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Abstract

Deterministic-by-construction parallel programming models offer the advantages of parallel speedup while avoid-
ing the nondeterministic, hard-to-reproduce bugs that plague fully concurrent code. A principled approach to deterministic-
by-construction parallel programming with shared state is offered by LVars: shared memory locations whose seman-
tics are defined in terms of an application-specific lattice. Writes to an LVar take the least upper bound of the old
and new values with respect to the lattice, while reads from an LVar can observe only that its contents have crossed a
specified threshold in the lattice. Although it guarantees determinism, this interface is quite limited.

We extend LVars in two ways. First, we add the ability to “freeze” and then read the contents of an LVar directly.
Second, we add the ability to attach event handlers to an LVar, triggering a callback when the LVar’s value changes.
Together, handlers and freezing enable an expressive and useful style of parallel programming. We prove that in a
language where communication takes place through these extended LVars, programs are at worst quasi-deterministic:
on every run, they either produce the same answer or raise an error. We demonstrate the viability of our approach by
implementing a library for Haskell supporting a variety of LVar-based data structures, together with a case study that
illustrates the programming model and yields promising parallel speedup.

1 Introduction
Flexible parallelism requires tasks to be scheduled dynamically, in response to the vagaries of an execution. But if the
resulting schedule nondeterminism is observable within a program, it becomes much more difficult for programmers
to discover and correct bugs by testing, let alone to reason about their code in the first place.

While much work has focused on identifying methods of deterministic parallel programming [8, 22, 6, 19, 21,
32], guaranteed determinism in real parallel programs remains a lofty and rarely achieved goal. It places stringent
constraints on the programming model: concurrent tasks must communicate in restricted ways that prevent them from
observing the effects of scheduling, a restriction that must be enforced at the language or runtime level.

The simplest strategy is to allow no communication, forcing concurrent tasks to produce values independently.
Pure data-parallel languages follow this strategy [28], as do languages that force references to be either task-unique or
immutable [6]. But some algorithms are more naturally or efficiently written using shared state or message passing.
A variety of deterministic-by-construction models allow limited communication along these lines, but they tend to be
narrow in scope and permit communication through only a single data structure: for instance, FIFO queues in Kahn
process networks [19] and StreamIt [17], or shared write-only tables in Intel Concurrent Collections [8].

Big-tent deterministic parallelism Our goal is to create a broader, general-purpose deterministic-by-construction
programming environment to increase the appeal and applicability of the method. We seek an approach that is not
tied to a particular data structure and that supports familiar idioms from both functional and imperative programming
styles. Our starting point is the idea of monotonic data structures, in which (1) information can only be added, never
removed, and (2) the order in which information is added is not observable. A paradigmatic example is a set that
supports insertion but not removal, but there are many others.

Our recently proposed LVars programming model [20] makes an initial foray into programming with monotonic
data structures. In this model (which we review in Section 2), all shared data structures (called LVars) are monotonic,
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and the states that an LVar can take on form a lattice. Writes to an LVar must correspond to a join (least upper bound)
in the lattice, which means that they monotonically increase the information in the LVar, and that they commute with
one another. But commuting writes are not enough to guarantee determinism: if a read can observe whether or not a
concurrent write has happened, then it can observe differences in scheduling. So in the LVars model, the answer to the
question “has a write occurred?” (i.e., is the LVar above a certain lattice value?) is always yes; the reading thread will
block until the LVar’s contents reach a desired threshold. In a monotonic data structure, the absence of information is
transient—another thread could add that information at any time—but the presence of information is forever.

The LVars model guarantees determinism, supports an unlimited variety of data structures (anything viewable as
a lattice), and provides a familiar API, so it already achieves several of our goals. Unfortunately, it is not as general-
purpose as one might hope.

Consider an unordered graph traversal. A typical implementation involves a monotonically growing set of “seen
nodes”; neighbors of seen nodes are fed back into the set until it reaches a fixed point. Such fixpoint computations are
ubiquitous, and would seem to be a perfect match for the LVars model due to their use of monotonicity. But they are
not expressible using the threshold read and least-upper-bound write operations described above.

The problem is that these computations rely on negative information about a monotonic data structure, i.e., on the
absence of certain writes to the data structure. In a graph traversal, for example, neighboring nodes should only be
explored if the current node is not yet in the set; a fixpoint is reached only if no new neighbors are found; and, of
course, at the end of the computation it must be possible to learn exactly which nodes were reachable (which entails
learning that certain nodes were not). But in the LVars model, asking whether a node is in a set means waiting until
the node is in the set, and it is not clear how to lift this restriction while retaining determinism.

Monotonic data structures that can say “no” In this paper, we propose two additions to the LVars model that
significantly extend its reach.

First, we add event handlers, a mechanism for attaching a callback function to an LVar that runs, asynchronously,
whenever events arrive (in the form of monotonic updates to the LVar). Ordinary LVar reads encourage a synchronous,
pull model of programming in which threads ask specific questions of an LVar, potentially blocking until the answer is
“yes”. Handlers, by contrast, support an asynchronous, push model of programming. Crucially, it is possible to check
for quiescence of a handler, discovering that no callbacks are currently enabled—a transient, negative property. Since
quiescence means that there are no further changes to respond to, it can be used to tell that a fixpoint has been reached.

Second, we add a primitive for freezing an LVar, which comes with the following tradeoff: once an LVar is frozen,
any further writes that would change its value instead throw an exception; on the other hand, it becomes possible to
discover the exact value of the LVar, learning both positive and negative information about it, without blocking.1

Putting these features together, we can write a parallel graph traversal algorithm in the following simple fashion:
traverse :: Graph → NodeLabel → Par (Set NodeLabel)
traverse g startV = do
seen ← newEmptySet
putInSet seen startV
let handle node = parMapM (putInSet seen) (nbrs g node)
freezeSetAfter seen handle

This code, written using our Haskell implementation (described in Section 6),2 discovers (in parallel) the set of nodes
in a graph g reachable from a given node startV, and is guaranteed to produce a deterministic result. It works by
creating a fresh Set LVar (corresponding to a lattice whose elements are sets, with set union as least upper bound),
and seeding it with the starting node. The freezeSetAfter function combines the constructs proposed above. First, it
installs the callback handle as a handler for the seen set, which will asynchronously put the neighbors of each visited
node into the set, possibly triggering further callbacks, recursively. Second, when no further callbacks are ready to
run—i.e., when the seen set has reached a fixpoint—freezeSetAfter will freeze the set and return its exact value.

1Our original work on LVars [20] included a brief sketch of a similar proposal for a “consume” operation on LVars, but did not study it in detail.
Here, we include freezing in our model, prove quasi-determinism for it, and show how to program with it in conjunction with our other proposal,
handlers.

2The Par type constructor is the monad in which LVar computations live.
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Quasi-determinism Unfortunately, freezing does not commute with writes that change an LVar.3 If a freeze is
interleaved before such a write, the write will raise an exception; if it is interleaved afterwards, the program will
proceed normally. It would appear that the price of negative information is the loss of determinism!

Fortunately, the loss is not total. Although LVar programs with freezing are not guaranteed to be deterministic,
they do satisfy a related property that we call quasi-determinism: all executions that produce a final value produce the
same final value. To put it another way, a quasi-deterministic program can be trusted to never change its answer due
to nondeterminism; at worst, it might raise an exception on some runs. In our proposed model, this exception can in
principle pinpoint the exact pair of freeze and write operations that are racing, greatly easing debugging.

Our general observation is that pushing towards full-featured, general monotonic data structures leads to flirtation
with nondeterminism; perhaps the best way of ultimately getting deterministic outcomes is to traipse a small distance
into nondeterminism, and make our way back. The identification of quasi-deterministic programs as a useful inter-
mediate class is a contribution of this paper. That said, in many cases our freezing construct is only used as the very
final step of a computation: after a global barrier, freezing is used to extract an answer. In this common case, we can
guarantee determinism, since no writes can subsequently occur.

Contributions The technical contributions of this paper are:

• We introduce LVish, a quasi-deterministic parallel programming model that extends LVars to incorporate freez-
ing and event handlers (Section 3). In addition to our high-level design, we present a core calculus for LVish
(Section 4), formalizing its semantics, and include a runnable version, implemented in PLT Redex (Section 4.7),
for interactive experimentation.

• We give a proof of quasi-determinism for the LVish calculus (Section 5). The key lemma, Independence, gives
a kind of frame property for LVish computations: very roughly, if a computation takes an LVar from state p to
p′, then it would take the same LVar from the state p t pF to p′ t pF . The Independence lemma captures the
commutative effects of LVish computations.

• We describe a Haskell library for practical quasi-deterministic parallel programming based on LVish (Section 6).
Our library comes with a number of monotonic data structures, including sets, maps, counters, and single-
assignment variables. Further, it can be extended with new data structures, all of which can be used composi-
tionally within the same program. Adding a new data structure typically involves porting an existing scalable
(e.g., lock-free) data structure to Haskell, then wrapping it to expose a (quasi-)deterministic LVar interface. Our
library exposes a monad that is indexed by a determinism level: fully deterministic or quasi-deterministic. Thus,
the static type of an LVish computation reflects its guarantee, and in particular the freeze-last idiom allows
freezing to be used safely with a fully-deterministic index.

• In Section 7, we evaluate our library with a case study: parallelizing control flow analysis. The case study begins
with an existing implementation of k-CFA [26] written in a purely functional style. We show how this code can
easily and safely be parallelized by adapting it to the LVish model—an adaptation that yields promising parallel
speedup, and also turns out to have benefits even in the sequential case.

2 Background: the LVars Model
IVars [1, 27, 8, 24] are a well-known mechanism for deterministic parallel programming. An IVar is a single-
assignment variable [32] with a blocking read semantics: an attempt to read an empty IVar will block until the IVar
has been filled with a value. We recently proposed LVars [20] as a generalization of IVars: unlike IVars, which can
only be written to once, LVars allow multiple writes, so long as those writes are monotonically increasing with respect
to an application-specific lattice of states.

3The same is true for quiescence detection; see Section 3.2.
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Consider a program in which two parallel computations write to an LVar lv , with one thread writing the value 2
and the other writing 3:

let par = put lv 3

= put lv 2

in get lv

(Example 1)

Here, put and get are operations that write and read LVars, respectively, and the expression

let par x1 = e1; x2 = e2; . . . in body

has fork-join semantics: it launches concurrent subcomputations e1, e2, . . . whose executions arbitrarily interleave,
but must all complete before body runs. The put operation is defined in terms of the application-specific lattice of
LVar states: it updates the LVar to the least upper bound of its current state and the new state being written.

