
Freeze After Writing
Quasi-Deterministic Parallel Programming with LVars

Lindsey Kuper
Indiana University

lkuper@cs.indiana.edu

Aaron Turon
MPI-SWS

turon@mpi-sws.org

Neelakantan R.
Krishnaswami

University of Birmingham
N.Krishnaswami@cs.bham.ac.uk

Ryan R. Newton
Indiana University

rrnewton@cs.indiana.edu

Abstract
Deterministic-by-construction parallel programming models offer
the advantages of parallel speedup while avoiding the nondetermin-
istic, hard-to-reproduce bugs that plague fully concurrent code. A
principled approach to deterministic-by-construction parallel pro-
gramming with shared state is offered by LVars: shared memory
locations whose semantics are defined in terms of an application-
specific lattice. Writes to an LVar take the least upper bound of the
old and new values with respect to the lattice, while reads from
an LVar can observe only that its contents have crossed a specified
threshold in the lattice. Although it guarantees determinism, this
interface is quite limited.

We extend LVars in two ways. First, we add the ability to
“freeze” and then read the contents of an LVar directly. Second,
we add the ability to attach event handlers to an LVar, triggering
a callback when the LVar’s value changes. Together, handlers and
freezing enable an expressive and useful style of parallel program-
ming. We prove that in a language where communication takes
place through these extended LVars, programs are at worst quasi-
deterministic: on every run, they either produce the same answer
or raise an error. We demonstrate the viability of our approach by
implementing a library for Haskell supporting a variety of LVar-
based data structures, together with a case study that illustrates the
programming model and yields promising parallel speedup.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.1.3 [Con-
current Programming]: Parallel programming; D.3.1 [Formal
Definitions and Theory]: Semantics; D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages

Keywords Deterministic parallelism; lattices; quasi-determinism

1. Introduction
Flexible parallelism requires tasks to be scheduled dynamically, in
response to the vagaries of an execution. But if the resulting sched-
ule nondeterminism is observable within a program, it becomes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22-24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535842

much more difficult for programmers to discover and correct bugs
by testing, let alone to reason about their code in the first place.

While much work has focused on identifying methods of de-
terministic parallel programming [5, 7, 18, 21, 22, 32], guaranteed
determinism in real parallel programs remains a lofty and rarely
achieved goal. It places stringent constraints on the programming
model: concurrent tasks must communicate in restricted ways that
prevent them from observing the effects of scheduling, a restriction
that must be enforced at the language or runtime level.

The simplest strategy is to allow no communication, forc-
ing concurrent tasks to produce values independently. Pure data-
parallel languages follow this strategy [28], as do languages that
force references to be either task-unique or immutable [5]. But
some algorithms are more naturally or efficiently written using
shared state or message passing. A variety of deterministic-by-
construction models allow limited communication along these
lines, but they tend to be narrow in scope and permit commu-
nication through only a single data structure: for instance, FIFO
queues in Kahn process networks [18] and StreamIt [16], or shared
write-only tables in Intel Concurrent Collections [7].

Big-tent deterministic parallelism Our goal is to create a broader,
general-purpose deterministic-by-construction programming envi-
ronment to increase the appeal and applicability of the method. We
seek an approach that is not tied to a particular data structure and
that supports familiar idioms from both functional and imperative
programming styles. Our starting point is the idea of monotonic
data structures, in which (1) information can only be added, never
removed, and (2) the order in which information is added is not
observable. A paradigmatic example is a set that supports insertion
but not removal, but there are many others.

Our recently proposed LVars programming model [19] makes
an initial foray into programming with monotonic data structures.
In this model (which we review in Section 2), all shared data
structures (called LVars) are monotonic, and the states that an LVar
can take on form a lattice. Writes to an LVar must correspond to
a join (least upper bound) in the lattice, which means that they
monotonically increase the information in the LVar, and that they
commute with one another. But commuting writes are not enough
to guarantee determinism: if a read can observe whether or not
a concurrent write has happened, then it can observe differences
in scheduling. So in the LVars model, the answer to the question
“has a write occurred?” (i.e., is the LVar above a certain lattice
value?) is always yes; the reading thread will block until the LVar’s
contents reach a desired threshold. In a monotonic data structure,
the absence of information is transient—another thread could add
that information at any time—but the presence of information is
forever.

The LVars model guarantees determinism, supports an unlim-
ited variety of data structures (anything viewable as a lattice), and

provides a familiar API, so it already achieves several of our goals.
Unfortunately, it is not as general-purpose as one might hope.

Consider an unordered graph traversal. A typical implementa-
tion involves a monotonically growing set of “seen nodes”; neigh-
bors of seen nodes are fed back into the set until it reaches a fixed
point. Such fixpoint computations are ubiquitous, and would seem
to be a perfect match for the LVars model due to their use of mono-
tonicity. But they are not expressible using the threshold read and
least-upper-bound write operations described above.

The problem is that these computations rely on negative infor-
mation about a monotonic data structure, i.e., on the absence of
certain writes to the data structure. In a graph traversal, for exam-
ple, neighboring nodes should only be explored if the current node
is not yet in the set; a fixpoint is reached only if no new neighbors
are found; and, of course, at the end of the computation it must be
possible to learn exactly which nodes were reachable (which en-
tails learning that certain nodes were not). But in the LVars model,
asking whether a node is in a set means waiting until the node is in
the set, and it is not clear how to lift this restriction while retaining
determinism.

Monotonic data structures that can say “no” In this paper, we
propose two additions to the LVars model that significantly extend
its reach.

First, we add event handlers, a mechanism for attaching a call-
back function to an LVar that runs, asynchronously, whenever
events arrive (in the form of monotonic updates to the LVar). Ordi-
nary LVar reads encourage a synchronous, pull model of program-
ming in which threads ask specific questions of an LVar, potentially
blocking until the answer is “yes”. Handlers, by contrast, support
an asynchronous, push model of programming. Crucially, it is pos-
sible to check for quiescence of a handler, discovering that no call-
backs are currently enabled—a transient, negative property. Since
quiescence means that there are no further changes to respond to,
it can be used to tell that a fixpoint has been reached.

Second, we add a primitive for freezing an LVar, which comes
with the following tradeoff: once an LVar is frozen, any further
writes that would change its value instead throw an exception; on
the other hand, it becomes possible to discover the exact value of
the LVar, learning both positive and negative information about it,
without blocking.1

Putting these features together, we can write a parallel graph
traversal algorithm in the following simple fashion:
traverse :: Graph → NodeLabel → Par (Set NodeLabel)
traverse g startV = do
seen ← newEmptySet
putInSet seen startV
let handle node = parMapM (putInSet seen) (nbrs g node)
freezeSetAfter seen handle

This code, written using our Haskell implementation (described
in Section 6),2 discovers (in parallel) the set of nodes in a graph
g reachable from a given node startV, and is guaranteed to pro-
duce a deterministic result. It works by creating a fresh Set LVar
(corresponding to a lattice whose elements are sets, with set union
as least upper bound), and seeding it with the starting node. The
freezeSetAfter function combines the constructs proposed above.
First, it installs the callback handle as a handler for the seen set,
which will asynchronously put the neighbors of each visited node
into the set, possibly triggering further callbacks, recursively. Sec-

1 Our original work on LVars [19] included a brief sketch of a similar
proposal for a “consume” operation on LVars, but did not study it in detail.
Here, we include freezing in our model, prove quasi-determinism for it,
and show how to program with it in conjunction with our other proposal,
handlers.
2 The Par type constructor is the monad in which LVar computations live.

ond, when no further callbacks are ready to run—i.e., when the
seen set has reached a fixpoint—freezeSetAfter will freeze the
set and return its exact value.

Quasi-determinism Unfortunately, freezing does not commute
with writes that change an LVar.3 If a freeze is interleaved before
such a write, the write will raise an exception; if it is interleaved
afterwards, the program will proceed normally. It would appear that
the price of negative information is the loss of determinism!

Fortunately, the loss is not total. Although LVar programs with
freezing are not guaranteed to be deterministic, they do satisfy
a related property that we call quasi-determinism: all executions
that produce a final value produce the same final value. To put it
another way, a quasi-deterministic program can be trusted to never
change its answer due to nondeterminism; at worst, it might raise an
exception on some runs. In our proposed model, this exception can
in principle pinpoint the exact pair of freeze and write operations
that are racing, greatly easing debugging.

Our general observation is that pushing towards full-featured,
general monotonic data structures leads to flirtation with nonde-
terminism; perhaps the best way of ultimately getting deterministic
outcomes is to traipse a small distance into nondeterminism, and
make our way back. The identification of quasi-deterministic pro-
grams as a useful intermediate class is a contribution of this paper.
That said, in many cases our freezing construct is only used as the
very final step of a computation: after a global barrier, freezing is
used to extract an answer. In this common case, we can guarantee
determinism, since no writes can subsequently occur.

