorithm very similar to the manually-written transfer methods.

It is also possible to go in the other direction: start from STM,
which provides composition, and add an “escape hatch” for writing
arbitrary fine-grained concurrent algorithms within the scope of a
transaction. The escape hatch can be provided through unlogged
reads and/or writes to memory locations being used by transactions,
as in early release [12] or elastic transactions [5]. As we discussed
above (§7.2), we favor an approach where the focus is foremost on
writing fine-grained algorithms, with guarantees about the perfor-
mance and shared-memory semantics of those algorithms. Provid-
ing such guarantees via an escape hatch mechanism may be difficult
or impossible, depending on the details of the STM implementa-
tion. As we showed in §3, it is also very useful to have combinators
for choice, message-passing, and blocking, if one wishes to capture
the full range of fine-grained concurrent algorithms.

8. Conclusion and planned work
Reagents blend together message passing and shared state concur-
rency to provide an abstract, compositional way of writing fine-
grained concurrent algorithms. We see this work as serving the
needs of two distinct groups: concurrency experts and concurrency
users. Using reagents, experts can write libraries more easily, be-
cause common patterns are expressible as abstractions and many
are built-in. Users can then extend, tailor and compose the result-
ing library without detailed knowledge of the algorithms involved.

There is significant remaining work for elucidating both the the-
ory and practice of reagents. On the theoretical side, developing a
formal operational semantics would help to clarify the interactions
possible between shared state and message passing, as well as the
atomicity guarantees that reagents provide. On the practical side,
developing a serious concurrency library using reagents would go
a long way toward demonstrating their usability. In future work,
we plan to pursue both of these goals. In addition, we plan to ex-
pand the scope of reagents to include fine-grained locking as well
as non-blocking data structures.
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