If lv ’s lattice is the ≤ ordering on positive integers, as shown in Figure 1(a), then lv ’s state will always be
max(3, 2) = 3 by the time get lv runs, since the least upper bound of two positive integers n1 and n2 is max(n1, n2).
Therefore Example 1 will deterministically evaluate to 3, regardless of the order in which the two put operations oc-
curred.

On the other hand, if lv ’s lattice is that shown in Figure 1(b), in which the least upper bound of any two distinct
positive integers is >, then Example 1 will deterministically raise an exception, indicating that conflicting writes to
lv have occurred. This exception is analogous to the “multiple put” error raised upon multiple writes to an IVar.
Unlike with a traditional IVar, though, multiple writes of the same value (say, put lv 3 and put lv 3) will not raise
an exception, because the least upper bound of any positive integer and itself is that integer—corresponding to the fact
that multiple writes of the same value do not allow any nondeterminism to be observed.

Threshold reads However, merely ensuring that writes to an LVar are monotonically increasing is not enough to
ensure that programs behave deterministically. Consider again the lattice of Figure 1(a) for lv , but suppose we change
Example 1 to allow the get operation to be interleaved with the two puts:

let par = put lv 3

= put lv 2

x = get lv

in x

(Example 2)

Since the two puts and the get can be scheduled in any order, Example 2 is nondeterministic: x might be either 2
or 3, depending on the order in which the LVar effects occur. Therefore, to maintain determinism, LVars put an extra
restriction on the get operation. Rather than allowing get to observe the exact value of the LVar, it can only observe
that the LVar has reached one of a specified set of lower bound states. This set of lower bounds, which we provide
as an extra argument to get, is called a threshold set because the values in it form a “threshold” that the state of the
LVar must cross before the call to get is allowed to unblock and return. When the threshold has been reached, get
unblocks and returns not the exact value of the LVar, but instead, the (unique) element of the threshold set that has
been reached or surpassed.

We can make Example 2 behave deterministically by passing a threshold set argument to get. For instance,
suppose we choose the singleton set {3} as the threshold set. Since lv ’s value can only increase with time, we know
that once it is at least 3, it will remain at or above 3 forever; therefore the program will deterministically evaluate to
3. Had we chosen {2} as the threshold set, the program would deterministically evaluate to 2; had we chosen {4}, it
would deterministically block forever.

As long as we only access LVars with put and (thresholded) get, we can arbitrarily share them between threads
without introducing nondeterminism. That is, the put and get operations in a given program can happen in any
order, without changing the value to which the program evaluates.
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Figure 1: Example LVar lattices: (a) positive integers ordered by ≤; (b) IVar containing a positive integer; (c) pair of
natural-number-valued IVars, annotated with example threshold sets that would correspond to a blocking read of the
first or second element of the pair. Any state transition crossing the “tripwire” for getSnd causes it to unblock and
return a result.

Incompatibility of threshold sets While the LVar interface just described is deterministic, it is only useful for
synchronization, not for communicating data: we must specify in advance the single answer we expect to be returned
from the call to get. In general, though, threshold sets do not have to be singleton sets. For example, consider an
LVar lv whose states form a lattice of pairs of natural-number-valued IVars; that is, lv is a pair (m,n), where m and
n both start as ⊥ and may each be updated once with a non-⊥ value, which must be some natural number. This lattice
is shown in Figure 1(c).

We can then define getFst and getSnd operations for reading from the first and second entries of lv :

getFst p
4
= get p {(m,⊥) |m ∈ N}

getSnd p
4
= get p {(⊥, n) | n ∈ N}

This allows us to write programs like the following:

let par = put lv (⊥, 4)

= put lv (3,⊥)

x = getSnd lv

in x

(Example 3)

In the call getSnd lv , the threshold set is {(⊥, 0), (⊥, 1), . . . }, an infinite set. There is no risk of nondeterminism
because the elements of the threshold set are pairwise incompatible with respect to lv ’s lattice: informally, since the
second entry of lv can only be written once, no more than one state from the set {(⊥, 0), (⊥, 1), . . . } can ever be
reached. (We formalize this incompatibility requirement in Section 4.5.)

In the case of Example 3, getSnd lv may unblock and return (⊥, 4) any time after the second entry of lv has been
written, regardless of whether the first entry has been written yet. It is therefore possible to use LVars to safely read
parts of an incomplete data structure—say, an object that is in the process of being initialized by a constructor.

The model versus reality The use of explicit threshold sets in the above LVars model should be understood as a
mathematical modeling technique, not an implementation approach or practical API. Our library (discussed in Sec-
tion 6) provides an unsafe getLV operation to the authors of LVar data structure libraries, who can then make opera-
tions like getFst and getSnd available as a safe interface for application writers, implicitly baking in the particular
threshold sets that make sense for a given data structure without ever explicitly constructing them.

To put it another way, operations on a data structure exposed as an LVar must have the semantic effect of a least
upper bound for writes or a threshold for reads, but none of this need be visible to clients (or even written explicitly
in the code). Any data structure API that provides such a semantics is guaranteed to provide deterministic concurrent
communication.
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3 LVish, Informally
As we explained in Section 1, while LVars offer a deterministic programming model that allows communication
through a wide variety of data structures, they are not powerful enough to express common algorithmic patterns, like
fixpoint computations, that require both positive and negative queries. In this section, we explain our extensions to the
LVar model at a high level; Section 4 then formalizes them, while Section 6 shows how to implement them.

3.1 Asynchrony through Event Handlers
Our first extension to LVars is the ability to do asynchronous, event-driven programming through event handlers. An
event for an LVar can be represented by a lattice element; the event occurs when the LVar’s current value reaches a point
at or above that lattice element. An event handler ties together an LVar with a callback function that is asynchronously
invoked whenever some events of interest occur. For example, if lv is an LVar whose lattice is that of Figure 1(a), the
expression

addHandler lv {1, 3, 5, . . . } (λx.put lv x+ 1) (Example 4)

registers a handler for lv that executes the callback function λx.put lv x + 1 for each odd number that lv is at or
above. When Example 4 is finished evaluating, lv will contain the smallest even number that is at or above what its
original value was. For instance, if lv originally contains 4, the callback function will be invoked twice, once with 1
as its argument and once with 3. These calls will respectively write 1 + 1 = 2 and 3 + 1 = 4 into lv ; since both writes
are ≤ 4, lv will remain 4. On the other hand, if lv originally contains 5, then the callback will run three times, with 1,
3, and 5 as its respective arguments, and with the latter of these calls writing 5 + 1 = 6 into lv , leaving lv as 6.

In general, the second argument to addHandler is an arbitrary subset Q of the LVar’s lattice, specifying which
events should be handled. Like threshold sets, these event sets are a mathematical modeling tool only; they have no
explicit existence in the implementation.

Event handlers in LVish are somewhat unusual in that they invoke their callback for all events in their event set Q
that have taken place (i.e., all values in Q less than or equal to the current LVar value), even if those events occurred
prior to the handler being registered. To see why this semantics is necessary, consider the following, more subtle
example:

let par = put lv 0

= put lv 1

= addHandler lv {0, 1} (λx.if x = 0 then put lv 2)

in get lv {2}

(Example 5)

Can Example 5 ever block? If a callback only executed for events that arrived after its handler was registered, or
only for the largest event in its handler set that had occurred, then the example would be nondeterministic: it would
block, or not, depending on how the handler registration was interleaved with the puts. By instead executing a
handler’s callback once for each and every element in its event set below or at the LVar’s value, we guarantee quasi-
determinism—and, for Example 5, guarantee the result of 2.

The power of event handlers is most evident for lattices that model collections, such as sets. For example, if we are
working with lattices of sets of natural numbers, ordered by subset inclusion, then we can write the following function:

forEach = λlv . λf.addHandler lv {{0}, {1}, {2}, . . . } f

Unlike the usual forEach function found in functional programming languages, this function sets up a permanent,
asynchronous flow of data from lv into the callback f . Functions like forEach can be used to set up complex, cyclic
data-flow networks, as we will see in Section 7.

In writing forEach, we consider only the singleton sets to be events of interest, which means that if the value of
lv is some set like {2, 3, 5} then f will be executed once for each singleton subset ({2}, {3}, {5})—that is, once for
each element. In Section 6.2, we will see that this kind of handler set can be specified in a lattice-generic way, and in
Section 6 we will see that it corresponds closely to our implementation strategy.
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3.2 Quiescence through Handler Pools
Because event handlers are asynchronous, we need a separate mechanism to determine when they have reached a
quiescent state, i.e., when all callbacks for the events that have occurred have finished running. As we discussed
in Section 1, detecting quiescence is crucial for implementing fixpoint computations. To build flexible data-flow
networks, it is also helpful to be able to detect quiescence of multiple handlers simultaneously. Thus, our design
includes handler pools, which are groups of event handlers whose collective quiescence can be tested.

The simplest way to use a handler pool is the following:

let h = newPool
in addInPool h lv Q f ;

quiesce h

where lv is an LVar, Q is an event set, and f is a callback. Handler pools are created with the newPool function,
and handlers are registered with addInPool, a variant of addHandler that takes a handler pool as an additional
argument. Finally, quiesce blocks until a pool of handlers has reached a quiescent state.

Of course, whether or not a handler is quiescent is a non-monotonic property: we can move in and out of quiescence
as more puts to an LVar occur, and even if all states at or below the current state have been handled, there is no way
to know that more puts will not arrive to increase the state and trigger more callbacks. There is no risk to quasi-
determinism, however, because quiesce does not yield any information about which events have been handled—any
such questions must be asked through LVar functions like get. In practice, quiesce is almost always used together
with freezing, which we explain next.

3.3 Freezing and the Freeze-After Pattern
Our final addition to the LVar model is the ability to freeze an LVar, which forbids further changes to it, but in return
allows its exact value to be read. We expose freezing through the function freeze, which takes an LVar as its sole
argument, and returns the exact value of the LVar as its result. As we explained in Section 1, puts that would change
the value of a frozen LVar instead raise an exception, and it is the potential for races between such puts and freeze
that makes LVish quasi-deterministic, rather than fully deterministic.