Contributions The technical contributions of this paper are:

• We introduce LVish, a quasi-deterministic parallel program-
ming model that extends LVars to incorporate freezing and
event handlers (Section 3). In addition to our high-level design,
we present a core calculus for LVish (Section 4), formalizing its
semantics, and include a runnable version, implemented in PLT
Redex (Section 4.7), for interactive experimentation.
• We give a proof of quasi-determinism for the LVish calculus

(Section 5). The key lemma, Independence, gives a kind of
frame property for LVish computations: very roughly, if a com-
putation takes an LVar from state p to p′, then it would take
the same LVar from the state p t pF to p′ t pF . The Indepen-
dence lemma captures the commutative effects of LVish com-
putations.
• We describe a Haskell library for practical quasi-deterministic

parallel programming based on LVish (Section 6). Our library
comes with a number of monotonic data structures, including
sets, maps, counters, and single-assignment variables. Further,
it can be extended with new data structures, all of which can
be used compositionally within the same program. Adding a
new data structure typically involves porting an existing scal-
able (e.g., lock-free) data structure to Haskell, then wrapping
it to expose a (quasi-)deterministic LVar interface. Our library
exposes a monad that is indexed by a determinism level: fully
deterministic or quasi-deterministic. Thus, the static type of an
LVish computation reflects its guarantee, and in particular the
freeze-last idiom allows freezing to be used safely with a fully-
deterministic index.
• In Section 7, we evaluate our library with a case study: par-

allelizing control flow analysis. The case study begins with an
existing implementation of k-CFA [26] written in a purely func-
tional style. We show how this code can easily and safely be par-
allelized by adapting it to the LVish model—an adaptation that

3 The same is true for quiescence detection; see Section 3.2.

yields promising parallel speedup, and also turns out to have
benefits even in the sequential case.

2. Background: the LVars Model
IVars [1, 7, 24, 27] are a well-known mechanism for deterministic
parallel programming. An IVar is a single-assignment variable [32]
with a blocking read semantics: an attempt to read an empty IVar
will block until the IVar has been filled with a value. We recently
proposed LVars [19] as a generalization of IVars: unlike IVars,
which can only be written to once, LVars allow multiple writes,
so long as those writes are monotonically increasing with respect
to an application-specific lattice of states.

Consider a program in which two parallel computations write
to an LVar lv , with one thread writing the value 2 and the other
writing 3:

let par = put lv 3

= put lv 2

in get lv

(Example 1)

Here, put and get are operations that write and read LVars, respec-
tively, and the expression

let par x1 = e1; x2 = e2; . . . in body

has fork-join semantics: it launches concurrent subcomputations
e1, e2, . . . whose executions arbitrarily interleave, but must all
complete before body runs. The put operation is defined in terms
of the application-specific lattice of LVar states: it updates the LVar
to the least upper bound of its current state and the new state being
written.

If lv ’s lattice is the ≤ ordering on positive integers, as shown
in Figure 1(a), then lv ’s state will always be max(3, 2) = 3 by
the time get lv runs, since the least upper bound of two positive
integers n1 and n2 is max(n1, n2). Therefore Example 1 will
deterministically evaluate to 3, regardless of the order in which the
two put operations occurred.

On the other hand, if lv ’s lattice is that shown in Figure 1(b), in
which the least upper bound of any two distinct positive integers is
>, then Example 1 will deterministically raise an exception, indi-
cating that conflicting writes to lv have occurred. This exception is
analogous to the “multiple put” error raised upon multiple writes
to an IVar. Unlike with a traditional IVar, though, multiple writes
of the same value (say, put lv 3 and put lv 3) will not raise an ex-
ception, because the least upper bound of any positive integer and
itself is that integer—corresponding to the fact that multiple writes
of the same value do not allow any nondeterminism to be observed.

Threshold reads However, merely ensuring that writes to an LVar
are monotonically increasing is not enough to ensure that programs
behave deterministically. Consider again the lattice of Figure 1(a)
for lv , but suppose we change Example 1 to allow the get operation
to be interleaved with the two puts:

let par = put lv 3

= put lv 2

x = get lv

in x

(Example 2)

Since the two puts and the get can be scheduled in any order,
Example 2 is nondeterministic: xmight be either 2 or 3, depending
on the order in which the LVar effects occur. Therefore, to maintain
determinism, LVars put an extra restriction on the get operation.
Rather than allowing get to observe the exact value of the LVar, it
can only observe that the LVar has reached one of a specified set
of lower bound states. This set of lower bounds, which we provide
as an extra argument to get, is called a threshold set because the

⊥

⊤

1 2 3 ...

(a)

⊥

⊤

(⊥, 0) (⊥, 1) ... (0, ⊥) (1, ⊥) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

(b)

getFstgetSnd "tripwire"
⊥

⊤

1

2

⋮

(c)

3

Figure 1. Example LVar lattices: (a) positive integers ordered
by ≤; (b) IVar containing a positive integer; (c) pair of natural-
number-valued IVars, annotated with example threshold sets that
would correspond to a blocking read of the first or second element
of the pair. Any state transition crossing the “tripwire” for getSnd
causes it to unblock and return a result.

values in it form a “threshold” that the state of the LVar must cross
before the call to get is allowed to unblock and return. When the
threshold has been reached, get unblocks and returns not the exact
value of the LVar, but instead, the (unique) element of the threshold
set that has been reached or surpassed.

We can make Example 2 behave deterministically by passing a
threshold set argument to get. For instance, suppose we choose
the singleton set {3} as the threshold set. Since lv ’s value can only
increase with time, we know that once it is at least 3, it will remain
at or above 3 forever; therefore the program will deterministically
evaluate to 3. Had we chosen {2} as the threshold set, the program
would deterministically evaluate to 2; had we chosen {4}, it would
deterministically block forever.

As long as we only access LVars with put and (thresholded)
get, we can arbitrarily share them between threads without intro-
ducing nondeterminism. That is, the put and get operations in a
given program can happen in any order, without changing the value
to which the program evaluates.

Incompatibility of threshold sets While the LVar interface just
described is deterministic, it is only useful for synchronization, not
for communicating data: we must specify in advance the single
answer we expect to be returned from the call to get. In general,
though, threshold sets do not have to be singleton sets. For example,
consider an LVar lv whose states form a lattice of pairs of natural-
number-valued IVars; that is, lv is a pair (m,n), where m and
n both start as ⊥ and may each be updated once with a non-⊥
value, which must be some natural number. This lattice is shown in
Figure 1(c).

We can then define getFst and getSnd operations for reading
from the first and second entries of lv :

getFst p
4
= get p {(m,⊥) |m ∈ N}

getSnd p
4
= get p {(⊥, n) | n ∈ N}

This allows us to write programs like the following:

let par = put lv (⊥, 4)
= put lv (3,⊥)
x = getSnd lv

in x

(Example 3)

In the call getSnd lv , the threshold set is {(⊥, 0), (⊥, 1), . . . },
an infinite set. There is no risk of nondeterminism because the
elements of the threshold set are pairwise incompatible with re-
spect to lv ’s lattice: informally, since the second entry of lv
can only be written once, no more than one state from the set

{(⊥, 0), (⊥, 1), . . . } can ever be reached. (We formalize this in-
compatibility requirement in Section 4.5.)

In the case of Example 3, getSnd lv may unblock and return
(⊥, 4) any time after the second entry of lv has been written, re-
gardless of whether the first entry has been written yet. It is there-
fore possible to use LVars to safely read parts of an incomplete data
structure—say, an object that is in the process of being initialized
by a constructor.

The model versus reality The use of explicit threshold sets in
the above LVars model should be understood as a mathematical
modeling technique, not an implementation approach or practical
API. Our library (discussed in Section 6) provides an unsafe getLV
operation to the authors of LVar data structure libraries, who can
then make operations like getFst and getSnd available as a safe
interface for application writers, implicitly baking in the particular
threshold sets that make sense for a given data structure without
ever explicitly constructing them.

To put it another way, operations on a data structure exposed as
an LVar must have the semantic effect of a least upper bound for
writes or a threshold for reads, but none of this need be visible to
clients (or even written explicitly in the code). Any data structure
API that provides such a semantics is guaranteed to provide deter-
ministic concurrent communication.

3. LVish, Informally
As we explained in Section 1, while LVars offer a deterministic
programming model that allows communication through a wide va-
riety of data structures, they are not powerful enough to express
common algorithmic patterns, like fixpoint computations, that re-
quire both positive and negative queries. In this section, we explain
our extensions to the LVar model at a high level; Section 4 then
formalizes them, while Section 6 shows how to implement them.

3.1 Asynchrony through Event Handlers
Our first extension to LVars is the ability to do asynchronous, event-
driven programming through event handlers. An event for an LVar
can be represented by a lattice element; the event occurs when the
LVar’s current value reaches a point at or above that lattice element.
An event handler ties together an LVar with a callback function that
is asynchronously invoked whenever some events of interest occur.
For example, if lv is an LVar whose lattice is that of Figure 1(a),
the expression

addHandler lv {1, 3, 5, . . . } (λx. put lv x+ 1) (Example 4)

registers a handler for lv that executes the callback function
λx. put lv x+ 1 for each odd number that lv is at or above. When
Example 4 is finished evaluating, lv will contain the smallest even
number that is at or above what its original value was. For instance,
if lv originally contains 4, the callback function will be invoked
twice, once with 1 as its argument and once with 3. These calls will
respectively write 1 + 1 = 2 and 3 + 1 = 4 into lv ; since both
writes are ≤ 4, lv will remain 4. On the other hand, if lv originally
contains 5, then the callback will run three times, with 1, 3, and 5
as its respective arguments, and with the latter of these calls writing
5 + 1 = 6 into lv , leaving lv as 6.

In general, the second argument to addHandler is an arbitrary
subset Q of the LVar’s lattice, specifying which events should be
handled. Like threshold sets, these event sets are a mathematical
modeling tool only; they have no explicit existence in the imple-
mentation.