Putting all the above pieces together, we arrive at a particularly common pattern of programming in LVish:

freezeAfter = λlv . λQ. λf. let h = newPool
in addInPool h lv Q f ;

quiesce h; freeze lv

In this pattern, an event handler is registered for an LVar, subsequently quiesced, and then the LVar is frozen and its
exact value is returned. A set-specific variant of this pattern, freezeSetAfter, was used in the graph traversal example
in Section 1.

4 LVish, Formally
In this section, we present a core calculus for LVish—in particular, a quasi-deterministic, parallel, call-by-value λ-
calculus extended with a store containing LVars. It extends the original LVar formalism to support event handlers and
freezing. In comparison to the informal description given in the last two sections, we make two simplifications to keep
the model lightweight:

• We parameterize the definition of the LVish calculus by a single application-specific lattice, representing the set
of states that LVars in the calculus can take on. Therefore LVish is really a family of calculi, varying by choice
of lattice. Multiple lattices can in principle be encoded using a sum construction, so this modeling choice is just
to keep the presentation simple; in any case, our Haskell implementation supports multiple lattices natively.
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• Rather than modeling the full ensemble of event handlers, handler pools, quiescence, and freezing as separate
primitives, we instead formalize the “freeze-after” pattern—which combined them—directly as a primitive. This
greatly simplifies the calculus, while still capturing the essence of our programming model.

In this section we cover the most important aspects of the LVish core calculus. Complete details, including the proof
of Lemma 1, are given in Appendix A.

4.1 Lattices
The application-specific lattice is given as a 4-tuple (D,v,⊥,>) where D is a set,v is a partial order on the elements
of D, ⊥ is the least element of D according to v and > is the greatest. The ⊥ element represents the initial “empty”
state of every LVar, while > represents the “error” state that would result from conflicting updates to an LVar. The
partial order v represents the order in which an LVar may take on states. It induces a binary least upper bound (lub)
operation t on the elements of D. We require that every two elements of D have a least upper bound in D. Intuitively,
the existence of a lub for every two elements of D means that it is possible for two subcomputations to independently
update an LVar, and then deterministically merge the results by taking the lub of the resulting two states. Formally, this
makes (D,v,⊥,>) a bounded join-semilattice with a designated greatest element (>). For brevity, we use the term
“lattice” as shorthand for “bounded join-semilattice with a designated greatest element” in the rest of this paper. We
also occasionally use D as a shorthand for the entire 4-tuple (D,v,⊥,>) when its meaning is clear from the context.

4.2 Freezing
To model freezing, we need to generalize the notion of the state of an LVar to include information about whether it is
“frozen” or not. Thus, in our model an LVar’s state is a pair (d, frz ), where d is an element of the application-specific
set D and frz is a “status bit” of either true or false. We can define an ordering vp on LVar states (d, frz ) in terms of
the application-specific ordering v on elements of D. Every element of D is “freezable” except >. Informally:

• Two unfrozen states are ordered according to the application-specificv; that is, (d, false) vp (d′, false) exactly
when d v d′.

• Two frozen states do not have an order, unless they are equal: (d, true) vp (d′, true) exactly when d = d′.

• An unfrozen state (d, false) is less than or equal to a frozen state (d′, true) exactly when d v d′.

• The only situation in which a frozen state is less than an unfrozen state is if the unfrozen state is >; that is,
(d, true) vp (d′, false) exactly when d′ = >.

The addition of status bits to the application-specific lattice results in a new lattice (Dp,vp,⊥p,>p), and we write tp
for the least upper bound operation that vp induces. Definition 1 and Lemma 1 formalize this notion.

Definition 1 (Lattice freezing). Suppose (D,v,⊥,>) is a lattice. We define an operation Freeze(D,v,⊥,>)
4
=

(Dp,vp,⊥p,>p) as follows:
1. Dp is a set defined as follows:

Dp
4
= {(d, frz ) | d ∈ (D − {>}) ∧ frz ∈ {true, false}}
∪ {(>, false)}

2. vp ∈ P(Dp ×Dp) is a binary relation defined as follows:

(d, false) vp (d′, false) ⇐⇒ d v d′
(d, true) vp (d′, true) ⇐⇒ d = d′

(d, false) vp (d′, true) ⇐⇒ d v d′
(d, true) vp (d′, false) ⇐⇒ d′ = >

3. ⊥p
4
= (⊥, false).

4. >p
4
= (>, false).

Lemma 1 (Lattice structure). If (D,v,⊥,>) is a lattice then Freeze(D,v,⊥,>) is as well.
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Given a lattice (D,v,⊥,>) with elements d ∈ D:

configurations σ ::= 〈S; e〉 | error
expressions e ::= x | v | e e | get e e | put e e | new | freeze e

| freeze e after e with e
| freeze l after Q with λx. e, {e, . . . } , H

stores S ::= [l1 7→ p1, . . . , ln 7→ pn] | >S
values v ::= () | d | p | l | P | Q | λx. e

eval contextsE ::= [ ] | E e | e E | get E e | get e E | put E e
| put e E | freeze E | freeze E after e with e
| freeze e after E with e | freeze e after e with E
| freeze v after v with v, {e . . . E e . . . } , H

“handled” setsH ::= {d1, . . . , dn}
threshold sets P ::= {p1, p2, . . .}

event setsQ ::= {d1, d2, . . .}

states p ::= (d, frz )
status bits frz ::= true | false

Figure 2: Syntax for LVish.

4.3 Stores
During the evaluation of LVish programs, a store S keeps track of the states of LVars. Each LVar is represented by a
binding from a location l, drawn from a set Loc, to its state, which is some pair (d, frz ) from the set Dp.

Definition 2. A store is either a finite partial mapping S : Loc
fin→ (Dp − {>p}), or the distinguished element >S .

We use the notation S[l 7→ (d, frz )] to denote extending S with a binding from l to (d, frz ). If l ∈ dom(S), then
S[l 7→ (d, frz )] denotes an update to the existing binding for l, rather than an extension. We can also denote a store by
explicitly writing out all its bindings, using the notation [l1 7→ (d1, frz 1), l2 7→ (d2, frz 2), . . .].

It is straightforward to lift the vp operations defined on elements of Dp to the level of stores:

Definition 3. A store S is less than or equal to a store S′ (written S vS S
′) iff:

• S′ = >S , or

• dom(S) ⊆ dom(S′) and for all l ∈ dom(S), S(l) vp S
′(l).

Stores ordered byvS also form a lattice (with bottom element ∅ and top element>S); we write tS for the induced lub
operation (concretely defined in Appendix B). If, for example,

(d1, frz 1) tp (d2, frz 2) = >p,

then
[l 7→ (d1, frz 1)] tS [l 7→ (d2, frz 2)] = >S .

A store containing a binding l 7→ (>, frz ) can never arise during the execution of an LVish program, because, as we
will see in Section 4.5, an attempted put that would take the value of l to > will raise an error.

4.4 The LVish Calculus
The syntax and operational semantics of the LVish calculus appear in Figures 2 and 3, respectively. As we have noted,
both the syntax and semantics are parameterized by the lattice (D,v,⊥,>). The reduction relation ↪−→ is defined
on configurations 〈S; e〉 comprising a store and an expression. The error configuration, written error, is a unique
element added to the set of configurations, but we consider 〈>S ; e〉 to be equal to error for all expressions e. The
metavariable σ ranges over configurations.
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Given a lattice (D,v,⊥,>) with elements d ∈ D:

incomp(P )
4
= ∀ p1, p2 ∈ P. (p1 6= p2 =⇒ p1 tp p2 = >p) σ ↪−→ σ′

E-EVAL-CTXT
〈S; e〉 ↪−→ 〈S′; e′〉

〈S; E[e]〉 ↪−→ 〈S′; E
[
e′
]
〉

E-BETA

〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉

E-NEW

〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉
(l /∈ dom(S))

E-PUT
S(l) = p1 p2 = p1 tp (d2, false) p2 6= >p

〈S; put l d2〉 ↪−→ 〈S[l 7→ p2]; ()〉

E-PUT-ERR
S(l) = p1 p1 tp (d2, false) = >p

〈S; put l d2〉 ↪−→ error

E-GET
S(l) = p1 incomp(P ) p2 ∈ P p2 vp p1

〈S; get l P 〉 ↪−→ 〈S; p2〉

E-FREEZE-INIT

〈S; freeze l after Q with λx. e〉 ↪−→ 〈S; freeze l after Q with λx. e, {} , {}〉

E-SPAWN-HANDLER
S(l) = (d1, frz 1) d2 v d1 d2 /∈ H d2 ∈ Q

〈S; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→ 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉

E-FREEZE-FINAL
S(l) = (d1, frz 1) ∀d2 . (d2 v d1 ∧ d2 ∈ Q⇒ d2 ∈ H)

〈S; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉

E-FREEZE-SIMPLE
S(l) = (d1, frz 1)

〈S; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉

Figure 3: An operational semantics for LVish.

LVish uses a reduction semantics based on evaluation contexts. The E-EVAL-CTXT rule is a standard context rule,
allowing us to apply reductions within a context. The choice of context determines where evaluation can occur; in
LVish, the order of evaluation is nondeterministic (that is, a given expression can generally reduce in various ways),
and so it is generally not the case that an expression has a unique decomposition into redex and context. For example,
in an application e1 e2, either e1 or e2 might reduce first. The nondeterminism in choice of evaluation context reflects
the nondeterminism of scheduling between concurrent threads, and in LVish, the arguments to get, put, freeze,
and application expressions are implicitly evaluated concurrently.4

Arguments must be fully evaluated, however, before function application (β-reduction, modeled by the E-BETA
rule) can occur. We can exploit this property to define let par as syntactic sugar:

let par x = e1; y = e2 in e3
4
= ((λx. (λy. e3)) e1) e2

Because we do not reduce under λ-terms, we can sequentially compose e1 before e2 by writing let = e1 in e2,
which desugars to (λ . e2) e1. Sequential composition is useful, for instance, when allocating a new LVar before
beginning a set of side-effecting put/get/freeze operations on it.

4.5 Semantics of new, put, and get
In LVish, the new, put, and get operations respectively create, write to, and read from LVars in the store:

• new (implemented by the E-NEW rule) extends the store with a binding for a new LVar whose initial state is
(⊥, false), and returns the location l of that LVar (i.e., a pointer to the LVar).

4This is in contrast to the original LVars formalism given in [20], which models parallelism with explicitly simultaneous reductions.
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• put (implemented by the E-PUT and E-PUT-ERR rules) takes a pointer to an LVar and a new lattice element
d2 and updates the LVar’s state to the least upper bound of the current state and (d2, false), potentially pushing
the state of the LVar upward in the lattice. Any update that would take the state of an LVar to >p results in the
program immediately stepping to error.

• get (implemented by the E-GET rule) performs a blocking threshold read. It takes a pointer to an LVar and a
threshold set P , which is a non-empty set of LVar states that must be pairwise incompatible, expressed by the
premise incomp(P ). A threshold set P is pairwise incompatible iff the lub of any two distinct elements in P is
>p. If the LVar’s state p1 in the lattice is at or above some p2 ∈ P , the get operation unblocks and returns p2.
Note that p2 is a unique element of P , for if there is another p′2 6= p2 in the threshold set such that p′2 vp p1, it
would follow that p2 tp p′2 = p1 6= >p, which contradicts the requirement that P be pairwise incompatible.5

Is the get operation deterministic? Consider two lattice elements p1 and p2 that have no ordering and have>p as their
lub, and suppose that puts of p1 and p2 and a get with {p1, p2} as its threshold set all race for access to an LVar lv.
Eventually, the program is guaranteed to fault, because p1 tp p2 = >p, but in the meantime, get lv {p1, p2} could
return either p1 or p2. Therefore, get can behave nondeterministically—but this behavior is not observable in the
final answer of the program, which is guaranteed to subsequently fault.

4.6 The freeze− after− with Primitive
The LVish calculus includes a simple form of freeze that immediately freezes an LVar (see E-FREEZE-SIMPLE).
More interesting is the freeze− after− with primitive, which models the “freeze-after” pattern described in
Section 3.3. The expression freeze elv after eevents with ecb has the following semantics:

• It attaches the callback ecb to the LVar elv. The expression eevents must evaluate to a event set Q; the callback
will be executed, once, for each lattice element in Q that the LVar’s state reaches or surpasses. The callback ecb
is a function that takes a lattice element as its argument. Its return value is ignored, so it runs solely for effect.
For instance, a callback might itself do a put to the LVar to which it is attached, triggering yet more callbacks.

• If the handler reaches a quiescent state, the LVar elv is frozen, and its exact state is returned (rather than an
underapproximation of the state, as with get).

To keep track of the running callbacks, LVish includes an auxiliary form,

freeze l after Q with λx. e0, {e, . . . } , H

where:

• The value l is the LVar being handled/frozen;

• The set Q (a subset of the lattice D) is the event set;

• The value λx. e0 is the callback function;

• The set of expressions {e, . . . } are the running callbacks; and

• The set H (a subset of the lattice D) represents those values in Q for which callbacks have already been
launched.

Due to our use of evaluation contexts, any running callback can execute at any time, as if each is running in its own
thread.

5We stress that, although incomp(P ) is given as a premise of the E-GET reduction rule (suggesting that it is checked at runtime), in our real
implementation threshold sets are not written explicitly, and it is the data structure author’s responsibility to ensure that any provided read operations
have threshold semantics; see Section 6.
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The rule E-SPAWN-HANDLER launches a new callback thread any time the LVar’s current value is at or above
some element in Q that has not already been handled. This step can be taken nondeterministically at any time after the
relevant put has been performed.

The rule E-FREEZE-FINAL detects quiescence by checking that two properties hold. First, every event of interest
(lattice element in Q) that has occurred (is bounded by the current LVar state) must be handled (be in H). Second, all
existing callback threads must have terminated with a value. In other words, every enabled callback has completed.
When such a quiescent state is detected, E-FREEZE-FINAL freezes the LVar’s state. Like E-SPAWN-HANDLER, the
rule can fire at any time, nondeterministically, that the handler appears quiescent—a transient property! But after being
frozen, any further puts that would have enabled additional callbacks will instead fault, raising error by way of the
E-PUT-ERR rule.

Therefore, freezing is a way of “betting” that once a collection of callbacks have completed, no further puts that
change the LVar’s value will occur. For a given run of a program, either all puts to an LVar arrive before it has been
frozen, in which case the value returned by freeze− after− with is the lub of those values, or some put arrives
after the LVar has been frozen, in which case the program will fault. And thus we have arrived at quasi-determinism:
a program will always either evaluate to the same answer or it will fault.

To ensure that we will win our bet, we need to guarantee that quiescence is a permanent state, rather than a
transient one—that is, we need to perform all puts either prior to freeze− after− with, or by the callback
function within it (as will be the case for fixpoint computations). In practice, freezing is usually the very last step
of an algorithm, permitting its result to be extracted. Our implementation provides a special runParThenFreeze
function that does so, and thereby guarantees full determinism.

4.7 Modeling Lattice Parameterization in Redex
We have developed a runnable version of the LVish calculus6 using the PLT Redex semantics engineering toolkit [15].
In the Redex of today, it is not possible to directly parameterize a language definition by a lattice.7 Instead, taking
advantage of Racket’s syntactic abstraction capabilities, we define a Racket macro, define-LVish-language,
that wraps a template implementing the lattice-agnostic semantics of Figure 3, and takes the following arguments:

• a name, which becomes the lang-name passed to Redex’s define-language form;

• a “downset” operation, a Racket-level procedure that takes a lattice element and returns the (finite) set of all lat-
tice elements that are below that element (this operation is used to implement the semantics of freeze− after− with,
in particular, to determine when the E-FREEZE-FINAL rule can fire);

• a lub operation, a Racket-level procedure that takes two lattice elements and returns a lattice element; and

• a (possibly infinite) set of lattice elements represented as Redex patterns.

Given these arguments, define-LVish-language generates a Redex model specialized to the application-specific
lattice in question. For instance, to instantiate a model called nat, where the application-specific lattice is the natural
numbers with max as the least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and max are Racket procedures. natural is a
Redex pattern that has no meaning to Racket proper, but because define-LVish-language is a macro, natural
is not evaluated until it is in the context of Redex.

6Available at http://github.com/iu-parfunc/lvars.
7See discussion at http://lists.racket-lang.org/users/archive/2013-April/057075.html.
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5 Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim we make in Section 1: that, for a given program,
although some executions may raise exceptions, all executions that produce a final result will produce the same final
result.

In this section, we give the statements of the main quasi-determinism theorem and the two most important sup-
porting lemmas. The statements of the remaining lemmas, and proofs of all our theorems and lemmas, are included in
Appendix B.

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting from a configuration σ terminate in configurations σ′

and σ′′, then σ′ and σ′′ are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′, and neither σ′ nor σ′′ can take a step, then either:

1. σ′ = σ′′ up to a permutation on locations π, or

2. σ′ = error or σ′′ = error.

Theorem 1 follows from a series of quasi-confluence lemmas. The most important of these, Strong Local Quasi-
Confluence (Lemma 2), says that if a configuration steps to two different configurations, then either there exists a
single third configuration to which they both step (in at most one step), or one of them steps to error. Additional
lemmas generalize Lemma 2’s result to multiple steps by induction on the number of steps, eventually building up to
Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If σ ≡ 〈S; e〉 ↪−→ σa and σ ↪−→ σb, then either:

1. there exist π, i, j and σc such that σa ↪−→i σc and σb ↪−→j π(σc) and i ≤ 1 and j ≤ 1, or

2. σa ↪−→ error or σb ↪−→ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish that captures the idea that independent effects
commute with each other. Lemma 3, the Independence lemma, establishes this property. Consider an expression e that
runs starting in store S and steps to e′, updating the store to S′. The Independence lemma allows us to make a double-
edged guarantee about what will happen if we run e starting from a larger store S tS S′′: first, it will update the store
to S′tS S′′; second, it will step to e′ as it did before. Here StS S′′ is the least upper bound of the original S and some
other store S′′ that is “framed on” to S; intuitively, S′′ is the store resulting from some other independently-running
computation.

Lemma 3 (Independence). If 〈S; e〉 ↪−→ 〈S′; e′〉 (where 〈S′; e′〉 6= error), then we have that:
〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉,
where S′′ is any store meeting the following conditions:

• S′′ is non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉,

• S′ tS S′′ =frz S, and

• S′ tS S′′ 6= >S .

Lemma 3 requires as a precondition that the stores S′tSS′′ and S are equal in status—that, for all the locations shared
between them, the status bits of those locations agree. This assumption rules out interference from freezing. Finally,
the store S′′ must be non-conflicting with the original transition from 〈S; e〉 to 〈S′; e′〉, meaning that locations in S′′

cannot share names with locations newly allocated during the transition; this rules out location name conflicts caused
by allocation.
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Definition 4. Two stores S and S′ are equal in status (written S =frz S
′) iff for all l ∈ (dom(S) ∩ dom(S′)),

if S(l) = (d, frz ) and S′(l) = (d′, frz ′), then frz = frz ′.

Definition 5. A store S′′ is non-conflicting with the transition 〈S; e〉 ↪−→ 〈S′; e′〉 iff (dom(S′) − dom(S)) ∩
dom(S′′) = ∅.

6 Implementation
We have constructed a prototype implementation of LVish as a monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24], enabling us to employ our own notion of lightweight,
library-level threads with a custom scheduler. It supports the programming model laid out in Section 3 in full, including
explicit handler pools. It differs from our formal model in following Haskell’s by-need evaluation strategy, which
also means that concurrency in the library is explicitly marked, either through uses of a fork function or through
asynchronous callbacks, which run in their own lightweight thread.