Event handlers in LVish are somewhat unusual in that they
invoke their callback for all events in their event set Q that have
taken place (i.e., all values in Q less than or equal to the current
LVar value), even if those events occurred prior to the handler being

registered. To see why this semantics is necessary, consider the
following, more subtle example:

let par = put lv 0

= put lv 1

= addHandler lv {0, 1} (λx. if x = 0 then put lv 2)

in get lv {2}
(Example 5)

Can Example 5 ever block? If a callback only executed for events
that arrived after its handler was registered, or only for the largest
event in its handler set that had occurred, then the example would
be nondeterministic: it would block, or not, depending on how
the handler registration was interleaved with the puts. By instead
executing a handler’s callback once for each and every element
in its event set below or at the LVar’s value, we guarantee quasi-
determinism—and, for Example 5, guarantee the result of 2.

The power of event handlers is most evident for lattices that
model collections, such as sets. For example, if we are working
with lattices of sets of natural numbers, ordered by subset inclusion,
then we can write the following function:

forEach = λlv . λf. addHandler lv {{0}, {1}, {2}, . . . } f

Unlike the usual forEach function found in functional program-
ming languages, this function sets up a permanent, asynchronous
flow of data from lv into the callback f . Functions like forEach
can be used to set up complex, cyclic data-flow networks, as we
will see in Section 7.

In writing forEach, we consider only the singleton sets to be
events of interest, which means that if the value of lv is some set
like {2, 3, 5} then f will be executed once for each singleton subset
({2}, {3}, {5})—that is, once for each element. In Section 6.2, we
will see that this kind of handler set can be specified in a lattice-
generic way, and in Section 6 we will see that it corresponds closely
to our implementation strategy.

3.2 Quiescence through Handler Pools
Because event handlers are asynchronous, we need a separate
mechanism to determine when they have reached a quiescent state,
i.e., when all callbacks for the events that have occurred have fin-
ished running. As we discussed in Section 1, detecting quiescence
is crucial for implementing fixpoint computations. To build flexible
data-flow networks, it is also helpful to be able to detect quiescence
of multiple handlers simultaneously. Thus, our design includes
handler pools, which are groups of event handlers whose collective
quiescence can be tested.

The simplest way to use a handler pool is the following:

let h = newPool
in addInPool h lv Q f ;

quiesce h

where lv is an LVar, Q is an event set, and f is a callback. Handler
pools are created with the newPool function, and handlers are
registered with addInPool, a variant of addHandler that takes
a handler pool as an additional argument. Finally, quiesce blocks
until a pool of handlers has reached a quiescent state.

Of course, whether or not a handler is quiescent is a non-
monotonic property: we can move in and out of quiescence as
more puts to an LVar occur, and even if all states at or below
the current state have been handled, there is no way to know that
more puts will not arrive to increase the state and trigger more
callbacks. There is no risk to quasi-determinism, however, because
quiesce does not yield any information about which events have
been handled—any such questions must be asked through LVar

functions like get. In practice, quiesce is almost always used
together with freezing, which we explain next.

3.3 Freezing and the Freeze-After Pattern
Our final addition to the LVar model is the ability to freeze an
LVar, which forbids further changes to it, but in return allows its
exact value to be read. We expose freezing through the function
freeze, which takes an LVar as its sole argument, and returns the
exact value of the LVar as its result. As we explained in Section 1,
puts that would change the value of a frozen LVar instead raise
an exception, and it is the potential for races between such puts
and freeze that makes LVish quasi-deterministic, rather than fully
deterministic.

Putting all the above pieces together, we arrive at a particularly
common pattern of programming in LVish:

freezeAfter = λlv . λQ. λf. let h = newPool
in addInPool h lv Q f ;

quiesce h; freeze lv

In this pattern, an event handler is registered for an LVar, subse-
quently quiesced, and then the LVar is frozen and its exact value
is returned. A set-specific variant of this pattern, freezeSetAfter,
was used in the graph traversal example in Section 1.

4. LVish, Formally
In this section, we present a core calculus for LVish—in particular,
a quasi-deterministic, parallel, call-by-value λ-calculus extended
with a store containing LVars. It extends the original LVar formal-
ism to support event handlers and freezing. In comparison to the
informal description given in the last two sections, we make two
simplifications to keep the model lightweight:

• We parameterize the definition of the LVish calculus by a single
application-specific lattice, representing the set of states that
LVars in the calculus can take on. Therefore LVish is really a
family of calculi, varying by choice of lattice. Multiple lattices
can in principle be encoded using a sum construction, so this
modeling choice is just to keep the presentation simple; in
any case, our Haskell implementation supports multiple lattices
natively.
• Rather than modeling the full ensemble of event handlers, han-

dler pools, quiescence, and freezing as separate primitives, we
instead formalize the “freeze-after” pattern—which combined
them—directly as a primitive. This greatly simplifies the cal-
culus, while still capturing the essence of our programming
model.

In this section we cover the most important aspects of the LVish
core calculus. Complete details, including the proof of Lemma 1,
are given in the companion technical report [20].

4.1 Lattices
The application-specific lattice is given as a 4-tuple (D,v,⊥,>)
where D is a set, v is a partial order on the elements of D, ⊥ is
the least element of D according to v and > is the greatest. The
⊥ element represents the initial “empty” state of every LVar, while
> represents the “error” state that would result from conflicting
updates to an LVar. The partial order v represents the order in
which an LVar may take on states. It induces a binary least upper
bound (lub) operation t on the elements of D. We require that
every two elements ofD have a least upper bound inD. Intuitively,
the existence of a lub for every two elements of D means that it
is possible for two subcomputations to independently update an
LVar, and then deterministically merge the results by taking the lub
of the resulting two states. Formally, this makes (D,v,⊥,>) a

bounded join-semilattice with a designated greatest element (>).
For brevity, we use the term “lattice” as shorthand for “bounded
join-semilattice with a designated greatest element” in the rest of
this paper. We also occasionally use D as a shorthand for the entire
4-tuple (D,v,⊥,>) when its meaning is clear from the context.

4.2 Freezing
To model freezing, we need to generalize the notion of the state of
an LVar to include information about whether it is “frozen” or not.
Thus, in our model an LVar’s state is a pair (d, frz), where d is an
element of the application-specific setD and frz is a “status bit” of
either true or false. We can define an ordering vp on LVar states
(d, frz) in terms of the application-specific orderingv on elements
of D. Every element of D is “freezable” except >. Informally:

• Two unfrozen states are ordered according to the application-
specific v; that is, (d, false) vp (d′, false) exactly when d v
d′.
• Two frozen states do not have an order, unless they are equal:
(d, true) vp (d′, true) exactly when d = d′.
• An unfrozen state (d, false) is less than or equal to a frozen state
(d′, true) exactly when d v d′.
• The only situation in which a frozen state is less than an un-

frozen state is if the unfrozen state is >; that is, (d, true) vp

(d′, false) exactly when d′ = >.

The addition of status bits to the application-specific lattice results
in a new lattice (Dp,vp,⊥p,>p), and we write tp for the least
upper bound operation that vp induces. Definition 1 and Lemma 1
formalize this notion.

Definition 1 (Lattice freezing). Suppose (D,v,⊥,>) is a lattice.
We define an operation Freeze(D,v,⊥,>) 4= (Dp,vp,⊥p,>p)
as follows:

1. Dp is a set defined as follows:

Dp
4
= {(d, frz) | d ∈ (D − {>}) ∧ frz ∈ {true, false}}
∪ {(>, false)}

2. vp ∈ P(Dp ×Dp) is a binary relation defined as follows:

(d, false) vp (d′, false) ⇐⇒ d v d′
(d, true) vp (d′, true) ⇐⇒ d = d′

(d, false) vp (d′, true) ⇐⇒ d v d′
(d, true) vp (d′, false) ⇐⇒ d′ = >

3. ⊥p
4
= (⊥, false).

4. >p
4
= (>, false).

Lemma 1 (Lattice structure). If (D,v,⊥,>) is a lattice then
Freeze(D,v,⊥,>) is as well.

4.3 Stores
During the evaluation of LVish programs, a store S keeps track of
the states of LVars. Each LVar is represented by a binding from a
location l, drawn from a set Loc, to its state, which is some pair
(d, frz) from the set Dp.

Definition 2. A store is either a finite partial mapping S : Loc
fin→

(Dp − {>p}), or the distinguished element >S .

We use the notation S[l 7→ (d, frz)] to denote extending S with a
binding from l to (d, frz). If l ∈ dom(S), then S[l 7→ (d, frz)]
denotes an update to the existing binding for l, rather than an ex-
tension. We can also denote a store by explicitly writing out all its
bindings, using the notation [l1 7→ (d1, frz 1), l2 7→ (d2, frz 2), . . .].

It is straightforward to lift the vp operations defined on ele-
ments of Dp to the level of stores:

Given a lattice (D,v,⊥,>) with elements d ∈ D:

configurations σ ::= 〈S; e〉 | error
expressions e ::= x | v | e e | get e e | put e e | new | freeze e

| freeze e after e with e
| freeze l afterQ with λx. e, {e, . . . } , H

stores S ::= [l1 7→ p1, . . . , ln 7→ pn] | >S
values v ::= () | d | p | l | P | Q | λx. e

eval contexts E ::= [] | E e | e E | get E e | get e E | put E e
| put e E | freeze E | freeze E after e with e
| freeze e after E with e | freeze e after e with E
| freeze v after v with v, {e . . . E e . . . } , H

“handled” sets H ::= {d1, . . . , dn}
threshold sets P ::= {p1, p2, . . .}

event sets Q ::= {d1, d2, . . .}
states p ::= (d, frz)

status bits frz ::= true | false

Figure 2. Syntax for LVish.

Definition 3. A store S is less than or equal to a store S′ (written
S vS S

′) iff:

• S′ = >S , or
• dom(S) ⊆ dom(S′) and for all l ∈ dom(S), S(l) vp S

′(l).

Stores ordered by vS also form a lattice (with bottom element ∅
and top element >S); we write tS for the induced lub operation
(concretely defined in [20]). If, for example,

(d1, frz 1) tp (d2, frz 2) = >p,

then

[l 7→ (d1, frz 1)] tS [l 7→ (d2, frz 2)] = >S .
A store containing a binding l 7→ (>, frz) can never arise during
the execution of an LVish program, because, as we will see in
Section 4.5, an attempted put that would take the value of l to >
will raise an error.

4.4 The LVish Calculus
The syntax and operational semantics of the LVish calculus appear
in Figures 2 and 3, respectively. As we have noted, both the syntax
and semantics are parameterized by the lattice (D,v,⊥,>). The
reduction relation ↪−→ is defined on configurations 〈S; e〉 com-
prising a store and an expression. The error configuration, written
error, is a unique element added to the set of configurations, but
we consider 〈>S ; e〉 to be equal to error for all expressions e. The
metavariable σ ranges over configurations.

LVish uses a reduction semantics based on evaluation contexts.
The E-EVAL-CTXT rule is a standard context rule, allowing us to
apply reductions within a context. The choice of context determines
where evaluation can occur; in LVish, the order of evaluation is
nondeterministic (that is, a given expression can generally reduce
in various ways), and so it is generally not the case that an expres-
sion has a unique decomposition into redex and context. For exam-
ple, in an application e1 e2, either e1 or e2 might reduce first. The
nondeterminism in choice of evaluation context reflects the nonde-
terminism of scheduling between concurrent threads, and in LVish,
the arguments to get, put, freeze, and application expressions
are implicitly evaluated concurrently.4

Arguments must be fully evaluated, however, before function
application (β-reduction, modeled by the E-BETA rule) can occur.
We can exploit this property to define let par as syntactic sugar:

let par x = e1; y = e2 in e3
4
= ((λx. (λy. e3)) e1) e2

4 This is in contrast to the original LVars formalism given in [19], which
models parallelism with explicitly simultaneous reductions.

Because we do not reduce under λ-terms, we can sequentially
compose e1 before e2 by writing let = e1 in e2, which desugars
to (λ . e2) e1. Sequential composition is useful, for instance, when
allocating a new LVar before beginning a set of side-effecting
put/get/freeze operations on it.

4.5 Semantics of new, put, and get

In LVish, the new, put, and get operations respectively create,
write to, and read from LVars in the store:

• new (implemented by the E-NEW rule) extends the store with
a binding for a new LVar whose initial state is (⊥, false), and
returns the location l of that LVar (i.e., a pointer to the LVar).
• put (implemented by the E-PUT and E-PUT-ERR rules) takes

a pointer to an LVar and a new lattice element d2 and updates
the LVar’s state to the least upper bound of the current state and
(d2, false), potentially pushing the state of the LVar upward in
the lattice. Any update that would take the state of an LVar to
>p results in the program immediately stepping to error.
• get (implemented by the E-GET rule) performs a blocking

threshold read. It takes a pointer to an LVar and a threshold
set P , which is a non-empty set of LVar states that must be
pairwise incompatible, expressed by the premise incomp(P).
A threshold set P is pairwise incompatible iff the lub of any two
distinct elements in P is >p. If the LVar’s state p1 in the lattice
is at or above some p2 ∈ P , the get operation unblocks and
returns p2. Note that p2 is a unique element of P , for if there
is another p′2 6= p2 in the threshold set such that p′2 vp p1, it
would follow that p2 tp p

′
2 = p1 6= >p, which contradicts the

requirement that P be pairwise incompatible.5

Is the get operation deterministic? Consider two lattice elements
p1 and p2 that have no ordering and have >p as their lub, and sup-
pose that puts of p1 and p2 and a get with {p1, p2} as its thresh-
old set all race for access to an LVar lv. Eventually, the program is
guaranteed to fault, because p1 tp p2 = >p, but in the meantime,
get lv {p1, p2} could return either p1 or p2. Therefore, get can
behave nondeterministically—but this behavior is not observable
in the final answer of the program, which is guaranteed to subse-
quently fault.

4.6 The freeze− after− with Primitive
The LVish calculus includes a simple form of freeze that im-
mediately freezes an LVar (see E-FREEZE-SIMPLE). More inter-
esting is the freeze− after− with primitive, which models
the “freeze-after” pattern described in Section 3.3. The expression
freeze elv after eevents with ecb has the following semantics:

• It attaches the callback ecb to the LVar elv. The expression
eevents must evaluate to a event set Q; the callback will be ex-
ecuted, once, for each lattice element in Q that the LVar’s state
reaches or surpasses. The callback ecb is a function that takes
a lattice element as its argument. Its return value is ignored, so
it runs solely for effect. For instance, a callback might itself do
a put to the LVar to which it is attached, triggering yet more
callbacks.
• If the handler reaches a quiescent state, the LVar elv is frozen,

and its exact state is returned (rather than an underapproxima-
tion of the state, as with get).

5 We stress that, although incomp(P) is given as a premise of the E-
GET reduction rule (suggesting that it is checked at runtime), in our real
implementation threshold sets are not written explicitly, and it is the data
structure author’s responsibility to ensure that any provided read operations
have threshold semantics; see Section 6.

Given a lattice (D,v,⊥,>) with elements d ∈ D:

incomp(P)
4
= ∀ p1, p2 ∈ P. (p1 6= p2 =⇒ p1 tp p2 = >p) σ ↪−→ σ′

E-EVAL-CTXT
〈S; e〉 ↪−→ 〈S′; e′〉

〈S; E[e]〉 ↪−→ 〈S′; E
[
e′
]
〉

E-BETA

〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉

E-NEW

〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉
(l /∈ dom(S))

E-PUT
S(l) = p1 p2 = p1 tp (d2, false) p2 6= >p

〈S; put l d2〉 ↪−→ 〈S[l 7→ p2]; ()〉

E-PUT-ERR
S(l) = p1 p1 tp (d2, false) = >p

〈S; put l d2〉 ↪−→ error

E-GET
S(l) = p1 incomp(P) p2 ∈ P p2 vp p1

〈S; get l P 〉 ↪−→ 〈S; p2〉

E-FREEZE-INIT

〈S; freeze l afterQ with λx. e〉 ↪−→ 〈S; freeze l afterQ with λx. e, {} , {}〉

E-SPAWN-HANDLER
S(l) = (d1, frz1) d2 v d1 d2 /∈ H d2 ∈ Q

〈S; freeze l afterQ with λx. e0, {e, . . . } , H〉 ↪−→ 〈S; freeze l afterQ with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉

E-FREEZE-FINAL
S(l) = (d1, frz1) ∀d2 . (d2 v d1 ∧ d2 ∈ Q⇒ d2 ∈ H)

〈S; freeze l afterQ with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉

E-FREEZE-SIMPLE
S(l) = (d1, frz1)

〈S; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉

Figure 3. An operational semantics for LVish.

To keep track of the running callbacks, LVish includes an auxiliary
form,

freeze l after Q with λx. e0, {e, . . . } , H

where:

• The value l is the LVar being handled/frozen;
• The set Q (a subset of the lattice D) is the event set;
• The value λx. e0 is the callback function;
• The set of expressions {e, . . . } are the running callbacks; and
• The set H (a subset of the lattice D) represents those values in
Q for which callbacks have already been launched.

Due to our use of evaluation contexts, any running callback can
execute at any time, as if each is running in its own thread.

The rule E-SPAWN-HANDLER launches a new callback thread
any time the LVar’s current value is at or above some element
in Q that has not already been handled. This step can be taken
nondeterministically at any time after the relevant put has been
performed.

The rule E-FREEZE-FINAL detects quiescence by checking that
two properties hold. First, every event of interest (lattice element in
Q) that has occurred (is bounded by the current LVar state) must be
handled (be in H). Second, all existing callback threads must have
terminated with a value. In other words, every enabled callback has
completed. When such a quiescent state is detected, E-FREEZE-
FINAL freezes the LVar’s state. Like E-SPAWN-HANDLER, the rule
can fire at any time, nondeterministically, that the handler appears
quiescent—a transient property! But after being frozen, any further
puts that would have enabled additional callbacks will instead
fault, raising error by way of the E-PUT-ERR rule.

Therefore, freezing is a way of “betting” that once a collection
of callbacks have completed, no further puts that change the LVar’s
value will occur. For a given run of a program, either all puts to
an LVar arrive before it has been frozen, in which case the value
returned by freeze− after− with is the lub of those values, or
some put arrives after the LVar has been frozen, in which case the
program will fault. And thus we have arrived at quasi-determinism:

a program will always either evaluate to the same answer or it will
fault.

To ensure that we will win our bet, we need to guarantee that
quiescence is a permanent state, rather than a transient one—that is,
we need to perform all puts either prior to freeze− after− with,
or by the callback function within it (as will be the case for fixpoint
computations). In practice, freezing is usually the very last step of
an algorithm, permitting its result to be extracted. Our implementa-
tion provides a special runParThenFreeze function that does so,
and thereby guarantees full determinism.

4.7 Modeling Lattice Parameterization in Redex
We have developed a runnable version of the LVish calculus6

using the PLT Redex semantics engineering toolkit [14]. In the
Redex of today, it is not possible to directly parameterize a
language definition by a lattice.7 Instead, taking advantage of
Racket’s syntactic abstraction capabilities, we define a Racket
macro, define-LVish-language, that wraps a template imple-
menting the lattice-agnostic semantics of Figure 3, and takes the
following arguments:

• a name, which becomes the lang-name passed to Redex’s
define-language form;
• a “downset” operation, a Racket-level procedure that takes a

lattice element and returns the (finite) set of all lattice elements
that are below that element (this operation is used to implement
the semantics of freeze− after− with, in particular, to de-
termine when the E-FREEZE-FINAL rule can fire);
• a lub operation, a Racket-level procedure that takes two lattice

elements and returns a lattice element; and
• a (possibly infinite) set of lattice elements represented as Redex

patterns.