Implementing LVish as a Haskell library makes it possible to provide compile-time guarantees about determinism
and quasi-determinism, because programs written using our library run in our Par monad and can therefore only
perform LVish-sanctioned side effects. We take advantage of this fact by indexing Par computations with a phantom
type that indicates their determinism level:
data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗

together with the following suite of run functions:
runPar :: Par Det a → a
runParIO :: Par lvl a → IO a
runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked as QuasiDet; thus, code that types as Det is
guaranteed to be fully deterministic. While LVish code with an arbitrary determinism level lvl can be executed in
the IO monad using runParIO, only Det code can be executed as if it were pure, since it is guaranteed to be free of
visible side effects of nondeterminism. In the common case that freeze is only needed at the end of an otherwise-
deterministic computation, runParThenFreeze runs the computation to completion, and then freezes the returned LVar,
returning its exact value—and is guaranteed to be deterministic.9

6.1 The Big Picture
We envision two parties interacting with our library. First, there are data structure authors, who use the library directly
to implement a specific monotonic data structure (e.g., a monotonically growing finite map). Second, there are ap-
plication writers, who are clients of these data structures. Only the application writers receive a (quasi-)determinism
guarantee; an author of a data structure is responsible for ensuring that the states their data structure can take on cor-
respond to the elements of a lattice, and that the exposed interface to it corresponds to some use of put, get, freeze,
and event handlers.

Thus, our library is focused primarily on lattice-generic infrastructure: the Par monad itself, a thread scheduler,
support for blocking and signaling threads, handler pools, and event handlers. Since this infrastructure is unsafe
(does not guarantee quasi-determinism), only data structure authors should import it, subsequently exporting a limited
interface specific to their data structure. For finite maps, for instance, this interface might include key/value insertion,
lookup, event handlers and pools, and freezing—along with higher-level abstractions built on top of these.

8We are here using the DataKinds extension to Haskell to treat Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs of the Par monad, in a manner analogous to how the ST monad
prevents an STRef from being returned from runST.

9The DeepFrz typeclass is used to perform freezing of nested LVars, producing values of frozen type (as given by the FrzType type function).
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For this approach to scale well with available parallel resources, it is essential that the data structures themselves
support efficient parallel access; a finite map that was simply protected by a global lock would force all parallel
threads to sequentialize their access. Thus, we expect data structure authors to draw from the extensive literature on
scalable parallel data structures, employing techniques like fine-grained locking and lock-free data structures [18].
Data structures that fit into the LVish model have a special advantage: because all updates must commute, it may be
possible to avoid the expensive synchronization which must be used for non-commutative operations [2]. And in any
case, monotonic data structures are usually much simpler to represent and implement than general ones.

6.2 Two Key Ideas
Leveraging atoms Monotonic data structures acquire “pieces of information” over time. In a lattice, the smallest
such pieces are called the atoms of the lattice: they are elements not equal to⊥, but for which the only smaller element
is ⊥. Lattices for which every element is the lub of some set of atoms are called atomistic, and in practice most
application-specific lattices used by LVish programs have this property—especially those whose elements represent
collections.

In general, the LVish primitives allow arbitrarily large queries and updates to an LVar. But for an atomistic lattice,
the corresponding data structure usually exposes operations that work at the atom level, semantically limiting puts
to atoms, gets to threshold sets of atoms, and event sets to sets of atoms. For example, the lattice of finite maps is
atomistic, with atoms consisting of all singleton maps (i.e., all key/value pairs). The interface to a finite map usually
works at the atom level, allowing addition of a new key/value pair, querying of a single key, or traversals (which we
model as handlers) that walk over one key/value pair at a time.

Our implementation is designed to facilitate good performance for atomistic lattices by associating LVars with a
set of deltas (changes), as well as a lattice. For atomistic lattices, the deltas are essentially just the atoms—for a set
lattice, a delta is an element; for a map, a key/value pair. Deltas provide a compact way to represent a change to the
lattice, allowing us to easily and efficiently communicate such changes between puts and gets/handlers.

Leveraging idempotence While we have emphasized the commutativity of least upper bounds, they also provide
another important property: idempotence, meaning that d t d = d for any element d. In LVish terms, repeated puts
or freezes have no effect, and since these are the only way to modify the store, the result is that e; e behaves the
same as e for any LVish expression e. Idempotence has already been recognized as a useful property for work-stealing
scheduling [25]: if the scheduler is allowed to occasionally duplicate work, it is possible to substantially save on
synchronization costs. Since LVish computations are guaranteed to be idempotent, we could use such a scheduler (for
now we use the standard Chase-Lev deque [11]). But idempotence also helps us deal with races between put and
get/addHandler, as we explain below.

6.3 Representation Choices
Our library uses the following generic representation for LVars:
data LVar a d =

LVar { state :: a, status :: IORef (Status d) }

where the type parameter a is the (mutable) data structure representing the lattice, and d is the type of deltas for the
lattice.10 The status field is a mutable reference that represents the status bit:
data Status d = Frozen | Active (B.Bag (Listener d))

The status bit of an LVar is tied together with a bag of waiting listeners, which include blocked gets and handlers;
once the LVar is frozen, there can be no further events to listen for.11 The bag module (imported as B) supports atomic
insertion and removal, and concurrent traversal:
put :: Bag a → a → IO (Token a)
remove :: Token a → IO ()
foreach :: Bag a → (a → Token a → IO ()) → IO ()

10For non-atomistic lattices, we take a and d to be the same type.
11In particular, with one atomic update of the flag we both mark the LVar as frozen and allow the bag to be garbage-collected.
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Removal of elements is done via abstract tokens, which are acquired by insertion or traversal. Updates may occur
concurrently with a traversal, but are not guaranteed to be visible to it.

A listener for an LVar is a pair of callbacks, one called when the LVar’s lattice value changes, and the other when
the LVar is frozen:
data Listener d = Listener {
onUpd :: d → Token (Listener d) → SchedQ → IO (),
onFrz :: Token (Listener d) → SchedQ → IO () }

The listener is given access to its own token in the listener bag, which it can use to deregister from future events (useful
for a get whose threshold has been passed). It is also given access to the CPU-local scheduler queue, which it can use
to spawn threads.

6.4 The Core Implementation
Internally, the Par monad represents computations in continuation-passing style, in terms of their interpretation in the
IO monad:
type ClosedPar = SchedQ → IO ()
type ParCont a = a → ClosedPar
mkPar :: (ParCont a → ClosedPar) → Par lvl a

The ClosedPar type represents ready-to-run Par computations, which are given direct access to the CPU-local sched-
uler queue. Rather than returning a final result, a completed ClosedPar computation must call the scheduler, sched, on
the queue. A Par computation, on the other hand, completes by passing its intended result to its continuation—yielding
a ClosedPar computation.

Figure 4 gives the implementation for three core lattice-generic functions: getLV, putLV, and freezeLV, which we
explain next.

Threshold reading The getLV function assists data structure authors in writing operations with get semantics. In
addition to an LVar, it takes two threshold functions, one for global state and one for deltas. The global threshold
gThresh is used to initially check whether the LVar is above some lattice value(s) by global inspection; the extra
boolean argument gives the frozen status of the LVar. The delta threshold dThresh checks whether a particular update
takes the state of the LVar above some lattice state(s). Both functions return Just r if the threshold has been passed,
where r is the result of the read. To continue our running example of finite maps with key/value pair deltas, we can
use getLV internally to build the following getKey function that is exposed to application writers:
-- Wait for the map to contain a key; return its value
getKey key mapLV = getLV mapLV gThresh dThresh where
gThresh m frozen = lookup key m
dThresh (k,v) | k == key = return (Just v)

| otherwise = return Nothing

where lookup imperatively looks up a key in the underlying map.
The challenge in implementing getLV is the possibility that a concurrent put will push the LVar over the threshold.

To cope with such races, getLV employs a somewhat pessimistic strategy: before doing anything else, it enrolls a
listener on the LVar that will be triggered on any subsequent updates. If an update passes the delta threshold, the
listener is removed, and the continuation of the get is invoked, with the result, in a new lightweight thread. After
enrolling the listener, getLV checks the global threshold, in case the LVar is already above the threshold. If it is, the
listener is removed, and the continuation is launched immediately; otherwise, getLV invokes the scheduler, effectively
treating its continuation as a blocked thread.

By doing the global check only after enrolling a listener, getLV is sure not to miss any threshold-passing updates.
It does not need to synchronize between the delta and global thresholds: if the threshold is passed just as getLV runs, it
might launch the continuation twice (once via the global check, once via delta), but by idempotence this does no harm.
This is a performance tradeoff: we avoid imposing extra synchronization on all uses of getLV at the cost of some
duplicated work in a rare case. We can easily provide a second version of getLV that makes the alternative tradeoff,
but as we will see below, idempotence plays an essential role in the analogous situation for handlers.
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getLV :: (LVar a d) → (a → Bool → IO (Maybe b))
→ (d → IO (Maybe b)) → Par lvl b

getLV (LVar{state, status}) gThresh dThresh =
mkPar $λk q →
let onUpd d = unblockWhen (dThresh d)

onFrz = unblockWhen (gThresh state True)
unblockWhen thresh tok q = do
tripped ← thresh
whenJust tripped $ λb → do
B.remove tok
Sched.pushWork q (k b)

in do
curStat ← readIORef status
case curStat of
Frozen → do -- no further deltas can arrive!
tripped ← gThresh state True
case tripped of
Just b → exec (k b) q
Nothing → sched q

Active ls → do
tok ← B.put ls (Listener onUpd onFrz)
frz ← isFrozen status -- must recheck after

-- enrolling listener
tripped ← gThresh state frz
case tripped of
Just b → do
B.remove tok -- remove the listener
k b q -- execute our continuation

Nothing → sched q

putLV :: LVar a d → (a → IO (Maybe d)) → Par lvl ()
putLV (LVar{state, status}) doPut = mkPar $ λk q → do
Sched.mark q -- publish our intent to modify the LVar
delta ← doPut state -- possibly modify LVar
curStat ← readIORef status -- read while q is marked
Sched.clearMark q -- retract our intent
whenJust delta $ λd → do
case curStat of
Frozen → error "Attempt to change a frozen LVar"
Active listeners → B.foreach listeners $
λ(Listener onUpd _) tok → onUpd d tok q

k () q

freezeLV :: LVar a d → Par QuasiDet ()
freezeLV (LVar {status}) = mkPar $ λk q → do
Sched.awaitClear q
oldStat ← atomicModifyIORef status $ λs→(Frozen, s)
case oldStat of
Frozen → return ()
Active listeners → B.foreach listeners $
λ(Listener _ onFrz) tok → onFrz tok q

k () q

Figure 4: Implementation of key lattice-generic functions.
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Putting and freezing On the other hand, we have the putLV function, used to build operations with put semantics. It
takes an LVar and an update function doPut that performs the put on the underlying data structure, returning a delta if
the put actually changed the data structure. If there is such a delta, putLV subsequently invokes all currently-enrolled
listeners on it.