Given these arguments, define-LVish-language generates a
Redex model specialized to the application-specific lattice in ques-

6 Available at http://github.com/iu-parfunc/lvars.
7 See discussion at http://lists.racket-lang.org/users/
archive/2013-April/057075.html.

http://github.com/iu-parfunc/lvars
http://lists.racket-lang.org/users/archive/2013-April/057075.html
http://lists.racket-lang.org/users/archive/2013-April/057075.html

tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting
from a configuration σ terminate in configurations σ′ and σ′′, then
σ′ and σ′′ are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′,
and neither σ′ nor σ′′ can take a step, then either:

1. σ′ = σ′′ up to a permutation on locations π, or
2. σ′ = error or σ′′ = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If σ ≡ 〈S; e〉 ↪−→
σa and σ ↪−→ σb, then either:

1. there exist π, i, j and σc such that σa ↪−→i σc and σb ↪−→j

π(σc) and i ≤ 1 and j ≤ 1, or
2. σa ↪−→ error or σb ↪−→ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e′, updating the store to S′. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S tS S

′′: first, it will update the store
to S′tS S

′′; second, it will step to e′ as it did before. Here StS S
′′

is the least upper bound of the original S and some other store S′′

that is “framed on” to S; intuitively, S′′ is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6=
error), then we have that:
〈S tS S

′′; e〉 ↪−→ 〈S′ tS S
′′; e′〉,

where S′′ is any store meeting the following conditions:

• S′′ is non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉,

• S′ tS S
′′ =frz S, and

• S′ tS S
′′ 6= >S .

Lemma 3 requires as a precondition that the stores S′ tS S
′′ and

S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S′′ must be
non-conflicting with the original transition from 〈S; e〉 to 〈S′; e′〉,
meaning that locations in S′′ cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S′ are equal in status (written
S =frz S

′) iff for all l ∈ (dom(S) ∩ dom(S′)),
if S(l) = (d, frz) and S′(l) = (d′, frz ′), then frz = frz ′.

Definition 5. A store S′′ is non-conflicting with the transition
〈S; e〉 ↪−→ 〈S′; e′〉 iff (dom(S′)− dom(S)) ∩ dom(S′′) = ∅.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:
data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗
together with the following suite of run functions:

runPar :: Par Det a → a
runParIO :: Par lvl a → IO a
runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).

http://hackage.haskell.org/package/lvish

6.1 The Big Picture
We envision two parties interacting with our library. First, there are
data structure authors, who use the library directly to implement
a specific monotonic data structure (e.g., a monotonically growing
finite map). Second, there are application writers, who are clients
of these data structures. Only the application writers receive a
(quasi-)determinism guarantee; an author of a data structure is
responsible for ensuring that the states their data structure can take
on correspond to the elements of a lattice, and that the exposed
interface to it corresponds to some use of put, get, freeze, and
event handlers.

Thus, our library is focused primarily on lattice-generic in-
frastructure: the Par monad itself, a thread scheduler, support
for blocking and signaling threads, handler pools, and event han-
dlers. Since this infrastructure is unsafe (does not guarantee quasi-
determinism), only data structure authors should import it, subse-
quently exporting a limited interface specific to their data structure.
For finite maps, for instance, this interface might include key/value
insertion, lookup, event handlers and pools, and freezing—along
with higher-level abstractions built on top of these.

For this approach to scale well with available parallel resources,
it is essential that the data structures themselves support efficient
parallel access; a finite map that was simply protected by a global
lock would force all parallel threads to sequentialize their access.
Thus, we expect data structure authors to draw from the extensive
literature on scalable parallel data structures, employing techniques
like fine-grained locking and lock-free data structures [17]. Data
structures that fit into the LVish model have a special advantage: be-
cause all updates must commute, it may be possible to avoid the ex-
pensive synchronization which must be used for non-commutative
operations [2]. And in any case, monotonic data structures are usu-
ally much simpler to represent and implement than general ones.

6.2 Two Key Ideas
Leveraging atoms Monotonic data structures acquire “pieces of
information” over time. In a lattice, the smallest such pieces are
called the atoms of the lattice: they are elements not equal to⊥, but
for which the only smaller element is ⊥. Lattices for which every
element is the lub of some set of atoms are called atomistic, and in
practice most application-specific lattices used by LVish programs
have this property—especially those whose elements represent col-
lections.

In general, the LVish primitives allow arbitrarily large queries
and updates to an LVar. But for an atomistic lattice, the correspond-
ing data structure usually exposes operations that work at the atom
level, semantically limiting puts to atoms, gets to threshold sets
of atoms, and event sets to sets of atoms. For example, the lattice
of finite maps is atomistic, with atoms consisting of all singleton
maps (i.e., all key/value pairs). The interface to a finite map usually
works at the atom level, allowing addition of a new key/value pair,
querying of a single key, or traversals (which we model as handlers)
that walk over one key/value pair at a time.

Our implementation is designed to facilitate good performance
for atomistic lattices by associating LVars with a set of deltas
(changes), as well as a lattice. For atomistic lattices, the deltas are
essentially just the atoms—for a set lattice, a delta is an element;
for a map, a key/value pair. Deltas provide a compact way to rep-
resent a change to the lattice, allowing us to easily and efficiently
communicate such changes between puts and gets/handlers.

Leveraging idempotence While we have emphasized the com-
mutativity of least upper bounds, they also provide another impor-
tant property: idempotence, meaning that dtd = d for any element
d. In LVish terms, repeated puts or freezes have no effect, and
since these are the only way to modify the store, the result is that

e; e behaves the same as e for any LVish expression e. Idempotence
has already been recognized as a useful property for work-stealing
scheduling [25]: if the scheduler is allowed to occasionally dupli-
cate work, it is possible to substantially save on synchronization
costs. Since LVish computations are guaranteed to be idempotent,
we could use such a scheduler (for now we use the standard Chase-
Lev deque [10]). But idempotence also helps us deal with races
between put and get/addHandler, as we explain below.

6.3 Representation Choices
Our library uses the following generic representation for LVars:
data LVar a d =

LVar { state :: a, status :: IORef (Status d) }

where the type parameter a is the (mutable) data structure repre-
senting the lattice, and d is the type of deltas for the lattice.10 The
status field is a mutable reference that represents the status bit:
data Status d = Frozen | Active (B.Bag (Listener d))

The status bit of an LVar is tied together with a bag of waiting
listeners, which include blocked gets and handlers; once the LVar
is frozen, there can be no further events to listen for.11 The bag
module (imported as B) supports atomic insertion and removal, and
concurrent traversal:
put :: Bag a → a → IO (Token a)
remove :: Token a → IO ()
foreach :: Bag a → (a → Token a → IO ()) → IO ()

Removal of elements is done via abstract tokens, which are ac-
quired by insertion or traversal. Updates may occur concurrently
with a traversal, but are not guaranteed to be visible to it.

A listener for an LVar is a pair of callbacks, one called when the
LVar’s lattice value changes, and the other when the LVar is frozen:
data Listener d = Listener {
onUpd :: d → Token (Listener d) → SchedQ → IO (),
onFrz :: Token (Listener d) → SchedQ → IO () }

The listener is given access to its own token in the listener bag,
which it can use to deregister from future events (useful for a get

whose threshold has been passed). It is also given access to the
CPU-local scheduler queue, which it can use to spawn threads.

6.4 The Core Implementation
Internally, the Par monad represents computations in continuation-
passing style, in terms of their interpretation in the IO monad:
type ClosedPar = SchedQ → IO ()
type ParCont a = a → ClosedPar
mkPar :: (ParCont a → ClosedPar) → Par lvl a

The ClosedPar type represents ready-to-run Par computations,
which are given direct access to the CPU-local scheduler queue.
Rather than returning a final result, a completed ClosedPar compu-
tation must call the scheduler, sched, on the queue. A Par compu-
tation, on the other hand, completes by passing its intended result
to its continuation—yielding a ClosedPar computation.

Figure 4 gives the implementation for three core lattice-generic
functions: getLV, putLV, and freezeLV, which we explain next.

Threshold reading The getLV function assists data structure au-
thors in writing operations with get semantics. In addition to an
LVar, it takes two threshold functions, one for global state and one
for deltas. The global threshold gThresh is used to initially check
whether the LVar is above some lattice value(s) by global inspec-
tion; the extra boolean argument gives the frozen status of the LVar.
The delta threshold dThresh checks whether a particular update

10 For non-atomistic lattices, we take a and d to be the same type.
11 In particular, with one atomic update of the flag we both mark the LVar
as frozen and allow the bag to be garbage-collected.

getLV :: (LVar a d) → (a → Bool → IO (Maybe b))
→ (d → IO (Maybe b)) → Par lvl b

getLV (LVar{state, status}) gThresh dThresh =
mkPar $λk q →

let onUpd d = unblockWhen (dThresh d)
onFrz = unblockWhen (gThresh state True)
unblockWhen thresh tok q = do
tripped ← thresh
whenJust tripped $ λb → do
B.remove tok
Sched.pushWork q (k b)

in do
curStat ← readIORef status
case curStat of

Frozen → do -- no further deltas can arrive!
tripped ← gThresh state True
case tripped of
Just b → exec (k b) q
Nothing → sched q

Active ls → do
tok ← B.put ls (Listener onUpd onFrz)
frz ← isFrozen status -- must recheck after

-- enrolling listener
tripped ← gThresh state frz
case tripped of
Just b → do
B.remove tok -- remove the listener
k b q -- execute our continuation

Nothing → sched q

putLV :: LVar a d → (a → IO (Maybe d)) → Par lvl ()
putLV (LVar{state, status}) doPut = mkPar $ λk q → do

Sched.mark q -- publish our intent to modify the LVar
delta ← doPut state -- possibly modify LVar
curStat ← readIORef status -- read while q is marked
Sched.clearMark q -- retract our intent
whenJust delta $ λd → do
case curStat of
Frozen → error "Attempt to change a frozen LVar"
Active listeners → B.foreach listeners $
λ(Listener onUpd _) tok → onUpd d tok q

k () q

freezeLV :: LVar a d → Par QuasiDet ()
freezeLV (LVar {status}) = mkPar $ λk q → do
Sched.awaitClear q
oldStat ← atomicModifyIORef status $ λs→(Frozen, s)
case oldStat of
Frozen → return ()
Active listeners → B.foreach listeners $
λ(Listener _ onFrz) tok → onFrz tok q

k () q

Figure 4. Implementation of key lattice-generic functions.

takes the state of the LVar above some lattice state(s). Both func-
tions return Just r if the threshold has been passed, where r is the
result of the read. To continue our running example of finite maps
with key/value pair deltas, we can use getLV internally to build the
following getKey function that is exposed to application writers:
-- Wait for the map to contain a key; return its value
getKey key mapLV = getLV mapLV gThresh dThresh where

gThresh m frozen = lookup key m
dThresh (k,v) | k == key = return (Just v)

| otherwise = return Nothing

where lookup imperatively looks up a key in the underlying map.
The challenge in implementing getLV is the possibility that a

concurrent put will push the LVar over the threshold. To cope with
such races, getLV employs a somewhat pessimistic strategy: before
doing anything else, it enrolls a listener on the LVar that will be

triggered on any subsequent updates. If an update passes the delta
threshold, the listener is removed, and the continuation of the get is
invoked, with the result, in a new lightweight thread. After enrolling
the listener, getLV checks the global threshold, in case the LVar is
already above the threshold. If it is, the listener is removed, and the
continuation is launched immediately; otherwise, getLV invokes the
scheduler, effectively treating its continuation as a blocked thread.

By doing the global check only after enrolling a listener, getLV
is sure not to miss any threshold-passing updates. It does not need
to synchronize between the delta and global thresholds: if the
threshold is passed just as getLV runs, it might launch the contin-
uation twice (once via the global check, once via delta), but by
idempotence this does no harm. This is a performance tradeoff: we
avoid imposing extra synchronization on all uses of getLV at the
cost of some duplicated work in a rare case. We can easily provide
a second version of getLV that makes the alternative tradeoff, but
as we will see below, idempotence plays an essential role in the
analogous situation for handlers.

Putting and freezing On the other hand, we have the putLV func-
tion, used to build operations with put semantics. It takes an LVar
and an update function doPut that performs the put on the underly-
ing data structure, returning a delta if the put actually changed the
data structure. If there is such a delta, putLV subsequently invokes
all currently-enrolled listeners on it.

The implementation of putLV is complicated by another race,
this time with freezing. If the put is nontrivial (i.e., it changes the
value of the LVar), the race can be resolved in two ways. Either the
freeze takes effect first, in which case the put must fault, or else the
put takes effect first, in which case both succeed. Unfortunately,
we have no means to both check the frozen status and attempt an
update in a single atomic step.12

Our basic approach is to ask forgiveness, rather than permis-
sion: we eagerly perform the put, and only afterwards check
whether the LVar is frozen. Intuitively, this is allowed because if
the LVar is frozen, the Par computation is going to terminate with
an exception—so the effect of the put cannot be observed!

Unfortunately, it is not enough to just check the status bit for
frozenness afterward, for a rather subtle reason: suppose the put is
executing concurrently with a get which it causes to unblock, and
that the getting thread subsequently freezes the LVar. In this case,
we must treat the freeze as if it happened after the put, because the
freeze could not have occurred had it not been for the put. But, by
the time putLV reads the status bit, it may already be set, which
naively would cause putLV to fault.

To guarantee that such confusion cannot occur, we add a marked
bit to each CPU scheduler state. The bit is set (using Sched.mark)
prior to a put being performed, and cleared (using Sched.clear)
only after putLV has subsequently checked the frozen status. On the
other hand, freezeLV waits until it has observed a (transient!) clear
mark bit on every CPU (using Sched.awaitClear) before actually
freezing the LVar. This guarantees that any puts that caused the
freeze to take place check the frozen status before the freeze takes
place; additional puts that arrive concurrently may, of course, set a
mark bit again after freezeLV has observed a clear status.

The proposed approach requires no barriers or synchronization
instructions (assuming that the put on the underlying data struc-
ture acts as a memory barrier). Since the mark bits are per-CPU
flags, they can generally be held in a core-local cache line in exclu-
sive mode—meaning that marking and clearing them is extremely

12 While we could require the underlying data structure to support such
transactions, doing so would preclude the use of existing lock-free data
structures, which tend to use a single-word compare-and-set operation to
perform atomic updates. Lock-free data structures routinely outperform
transaction-based data structures [15].

cheap. The only time that the busy flags can create cross-core com-
munication is during freezeLV, which should only occur once per
LVar computation.

One final point: unlike getLV and putLV, which are polymorphic
in their determinism level, freezeLV is statically QuasiDet.

Handlers, pools and quiescence Given the above infrastructure,
the implementation of handlers is relatively straightforward. We
represent handler pools as follows:
data HandlerPool = HandlerPool {

numCallbacks :: Counter, blocked :: B.Bag ClosedPar }

where Counter is a simple counter supporting atomic increment,
decrement, and checks for equality with zero.13 We use the counter
to track the number of currently-executing callbacks, which we can
use to implement quiesce. A handler pool also keeps a bag of
threads that are blocked waiting for the pool to reach a quiescent
state.

We create a pool using newPool (of type Par lvl HandlerPool),
and implement quiescence testing as follows:
quiesce :: HandlerPool → Par lvl ()
quiesce hp@(HandlerPool cnt bag) = mkPar $ λk q → do

tok ← B.put bag (k ())
quiescent ← poll cnt
if quiescent then do B.remove tok; k () q

else sched q

where the poll function indicates whether cnt is (transiently) zero.
Note that we are following the same listener-enrollment strategy as
in getLV, but with blocked acting as the bag of listeners.

Finally, addHandler has the following interface:
addHandler ::

Maybe HandlerPool -- Pool to enroll in
→ LVar a d -- LVar to listen to
→ (a → IO (Maybe (Par lvl ()))) -- Global callback
→ (d → IO (Maybe (Par lvl ()))) -- Delta callback
→ Par lvl ()

As with getLV, handlers are specified using both global and
delta threshold functions. Rather than returning results, however,
these threshold functions return computations to run in a fresh
lightweight thread if the threshold has been passed. Each time a
callback is launched, the callback count is incremented; when it is
finished, the count is decremented, and if zero, all threads blocked
on its quiescence are resumed.

The implementation of addHandler is very similar to getLV, but
there is one important difference: handler callbacks must be in-
voked for all events of interest, not just a single threshold. Thus, the
Par computation returned by the global threshold function should
execute its callback on, e.g., all available atoms. Likewise, we do
not remove a handler from the bag of listeners when a single delta
threshold is passed; handlers listen continuously to an LVar until
it is frozen. We might, for example, expose the following foreach

function for a finite map:
foreach mh mapLV cb = addHandler mh lv gThresh dThresh

where
dThresh (k,v) = return (Just (cb k v))
gThresh mp = traverse mp (λ(k,v) → cb k v) mp

Here, idempotence really pays off: without it, we would have to
synchronize to ensure that no callbacks are duplicated between the
global threshold (which may or may not see concurrent additions
to the map) and the delta threshold (which will catch all concurrent
additions). We expect such duplications to be rare, since they can

13 One can use a high-performance scalable non-zero indicator [13] to
implement Counter, but we have not yet done so.

only arise when a handler is added concurrently with updates to an
LVar.14

7. Evaluation: k-CFA Case Study
We now evaluate the expressiveness and performance of our
Haskell LVish implementation. We expect LVish to particularly
shine for: (1) parallelizing complicated algorithms on structured
data that pose challenges for other deterministic paradigms, and
(2) composing pipeline-parallel stages of computation (each of
which may be internally parallelized). In this section, we focus on
a case study that fits this mold: parallelized control-flow analysis.
We discuss the process of porting a sequential implementation of
k-CFA to a parallel implementation using LVish. In the compan-
ion technical report [20], we also give benchmarking results for
LVish implementations of two graph-algorithm microbenchmarks:
breadth-first search and maximal independent set.

7.1 k-CFA
The k-CFA analyses provide a hierarchy of increasingly precise
methods to compute the flow of values to expressions in a higher-
order language. For this case study, we began with a simple, se-
quential implementation of k-CFA translated to Haskell from a ver-
sion by Might [26].15 The algorithm processes expressions written
in a continuation-passing-style λ-calculus. It resembles a nondeter-
ministic abstract interpreter in which stores map addresses to sets of
abstract values, and function application entails a cartesian product
between the operator and operand sets. Further, an address models
not just a static variable, but includes a fixed k-size window of the
calling history to get to that point (the k in k-CFA). Taken together,
the current redex, environment, store, and call history make up the
abstract state of the program, and the goal is to explore a graph of
these abstract states. This graph-exploration phase is followed by
a second, summarization phase that combines all the information
discovered into one store.