The implementation of putLV is complicated by another race, this time with freezing. If the put is nontrivial (i.e.,
it changes the value of the LVar), the race can be resolved in two ways. Either the freeze takes effect first, in which
case the put must fault, or else the put takes effect first, in which case both succeed. Unfortunately, we have no means
to both check the frozen status and attempt an update in a single atomic step.12

Our basic approach is to ask forgiveness, rather than permission: we eagerly perform the put, and only afterwards
check whether the LVar is frozen. Intuitively, this is allowed because if the LVar is frozen, the Par computation is
going to terminate with an exception—so the effect of the put cannot be observed!

Unfortunately, it is not enough to just check the status bit for frozenness afterward, for a rather subtle reason: sup-
pose the put is executing concurrently with a get which it causes to unblock, and that the getting thread subsequently
freezes the LVar. In this case, we must treat the freeze as if it happened after the put, because the freeze could not
have occurred had it not been for the put. But, by the time putLV reads the status bit, it may already be set, which
naively would cause putLV to fault.

To guarantee that such confusion cannot occur, we add a marked bit to each CPU scheduler state. The bit is set (us-
ing Sched.mark) prior to a put being performed, and cleared (using Sched.clear) only after putLV has subsequently
checked the frozen status. On the other hand, freezeLV waits until it has observed a (transient!) clear mark bit on
every CPU (using Sched.awaitClear) before actually freezing the LVar. This guarantees that any puts that caused the
freeze to take place check the frozen status before the freeze takes place; additional puts that arrive concurrently may,
of course, set a mark bit again after freezeLV has observed a clear status.

The proposed approach requires no barriers or synchronization instructions (assuming that the put on the under-
lying data structure acts as a memory barrier). Since the mark bits are per-CPU flags, they can generally be held in a
core-local cache line in exclusive mode—meaning that marking and clearing them is extremely cheap. The only time
that the busy flags can create cross-core communication is during freezeLV, which should only occur once per LVar
computation.

One final point: unlike getLV and putLV, which are polymorphic in their determinism level, freezeLV is statically
QuasiDet.

Handlers, pools and quiescence Given the above infrastructure, the implementation of handlers is relatively straight-
forward. We represent handler pools as follows:
data HandlerPool = HandlerPool {
numCallbacks :: Counter, blocked :: B.Bag ClosedPar }

where Counter is a simple counter supporting atomic increment, decrement, and checks for equality with zero.13 We
use the counter to track the number of currently-executing callbacks, which we can use to implement quiesce. A
handler pool also keeps a bag of threads that are blocked waiting for the pool to reach a quiescent state.

We create a pool using newPool (of type Par lvl HandlerPool), and implement quiescence testing as follows:
quiesce :: HandlerPool → Par lvl ()
quiesce hp@(HandlerPool cnt bag) = mkPar $ λk q → do
tok ← B.put bag (k ())
quiescent ← poll cnt
if quiescent then do B.remove tok; k () q

else sched q

where the poll function indicates whether cnt is (transiently) zero. Note that we are following the same listener-
enrollment strategy as in getLV, but with blocked acting as the bag of listeners.

Finally, addHandler has the following interface:
addHandler ::

12While we could require the underlying data structure to support such transactions, doing so would preclude the use of existing lock-free data
structures, which tend to use a single-word compare-and-set operation to perform atomic updates. Lock-free data structures routinely outperform
transaction-based data structures [16].

13One can use a high-performance scalable non-zero indicator [14] to implement Counter, but we have not yet done so.
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Maybe HandlerPool -- Pool to enroll in
→ LVar a d -- LVar to listen to
→ (a → IO (Maybe (Par lvl ()))) -- Global callback
→ (d → IO (Maybe (Par lvl ()))) -- Delta callback
→ Par lvl ()

As with getLV, handlers are specified using both global and delta threshold functions. Rather than returning results,
however, these threshold functions return computations to run in a fresh lightweight thread if the threshold has been
passed. Each time a callback is launched, the callback count is incremented; when it is finished, the count is decre-
mented, and if zero, all threads blocked on its quiescence are resumed.

The implementation of addHandler is very similar to getLV, but there is one important difference: handler call-
backs must be invoked for all events of interest, not just a single threshold. Thus, the Par computation returned by
the global threshold function should execute its callback on, e.g., all available atoms. Likewise, we do not remove a
handler from the bag of listeners when a single delta threshold is passed; handlers listen continuously to an LVar until
it is frozen. We might, for example, expose the following foreach function for a finite map:
foreach mh mapLV cb = addHandler mh lv gThresh dThresh
where
dThresh (k,v) = return (Just (cb k v))
gThresh mp = traverse mp (λ(k,v) → cb k v) mp

Here, idempotence really pays off: without it, we would have to synchronize to ensure that no callbacks are duplicated
between the global threshold (which may or may not see concurrent additions to the map) and the delta threshold
(which will catch all concurrent additions). We expect such duplications to be rare, since they can only arise when a
handler is added concurrently with updates to an LVar.14

7 Evaluation: k-CFA Case Study
We now evaluate the expressiveness and performance of our Haskell LVish implementation. We expect LVish to partic-
ularly shine for: (1) parallelizing complicated algorithms on structured data that pose challenges for other deterministic
paradigms, and (2) composing pipeline-parallel stages of computation (each of which may be internally parallelized).
In this section, we focus on a case study that fits this mold: parallelized control-flow analysis. We discuss the process
of porting a sequential implementation of k-CFA to a parallel implementation using LVish. In Appendix C), we also
give benchmarking results for LVish implementations of two graph-algorithm microbenchmarks: breadth-first search
and maximal independent set.

7.1 k-CFA
The k-CFA analyses provide a hierarchy of increasingly precise methods to compute the flow of values to expressions
in a higher-order language. For this case study, we began with a simple, sequential implementation of k-CFA translated
to Haskell from a version by Might [26].15 The algorithm processes expressions written in a continuation-passing-
style λ-calculus. It resembles a nondeterministic abstract interpreter in which stores map addresses to sets of abstract
values, and function application entails a cartesian product between the operator and operand sets. Further, an address
models not just a static variable, but includes a fixed k-size window of the calling history to get to that point (the k
in k-CFA). Taken together, the current redex, environment, store, and call history make up the abstract state of the
program, and the goal is to explore a graph of these abstract states. This graph-exploration phase is followed by a
second, summarization phase that combines all the information discovered into one store.

Phase 1: breadth-first exploration The following function from the original, sequential version of the algorithm
expresses the heart of the search process:

14That said, it is possible to avoid all duplication by adding further synchronization, and in ongoing research, we are exploring various locking
and timestamp schemes to do just that.

15Haskell port by Max Bolingbroke: https://github.com/batterseapower/haskell-kata/blob/master/0CFA.hs.
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explore :: Set State → [State] → Set State
explore seen [] = seen
explore seen (todo:todos)
| todo ∈ seen = explore seen todos
| otherwise = explore (insert todo seen)

(toList (next todo) ++ todos)

This code uses idiomatic Haskell data types like Data.Set and lists. However, it presents a dilemma with respect to
exposing parallelism. Consider attempting to parallelize explore using purely functional parallelism with futures—for
instance, using the Strategies library [23]. An attempt to compute the next states in parallel would seem to be thwarted
by the main thread rapidly forcing each new state to perform the seen-before check, todo ∈ seen. There is no way for
independent threads to “keep going” further into the graph; rather, they check in with seen after one step.

We confirmed this prediction by adding a parallelism annotation: withStrategy (parBuffer 8 rseq) (next todo).
The GHC runtime reported that 100% of created futures were “duds”—that is, the main thread forced them before any
helper thread could assist. Changing rseq to rdeepseq exposed a small amount of parallelism—238/5000 futures were
successfully executed in parallel—yielding no actual speedup.

Phase 2: summarization The first phase of the algorithm produces a large set of states, with stores that need to be
joined together in the summarization phase. When one phase of a computation produces a large data structure that
is immediately processed by the next phase, lazy languages can often achieve a form of pipelining “for free”. This
outcome is most obvious with lists, where the head element can be consumed before the tail is computed, offering
cache-locality benefits. Unfortunately, when processing a pure Set or Map in Haskell, such pipelining is not possible,
since the data structure is internally represented by a balanced tree whose structure is not known until all elements
are present. Thus phase 1 and phase 2 cannot overlap in the purely functional version—but they will in the LVish
version, as we will see. In fact, in LVish we will be able to achieve partial deforestation in addition to pipelining. Full
deforestation in this application is impossible, because the Sets in the implementation serve a memoization purpose:
they prevent repeated computations as we traverse the graph of states.

7.2 Porting to the LVish Library
Our first step was a verbatim port to LVish. We changed the original, purely functional program to allocate a new LVar
for each new set or map value in the original code. This was done simply by changing two types, Set and Map, to their
monotonic LVar counterparts, ISet and IMap. In particular, a store maps a program location (with context) onto a set
of abstract values:
import Data.LVar.Map as IM
import Data.LVar.Set as IS
type Store s = IMap Addr s (ISet s Value)

Next, we replaced allocations of containers, and map/fold operations over them, with the analogous operations on their
LVar counterparts. The explore function above was replaced by the simple graph traversal function from Section 1!
These changes to the program were mechanical, including converting pure to monadic code. Indeed, the key insight
in doing the verbatim port to LVish was to consume LVars as if they were pure values, ignoring the fact that an LVar’s
contents are spread out over space and time and are modified through effects.

In some places the style of the ported code is functional, while in others it is imperative. For example, the
summarize function uses nested forEach invocations to accumulate data into a store map:
summarize :: ISet s (State s) → Par d s (Store s)
summarize states = do
storeFin ← newEmptyMap
IS.forEach states $ λ (State _ _ store _) →
IM.forEach store $ λ key vals →
IS.forEach vals $ λ elmt →
IM.modify storeFin key (putInSet elmt)

return storeFin

While this code can be read in terms of traditional parallel nested loops, it in fact creates a network of handlers that
convey incremental updates from one LVar to another, in the style of data-flow networks. That means, in particular,
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Figure 5: Simplified handler network for k-CFA. Exploration and summarization processes are driven by the same
LVar. The triply-nested forEach calls in summarize become a chain of three handlers.

that computations in a pipeline can immediately begin reading results from containers (e.g., storeFin), long before
their contents are final.