Phase 1: breadth-first exploration The following function from
the original, sequential version of the algorithm expresses the heart
of the search process:
explore :: Set State → [State] → Set State
explore seen [] = seen
explore seen (todo:todos)
| todo ∈ seen = explore seen todos
| otherwise = explore (insert todo seen)

(toList (next todo) ++ todos)

This code uses idiomatic Haskell data types like Data.Set and
lists. However, it presents a dilemma with respect to exposing par-
allelism. Consider attempting to parallelize explore using purely
functional parallelism with futures—for instance, using the Strate-
gies library [23]. An attempt to compute the next states in parallel
would seem to be thwarted by the the main thread rapidly forc-
ing each new state to perform the seen-before check, todo ∈ seen.
There is no way for independent threads to “keep going” further
into the graph; rather, they check in with seen after one step.

We confirmed this prediction by adding a parallelism annota-
tion: withStrategy (parBuffer 8 rseq) (next todo). The GHC
runtime reported that 100% of created futures were “duds”—
that is, the main thread forced them before any helper thread
could assist. Changing rseq to rdeepseq exposed a small amount

14 That said, it is possible to avoid all duplication by adding further syn-
chronization, and in ongoing research, we are exploring various locking
and timestamp schemes to do just that.
15 Haskell port by Max Bolingbroke: https://github.com/
batterseapower/haskell-kata/blob/master/0CFA.hs.

https://github.com/batterseapower/haskell-kata/blob/master/0CFA.hs
https://github.com/batterseapower/haskell-kata/blob/master/0CFA.hs

of parallelism—238/5000 futures were successfully executed in
parallel—yielding no actual speedup.

Phase 2: summarization The first phase of the algorithm pro-
duces a large set of states, with stores that need to be joined together
in the summarization phase. When one phase of a computation pro-
duces a large data structure that is immediately processed by the
next phase, lazy languages can often achieve a form of pipelin-
ing “for free”. This outcome is most obvious with lists, where the
head element can be consumed before the tail is computed, offer-
ing cache-locality benefits. Unfortunately, when processing a pure
Set or Map in Haskell, such pipelining is not possible, since the data
structure is internally represented by a balanced tree whose struc-
ture is not known until all elements are present. Thus phase 1 and
phase 2 cannot overlap in the purely functional version—but they
will in the LVish version, as we will see. In fact, in LVish we will be
able to achieve partial deforestation in addition to pipelining. Full
deforestation in this application is impossible, because the Sets in
the implementation serve a memoization purpose: they prevent re-
peated computations as we traverse the graph of states.

7.2 Porting to the LVish Library
Our first step was a verbatim port to LVish. We changed the origi-
nal, purely functional program to allocate a new LVar for each new
set or map value in the original code. This was done simply by
changing two types, Set and Map, to their monotonic LVar counter-
parts, ISet and IMap. In particular, a store maps a program location
(with context) onto a set of abstract values:
import Data.LVar.Map as IM
import Data.LVar.Set as IS
type Store s = IMap Addr s (ISet s Value)

Next, we replaced allocations of containers, and map/fold opera-
tions over them, with the analogous operations on their LVar coun-
terparts. The explore function above was replaced by the simple
graph traversal function from Section 1! These changes to the pro-
gram were mechanical, including converting pure to monadic code.
Indeed, the key insight in doing the verbatim port to LVish was to
consume LVars as if they were pure values, ignoring the fact that an
LVar’s contents are spread out over space and time and are modified
through effects.

In some places the style of the ported code is functional, while
in others it is imperative. For example, the summarize function uses
nested forEach invocations to accumulate data into a store map:
summarize :: ISet s (State s) → Par d s (Store s)
summarize states = do

storeFin ← newEmptyMap
IS.forEach states $ λ (State _ _ store _) →
IM.forEach store $ λ key vals →
IS.forEach vals $ λ elmt →
IM.modify storeFin key (putInSet elmt)

return storeFin

While this code can be read in terms of traditional parallel nested
loops, it in fact creates a network of handlers that convey incre-
mental updates from one LVar to another, in the style of data-
flow networks. That means, in particular, that computations in a
pipeline can immediately begin reading results from containers
(e.g., storeFin), long before their contents are final.

The LVish version of k-CFA contains 11 occurrences of forEach,
as well as a few cartesian-product operations. The cartesian prod-
ucts serve to apply functions to combinations of all possible values
that arguments may take on, greatly increasing the number of han-
dler events in circulation. Moreover, chains of handlers registered
with forEach result in cascades of events through six or more han-
dlers. The runtime behavior of these would be difficult to reason
about. Fortunately, the programmer can largely ignore the temporal
behavior of their program, since all LVish effects commute—rather

seen storeFin

atomEval

cartProd

allParams

states

stores

vals

Explore Summarize

Figure 5. Simplified handler network for k-CFA. Exploration and
summarization processes are driven by the same LVar. The triply-
nested forEach calls in summarize become a chain of three han-
dlers.

like the way in which a lazy functional programmer typically need
not think about the order in which thunks are forced at runtime.

Finally, there is an optimization benefit to using handlers. Nor-
mally, to flatten a nested data structure such as [[[Int]]] in a func-
tional language, we would need to flatten one layer at a time and
allocate a series of temporary structures. The LVish version avoids
this; for example, in the code for summarize above, three forEach

invocations are used to traverse a triply-nested structure, and yet
the side effect in the innermost handler directly updates the final
accumulator, storeFin.

Flipping the switch The verbatim port uses LVars poorly: copy-
ing them repeatedly and discarding them without modification.
This effect overwhelms the benefits of partial deforestation and
pipelining, and the verbatim LVish port has a small performance
overhead relative to the original. But not for long! The most clearly
unnecessary operation in the verbatim port is in the next function.
Like the pure code, it creates a fresh store to extend with new bind-
ings as we take each step through the state space graph:

store’ ← IM.copy store

Of course, a “copy” for an LVar is persistent: it is just a handler
that forces the copy to receive everything the original does. But
in LVish, it is also trivial to entangle the parallel branches of the
search, allowing them to share information about bindings, simply
by not creating a copy:

let store’ = store

This one-line change speeds up execution by up to 25× on a sin-
gle thread, and the asynchronous, ISet-driven parallelism enables
subsequent parallel speedup as well (up to 202× total improvement
over the purely functional version).

Figure 6 shows performance data for the “blur” benchmark
drawn from a recent paper on k-CFA [12]. (We use k = 2 for
the benchmarks in this section.) In general, it proved difficult to
generate example inputs to k-CFA that took long enough to be
candidates for parallel speedup. We were, however, able to “scale
up” the blur benchmark by replicating the code N times, feeding
one into the continuation argument for the next. Figure 6 also shows
the results for one synthetic benchmark that managed to negate the
benefits of our sharing approach, which is simply a long chain
of 300 “not” functions (using a CPS conversion of the Church
encoding for booleans). It has a small state space of large states
with many variables (600 states and 1211 variables).

The role of lock-free data structures As part of our library, we
provide lock-free implementations of finite maps and sets based on
concurrent skip lists [17].16 We also provide reference implementa-
tions that use a nondestructive Data.Set inside a mutable container.

16 In fact, this project is the first to incorporate any lock-free data struc-
tures in Haskell, which required solving some unique problems pertaining

3.75

7.5

11.25

15

1 2 4 6 8 10 12

Parallel Speedup

Threads

linear speedup blur/lockfree blur
notChain/lockfree notChain

Figure 6. Parallel speedup for the “blur” and “notChain” bench-
marks. Speedup is normalized to the sequential times for the
lock-free versions (5.21s and 9.83s, respectively). The normalized
speedups are remarkably consistent for the lock-free version be-
tween the two benchmarks. But the relationship to the original,
purely functional version is quite different: at 12 cores, the lock-
free LVish version of “blur” is 202× faster than the original, while
“notChain” is only 1.6× faster, not gaining anything from sharing
rather than copying stores due to a lack of fan-out in the state graph.

Our scalable implementation is not yet carefully optimized, and at
one and two cores, our lock-free k-CFA is 38% to 43% slower
than the reference implementation on the “blur” benchmark. But
the effect of scalable data structures is quite visible on a 12-core
machine.17 Without them, “blur” (replicated 8×) stops scaling and
begins slowing down slightly after four cores. Even at four cores,
variance is high in the reference implementation (min/max 0.96s /
1.71s over 7 runs). With lock-free structures, by contrast, perfor-
mance steadily improves to a speedup of 8.14× on 12 cores (0.64s
at 67% GC productivity). Part of the benefit of LVish is to allow
purely functional programs to make use of lock-free structures, in
much the same way that the ST monad allows access to efficient
in-place array computations.

8. Related Work
Monotonic data structures: traditional approaches LVish builds
on two long traditions of work on parallel programming models
based on monotonically-growing shared data structures:

• In Kahn process networks (KPNs) [18], as well as in the more
restricted synchronous data flow systems [21], a network of pro-
cesses communicate with each other through blocking FIFO
channels with ever-growing channel histories. Each process
computes a sequential, monotonic function from the history of
its inputs to the history of its outputs, enabling pipeline paral-
lelism. KPNs are the basis for deterministic stream-processing
languages such as StreamIt [16].
• In parallel single-assignment languages [32], “full/empty” bits

are associated with heap locations so that they may be written
to at most once. Single-assignment locations with blocking read
semantics—that is, IVars [1]—have appeared in Concurrent ML
as SyncVars [30]; in the Intel Concurrent Collections system
[7]; in languages and libraries for high-performance computing,
such as Chapel [9] and the Qthreads library [33]; and have even

to Haskell’s laziness and the GHC compiler’s assumptions regarding refer-
ential transparency. But we lack the space to detail these improvements.
17 Intel Xeon 5660; full machine details available at https://portal.
futuregrid.org/hardware/delta.

been implemented in hardware in Cray MTA machines [3].
Although most of these uses incorporate IVars into already-
nondeterministic programming environments, Haskell’s Par

monad [24]—on which our LVish implementation is based—
uses IVars in a deterministic-by-construction setting, allowing
user-created threads to communicate through IVars without re-
quiring IO, so that such communication can occur anywhere
inside pure programs.