The LVish version of k-CFA contains 11 occurrences of forEach, as well as a few cartesian-product operations.
The cartesian products serve to apply functions to combinations of all possible values that arguments may take on,
greatly increasing the number of handler events in circulation. Moreover, chains of handlers registered with forEach

result in cascades of events through six or more handlers. The runtime behavior of these would be difficult to reason
about. Fortunately, the programmer can largely ignore the temporal behavior of their program, since all LVish effects
commute—rather like the way in which a lazy functional programmer typically need not think about the order in which
thunks are forced at runtime.

Finally, there is an optimization benefit to using handlers. Normally, to flatten a nested data structure such as
[[[Int]]] in a functional language, we would need to flatten one layer at a time and allocate a series of temporary
structures. The LVish version avoids this; for example, in the code for summarize above, three forEach invocations
are used to traverse a triply-nested structure, and yet the side effect in the innermost handler directly updates the final
accumulator, storeFin.

Flipping the switch The verbatim port uses LVars poorly: copying them repeatedly and discarding them without
modification. This effect overwhelms the benefits of partial deforestation and pipelining, and the verbatim LVish port
has a small performance overhead relative to the original. But not for long! The most clearly unnecessary operation
in the verbatim port is in the next function. Like the pure code, it creates a fresh store to extend with new bindings as
we take each step through the state space graph:

store’ ← IM.copy store

Of course, a “copy” for an LVar is persistent: it is just a handler that forces the copy to receive everything the original
does. But in LVish, it is also trivial to entangle the parallel branches of the search, allowing them to share information
about bindings, simply by not creating a copy:

let store’ = store

This one-line change speeds up execution by up to 25× on a single thread, and the asynchronous, ISet-driven paral-
lelism enables subsequent parallel speedup as well (up to 202× total improvement over the purely functional version).

Figure 6 shows performance data for the “blur” benchmark drawn from a recent paper on k-CFA [13]. (We use
k = 2 for the benchmarks in this section.) In general, it proved difficult to generate example inputs to k-CFA that
took long enough to be candidates for parallel speedup. We were, however, able to “scale up” the blur benchmark by
replicating the code N times, feeding one into the continuation argument for the next. Figure 6 also shows the results
for one synthetic benchmark that managed to negate the benefits of our sharing approach, which is simply a long chain
of 300 “not” functions (using a CPS conversion of the Church encoding for booleans). It has a small state space of
large states with many variables (600 states and 1211 variables).
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Figure 6: Parallel speedup for the “blur” and “notChain” benchmarks. Speedup is normalized to the sequential times
for the lock-free versions (5.21s and 9.83s, respectively). The normalized speedups are remarkably consistent for the
lock-free version between the two benchmarks. But the relationship to the original, purely functional version is quite
different: at 12 cores, the lock-free LVish version of “blur” is 202× faster than the original, while “notChain” is only
1.6× faster, not gaining anything from sharing rather than copying stores due to a lack of fan-out in the state graph.

The role of lock-free data structures As part of our library, we provide lock-free implementations of finite maps
and sets based on concurrent skip lists [18].16 We also provide reference implementations that use a nondestructive
Data.Set inside a mutable container. Our scalable implementation is not yet carefully optimized, and at one and two
cores, our lock-free k-CFA is 38% to 43% slower than the reference implementation on the “blur” benchmark. But
the effect of scalable data structures is quite visible on a 12-core machine.17 Without them, “blur” (replicated 8×)
stops scaling and begins slowing down slightly after four cores. Even at four cores, variance is high in the reference
implementation (min/max 0.96s / 1.71s over 7 runs). With lock-free structures, by contrast, performance steadily
improves to a speedup of 8.14× on 12 cores (0.64s at 67% GC productivity). Part of the benefit of LVish is to allow
purely functional programs to make use of lock-free structures, in much the same way that the STmonad allows access
to efficient in-place array computations.

8 Related Work
Monotonic data structures: traditional approaches LVish builds on two long traditions of work on parallel pro-
gramming models based on monotonically-growing shared data structures:

• In Kahn process networks (KPNs) [19], as well as in the more restricted synchronous data flow systems [21], a
network of processes communicate with each other through blocking FIFO channels with ever-growing channel
histories. Each process computes a sequential, monotonic function from the history of its inputs to the history
of its outputs, enabling pipeline parallelism. KPNs are the basis for deterministic stream-processing languages
such as StreamIt [17].

• In parallel single-assignment languages [32], “full/empty” bits are associated with heap locations so that they
may be written to at most once. Single-assignment locations with blocking read semantics—that is, IVars [1]—
have appeared in Concurrent ML as SyncVars [30]; in the Intel Concurrent Collections system [8]; in languages
and libraries for high-performance computing, such as Chapel [10] and the Qthreads library [33]; and have
even been implemented in hardware in Cray MTA machines [3]. Although most of these uses incorporate IVars

16In fact, this project is the first to incorporate any lock-free data structures in Haskell, which required solving some unique problems pertaining
to Haskell’s laziness and the GHC compiler’s assumptions regarding referential transparency. But we lack the space to detail these improvements.

17Intel Xeon 5660; full machine details available at https://portal.futuregrid.org/hardware/delta.
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into already-nondeterministic programming environments, Haskell’s Par monad [24]—on which our LVish im-
plementation is based—uses IVars in a deterministic-by-construction setting, allowing user-created threads to
communicate through IVars without requiring IO, so that such communication can occur anywhere inside pure
programs.

LVars are general enough to subsume both IVars and KPNs: a lattice of channel histories with a prefix ordering allows
LVars to represent FIFO channels that implement a Kahn process network, whereas an LVar with “empty” and “full”
states (where empty < full ) behaves like an IVar, as we described in Section 2. Hence LVars provide a framework for
generalizing and unifying these two existing approaches to deterministic parallelism.

Deterministic Parallel Java (DPJ) DPJ [6, 5] is a deterministic language consisting of a system of annotations for
Java code. A sophisticated region-based type system ensures that a mutable region of the heap is, essentially, passed
linearly to an exclusive writer, thereby ensuring that the state accessed by concurrent threads is disjoint. DPJ does,
however, provide a way to unsafely assert that operations commute with one another (using the commuteswith form)
to enable concurrent mutation.

LVish differs from DPJ in that it allows overlapping shared state between threads as the default. Moreover, since
LVar effects are already commutative, we avoid the need for commuteswith annotations. Finally, it is worth noting
that while in DPJ, commutativity annotations have to appear in application-level code, in LVish only the data-structure
author needs to write trusted code. The application programmer can run untrusted code that still enjoys a (quasi-
)determinism guarantee, because only (quasi-)deterministic programs can be expressed as LVish Par computations.

More recently, Bocchino et al. [7] proposed a type and effect system that allows for the incorporation of nonde-
terministic sections of code in DPJ. The goal here is different from ours: while they aim to support intentionally non-
deterministic computations such as those arising from optimization problems like branch-and-bound search, LVish’s
quasi-determinism arises as a result of schedule nondeterminism.

FlowPools Prokopec et al. [29] recently proposed a data structure with an API closely related to ideas in LVish:
a FlowPool is a bag that allows concurrent insertions but forbids removals, a seal operation that forbids further
updates, and combinators like foreach that invoke callbacks as data arrives in the pool. To retain determinism,
the seal operation requires explicitly passing the expected bag size as an argument, and the program will raise an
exception if the bag goes over the expected size.

While this interface has a flavor similar to LVish, it lacks the ability to detect quiescence, which is crucial for
supporting examples like graph traversal, and the seal operation is awkward to use when the structure of data is not
known in advance. By contrast, our freeze operation is more expressive and convenient, but moves the model into
the realm of quasi-determinism. Another important difference is the fact that LVish is data structure-generic: both
our formalism and our library support an unlimited collection of data structures, whereas FlowPools are specialized to
bags. Nevertheless, FlowPools represent a “sweet spot” in the deterministic parallel design space: by allowing handlers
but not general freezing, they retain determinism while improving on the expressivity of the original LVars model. We
claim that, with our addition of handlers, LVish generalizes FlowPools to add support for arbitrary lattice-based data
structures.

Concurrent Revisions The Concurrent Revisions (CR) [22] programming model uses isolation types to distinguish
regions of the heap shared by multiple mutators. Rather than enforcing exclusive access, CR clones a copy of the
state for each mutator, using a deterministic “merge function” for resolving conflicts in local copies at join points.
Unlike LVish’s least-upper-bound writes, CR merge functions are not necessarily commutative; the default CR merge
function is “joiner wins”. Still, semilattices turn up in the metatheory of CR: in particular, Burckhardt and Leijen [9]
show that, for any two vertices in a CR revision diagram, there exists a greatest common ancestor state which can be
used to determine what changes each side has made—an interesting duality with our model (in which any two LVar
states have a lub).

While CR could be used to model similar types of data structures to LVish—if versioned variables used least upper
bound as their merge function for conflicts—effects would only become visible at the end of parallel regions, rather
than LVish’s asynchronous communication within parallel regions. This precludes the use of traditional lock-free data
structures as a representation.
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Conflict-free replicated data types In the distributed systems literature, eventually consistent systems based on
conflict-free replicated data types (CRDTs) [31] leverage lattice properties to guarantee that replicas in a distributed
database eventually agree. Unlike LVars, CRDTs allow intermediate states to be observed: if two replicas are updated
independently, reads of those replicas may disagree until a (least-upper-bound) merge operation takes place. Various
data-structure-specific techniques can ensure that non-monotonic updates (such as removal of elements from a set) are
not lost.

The BloomL language for distributed database programming [12] combines CRDTs with monotonic logic, re-
sulting in a lattice-parameterized, confluent language that is a close relative of LVish. A monotonicity analysis pass
rules out programs that would perform non-monotonic operations on distributed data collections, whereas in LVish,
monotonicity is enforced by the LVar API.

Future work will further explore the relationship between LVars and CRDTs: in one direction, we will investigate
LVar-based data structures inspired by CRDTs that support non-monotonic operations; in the other direction, we will
investigate the feasibility and usefulness of LVar threshold reads in a distributed setting.
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A Soundness of Freezing
In this appendix, we show that adding “status bits” to an application-specific lattice preserves its algebraic structure.