LVars are general enough to subsume both IVars and KPNs: a
lattice of channel histories with a prefix ordering allows LVars to
represent FIFO channels that implement a Kahn process network,
whereas an LVar with “empty” and “full” states (where empty <
full) behaves like an IVar, as we described in Section 2. Hence
LVars provide a framework for generalizing and unifying these two
existing approaches to deterministic parallelism.

Deterministic Parallel Java (DPJ) DPJ [4, 5] is a deterministic
language consisting of a system of annotations for Java code. A so-
phisticated region-based type system ensures that a mutable region
of the heap is, essentially, passed linearly to an exclusive writer,
thereby ensuring that the state accessed by concurrent threads is
disjoint. DPJ does, however, provide a way to unsafely assert that
operations commute with one another (using the commuteswith

form) to enable concurrent mutation.
LVish differs from DPJ in that it allows overlapping shared state

between threads as the default. Moreover, since LVar effects are
already commutative, we avoid the need for commuteswith anno-
tations. Finally, it is worth noting that while in DPJ, commutativ-
ity annotations have to appear in application-level code, in LVish
only the data-structure author needs to write trusted code. The ap-
plication programmer can run untrusted code that still enjoys a
(quasi-)determinism guarantee, because only (quasi-)deterministic
programs can be expressed as LVish Par computations.

More recently, Bocchino et al. [6] proposed a type and ef-
fect system that allows for the incorporation of nondeterminis-
tic sections of code in DPJ. The goal here is different from ours:
while they aim to support intentionally nondeterministic computa-
tions such as those arising from optimization problems like branch-
and-bound search, LVish’s quasi-determinism arises as a result of
schedule nondeterminism.

FlowPools Prokopec et al. [29] recently proposed a data structure
with an API closely related to ideas in LVish: a FlowPool is a bag
that allows concurrent insertions but forbids removals, a seal op-
eration that forbids further updates, and combinators like foreach
that invoke callbacks as data arrives in the pool. To retain deter-
minism, the seal operation requires explicitly passing the expected
bag size as an argument, and the program will raise an exception if
the bag goes over the expected size.

While this interface has a flavor similar to LVish, it lacks the
ability to detect quiescence, which is crucial for supporting exam-
ples like graph traversal, and the seal operation is awkward to
use when the structure of data is not known in advance. By con-
trast, our freeze operation is more expressive and convenient, but
moves the model into the realm of quasi-determinism. Another im-
portant difference is the fact that LVish is data structure-generic:
both our formalism and our library support an unlimited collection
of data structures, whereas FlowPools are specialized to bags. Nev-
ertheless, FlowPools represent a “sweet spot” in the deterministic
parallel design space: by allowing handlers but not general freez-
ing, they retain determinism while improving on the expressivity
of the original LVars model. We claim that, with our addition of
handlers, LVish generalizes FlowPools to add support for arbitrary
lattice-based data structures.

https://portal.futuregrid.org/hardware/delta
https://portal.futuregrid.org/hardware/delta

Concurrent Revisions The Concurrent Revisions (CR) [22] pro-
gramming model uses isolation types to distinguish regions of the
heap shared by multiple mutators. Rather than enforcing exclusive
access, CR clones a copy of the state for each mutator, using a de-
terministic “merge function” for resolving conflicts in local copies
at join points. Unlike LVish’s least-upper-bound writes, CR merge
functions are not necessarily commutative; the default CR merge
function is “joiner wins”. Still, semilattices turn up in the metathe-
ory of CR: in particular, Burckhardt and Leijen [8] show that, for
any two vertices in a CR revision diagram, there exists a great-
est common ancestor state which can be used to determine what
changes each side has made—an interesting duality with our model
(in which any two LVar states have a lub).

While CR could be used to model similar types of data struc-
tures to LVish—if versioned variables used least upper bound as
their merge function for conflicts—effects would only become vis-
ible at the end of parallel regions, rather than LVish’s asynchronous
communication within parallel regions. This precludes the use of
traditional lock-free data structures as a representation.

Conflict-free replicated data types In the distributed systems lit-
erature, eventually consistent systems based on conflict-free repli-
cated data types (CRDTs) [31] leverage lattice properties to guar-
antee that replicas in a distributed database eventually agree. Un-
like LVars, CRDTs allow intermediate states to be observed: if
two replicas are updated independently, reads of those replicas
may disagree until a (least-upper-bound) merge operation takes
place. Various data-structure-specific techniques can ensure that
non-monotonic updates (such as removal of elements from a set)
are not lost.

The BloomL language for distributed database programming
[11] combines CRDTs with monotonic logic, resulting in a lattice-
parameterized, confluent language that is a close relative of LVish.
A monotonicity analysis pass rules out programs that would per-
form non-monotonic operations on distributed data collections,
whereas in LVish, monotonicity is enforced by the LVar API.

Future work will further explore the relationship between LVars
and CRDTs: in one direction, we will investigate LVar-based data
structures inspired by CRDTs that support non-monotonic opera-
tions; in the other direction, we will investigate the feasibility and
usefulness of LVar threshold reads in a distributed setting.

Acknowledgments
Lindsey Kuper and Ryan Newton’s work on this paper was funded
by NSF grant CCF-1218375.

References
[1] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures

for parallel computing. ACM Trans. Program. Lang. Syst., 11, October
1989.

[2] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and
M. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In POPL, 2011.

[3] D. A. Bader and K. Madduri. Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2. In ICPP,
2006.

[4] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel
programming must be deterministic by default. In HotPar, 2009.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel Java. In OOPSLA,
2009.

[6] R. L. Bocchino, Jr. et al. Safe nondeterminism in a deterministic-by-
default parallel language. In POPL, 2011.

[7] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşirlar.
Concurrent Collections. Sci. Program., 18, August 2010.

[8] S. Burckhardt and D. Leijen. Semantics of concurrent revisions. In
ESOP, 2011.

[9] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programma-
bility and the Chapel language. International Journal of High Perfor-
mance Computing Applications, 21(3), 2007.

[10] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In SPAA,
2005.

[11] N. Conway, W. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. In SOCC, 2012.

[12] C. Earl, I. Sergey, M. Might, and D. Van Horn. Introspective pushdown
analysis of higher-order programs. In ICFP, 2012.

[13] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable NonZero
Indicators. In PODC, 2007.

[14] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 1st edition, 2009.

[15] K. Fraser. Practical lock-freedom. PhD thesis, 2004.
[16] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger,

A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe.
A stream compiler for communication-exposed architectures. In ASP-
LOS, 2002.

[17] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[18] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing. North Hol-
land, Amsterdam, Aug 1974.

[19] L. Kuper and R. R. Newton. LVars: lattice-based data structures for
deterministic parallelism. In FHPC, 2013.

[20] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. New-
ton. Freeze after writing: Quasi-deterministic parallel program-
ming with LVars. Technical Report TR710, Indiana University,
November 2013. URL http://www.cs.indiana.edu/cgi-bin/
techreports/TRNNN.cgi?trnum=TR710.

[21] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, 1987.

[22] D. Leijen, M. Fahndrich, and S. Burckhardt. Prettier concurrency:
purely functional concurrent revisions. In Haskell, 2011.

[23] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. Trinder. Seq
no more: better strategies for parallel Haskell. In Haskell, 2010.

[24] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic
parallelism. In Haskell, 2011.

[25] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent work
stealing. In PPoPP, 2009.

[26] M. Might. k-CFA: Determining types and/or control-
flow in languages like Python, Java and Scheme.
http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/.

[27] R. S. Nikhil. Id language reference manual, 1991.
[28] S. L. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. T.

Chakravarty. Harnessing the multicores: Nested data parallelism in
Haskell. In FSTTCS, 2008.

[29] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Odersky. Flow-
Pools: a lock-free deterministic concurrent dataflow abstraction. In
LCPC, 2012.

[30] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, Cambridge, England, 1999.

[31] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free
replicated data types. In SSS, 2011.

[32] L. G. Tesler and H. J. Enea. A language design for concurrent
processes. In AFIPS, 1968 (Spring).

[33] K. B. Wheeler, R. C. Murphy, and D. Thain. Qthreads: An API for
programming with millions of lightweight threads, 2008.

http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR710
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR710

	Introduction
	Background: the LVars Model
	LVish, Informally
	Asynchrony through Event Handlers
	Quiescence through Handler Pools
	Freezing and the Freeze-After Pattern

	LVish, Formally
	Lattices
	Freezing
	Stores
	The LVish Calculus
	Semantics of new, put, and get
	The freeze-after-with Primitive
	Modeling Lattice Parameterization in Redex

	Quasi-Determinism for LVish
	Quasi-Determinism and Quasi-Confluence
	Independence

	Implementation
	The Big Picture
	Two Key Ideas
	Representation Choices
	The Core Implementation

	Evaluation: k-CFA Case Study
	k-CFA
	Porting to the LVish Library

	Related Work