Remark 1 (Lattice terminology). Throughout this section, we use “lattice” as shorthand for “bounded join-semilattice
with a designated greatest element”. In particular, when we speak of a “lattice (D,v,⊥,>)”, we are referring to a
bounded join-semilattice with elements D, ordered by v, with ⊥ as the least element, and with a designated greatest
element >.

Lemma 4 (Partition ofDp). Suppose (D,v,⊥,>) is a lattice, and that (Dp,vp,⊥p,>p) = Freeze(D,v,⊥,>), and
let X = D − {>}. Then every member of Dp is either

• (d, false), with d ∈ D, or

• (x, true), with x ∈ X .

Proof. Immediate from Definition 1.

Definition 6. We define a binary operator tp ∈ Dp ×Dp → Dp as follows:

(d1, false) tp (d2, false) = (d1 t d2, false)

(d1, true) tp (d2, true) =

{
(d1, true) if d1 = d2
(>, false) otherwise

(d1, false) tp (d2, true) =

{
(d2, true) if d1 v d2
(>, false) otherwise

(d1, true) tp (d2, false) =

{
(d1, true) if d2 v d1
(>, false) otherwise

Lemma 5 (Lattice structure). (This lemma is a more detailed version of Lemma 1 from the main text of the paper.)
Suppose that (D,v,⊥,>) is a lattice, and that (Dp,vp,⊥p,>p) = Freeze(D,v,⊥,>). Then:

1. vp is a partial order over Dp.

2. Every nonempty finite subset of Dp has a least upper bound.

3. ⊥p is the least element of Dp.

4. >p is the greatest element of Dp.

Therefore (Dp,vp,⊥p,>p) is a lattice.

Proof.

1. vp is a partial order over Dp.

To show this, we need to show that vp is reflexive, transitive, and antisymmetric.

(a) vp is reflexive.
Suppose v ∈ Dp. Then, by Lemma 4, either v = (d, false) with d ∈ D, or v = (x, true) with x ∈ X ,
where X = D − {>}.
• Suppose v = (d, false):

By the reflexivity of v, we know d v d.
By the definition of vp, we know (d, false) vp (d, false).
• Suppose v = (x, true):

By the reflexivity of equality, x = x.
By the definition of vp, we know (x, true) vp (x, true).
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(b) vp is transitive.
Suppose v1 vp v2 and v2 vp v3. We want to show that v1 vp v3. We proceed by case analysis on v1, v2,
and v3.
• Case v1 = (d1, false) and v2 = (d2, false) and v3 = (d3, false):

By inversion on vp, it follows that d1 v d2.
By inversion on vp, it follows that d2 v d3.
By the transitivity of v, we know d1 v d3.
By the definition of vp, it follows that (d1, false) vp (d3, false).
Hence v1 vp v3.

• Case v1 = (d1, false) and v2 = (d2, false) and v3 = (x3, true):
By inversion on vp, it follows that d1 v d2.
By inversion on vp, it follows that d2 v x3.
By the transitivity of v, we know d1 v x3.
By the definition of vp, it follows that (d1, false) vp (x3, true).
Hence v1 vp v3.

• Case v1 = (d1, false) and v2 = (x2, true) and v3 = (d3, false):
By inversion on vp, it follows that d1 v x2.
By inversion on vp, it follows that d3 = >.
Since > is the maximal element of D, we know d1 v > ≡ d3.
By the definition of vp, it follows that (d1, false) vp (d3, false).
Hence v1 vp v3.

• Case v1 = (d1, false) and v2 = (x2, true) and v3 = (x3, true):
By inversion on vp, it follows that d1 v x2.
By inversion on vp, it follows that x2 = x3.
Hence d1 v x3.
By the definition of vp, it follows that (d1, false) vp (x3, true).
Hence v1 vp v3.

• Case v1 = (x1, true) and v2 = (d2, false) and v3 = (d3, false):
By inversion on vp, it follows that d2 = >.
By inversion on vp, it follows that d2 v d3.
Since > is maximal, it follows that d3 = >.
By the definition of vp, it follows that (x1, true) vp (d3, false).
Hence v1 vp v3.

• Case v1 = (x1, true) and v2 = (d2, false) and v3 = (x3, true):
By inversion on vp, it follows that d2 = >.
By inversion on vp, it follows that d2 v x3.
Since > is maximal, it follows that x3 = >.
But since x3 ∈ X ⊆ D/ {>}, we know x3 6= >.
This is a contradiction.
Hence v1 vp v3.

• Case v1 = (x1, true) and v2 = (x2, true) and v3 = (d3, false):
By inversion on vp, it follows that x1 = x2.
By inversion on vp, it follows that d3 = >.
By the definition of vp, it follows that (x1, true) vp (d3, false).
Hence v1 vp v3.

• Case v1 = (x1, true) and v2 = (x2, true) and v3 = (x3, true):
By inversion on vp, it follows that x1 = x2.
By inversion on vp, it follows that x2 = x3.
By transitivity of =, x1 = x3.
By the definition of vp, it follows that (x1, true) vp (x3, true).
Hence v1 vp v3.
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(c) vp is antisymmetric.
Suppose v1 vp v2 and v2 vp v1. Now, we proceed by cases on v1 and v2.

• Case v1 = (d1, false) and v2 = (d2, false):
By inversion on v1 vp v2, we know that d1 v d2.
By inversion on v2 vp v1, we know that d2 v d1.
By the antisymmetry of ≤, we know d1 = d2.
Hence v1 = v2.

• Case v1 = (d1, false) and v2 = (x2, true):
By inversion on v1 vp v2, we know that d1 v x2.
By inversion on v2 vp v1, we know that d1 = >.
Since > is maximal in D, we know x2 = >.
But since x2 ∈ X ⊆ D/ {>}, we know x2 6= >.
This is a contradiction.
Hence v1 = v2.

• Case v1 = (x1, true) and v2 = (d2, false):
Similar to the previous case.

• Case v1 = (x1, true) and v2 = (x2, true):
By inversion on v1 vp v2, we know that x1 = x2.
Hence v1 = v2.

2. Every nonempty finite subset of Dp has a least upper bound.

To show this, it is sufficient to show that every two elements of Dp have a least upper bound, since a binary
least upper bound operation can be repeatedly applied to compute the least upper bound of any finite set. We
will show that every two elements of Dp have a least upper bound by showing that the tp operation defined by
Definition 6 computes their least upper bound.

It suffices to show the following two properties:

(a) For all v1, v2, v ∈ Dp, if v1 vp v and v2 vp v, then (v1 tp v2) vp v.

(b) For all v1, v2 ∈ Dp, v1 vp (v1 tp v2) and v2 vp (v1 tp v2).

(a) For all v1, v2, v ∈ Dp, if v1 vp v and v2 vp v, then v1 tp v2 vp v.
Assume v1, v2, v ∈ Dp, and v1 vp v and v2 vp v. Now we do a case analysis on v1 and v2.

• Case v1 = (d1, false) and v2 = (d2, false).
Now case on v:

– Case v = (d, false):
By the definition of tp, (d1, false) tp (d2, false) = (d1 t d2, false).
By inversion on (d1, false) vp (d, false), d1 v l.
By inversion on (d2, false) vp (d, false), d2 v l.
Hence l is an upper bound for d1 and d2.
Hence d1 t d2 v l.
Hence (d1 t d2, false) vp (d, false).
Hence v1 tp v2 vp v.

– Case v = (x, true):
By the definition of tp, (d1, false) tp (d2, false) = (d1 t d2, false).
By inversion on (d1, false) vp (x, true), d1 v x.
By inversion on (d2, false) vp (x, true), d2 v x.
Hence x is an upper bound for d1 and d2.
Hence d1 t d2 v x.
Hence (d1 t d2, false) vp (x, true).
Hence v1 tp v2 vp v.
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• Case v1 = (x1, true) and v2 = (x2, true):
Now case on v:

– Case v = (d, false):
By inversion on (x1, true) vp (d, false), we know l = >.
By inversion on (x2, true) vp (d, false), we know l = >.
Now consider whether x1 = x2 or not. If it does, then by the definition of tp, (x1, true) tp
(x2, true) = (x1, true).
By definition of vp, we have (x1, true) vp (>, false). So v1 tp v2 vp v.
If it does not, then v1 tp v2 = (>, false).
By the definition of vp, we have (>, false) vp (>, false). So v1 tp v2 vp v.

– Case v = (x, true):
By inversion on (x1, true) vp (x, true), we know x = x1.
By inversion on (x2, true) vp (x, true), we know x = x2.
Hence x1 = x2.
By the definition of tp, (x1, true) tp (x2, true) = (x1, true).
Hence v1 tp v2 vp v.

• Case v1 = (x1, true) and v2 = (d2, false):
Now case on v:

– Case v = (d, false):
Now consider whether d2 v x1.
If it is, then (x1, true) tp (d2, false) = (x1, true) = v1.
Hence v1 tp v2 vp v.
Otherwise, (x1, true) tp (d2, false) = (>, false).
By inversion on (x1, true) vp (d, false), we know l = >.
By reflexivity, (>, false) vp (>, false).
Hence v1 tp v2 vp v.

– Case v = (x, true):
By inversion on (x1, true) vp (x, true), we know that x1 = x.
By inversion on (d2, false) vp (x, true), we know that d2 v x.
By transitivity, d2 v x1.
By the definition of tp, it follows that (x1, true) tp (d2, false) = (x1, true).
By defininition of vp, (x1, true) vp (x1, true).
Hence v1 tp v2 vp v.

• Case v1 = (d1, false) and v2 = (x2, true):
Symmetric with the previous case.

(b) For all v1, v2 ∈ Dp, v1 vp v1 tp v2 and v2 vp v1 tp v2.
Assume v1, v2 ∈ Dp, and proceed by case analysis.

• Case v1 = (d1, false) and v2 = (d2, false):
Since t is a join operator, we know d1 v d1 t d2.
By the definition of vp, (d1, false) v (d1 t d2, false).
By the definition of tp, v1 tp v2 = (d1 t d2, false).
Hence v1 vp v1 tp v2.

Since t is a join operator, we know d1 v d1 t d2.
By the definition of vp, (d2, false) v (d1 t d2, false).
By the definition of tp, v1 tp v2 = (d1 t d2, false).
Hence v2 vp v1 tp v2.
Therefore v1 vp v1 t v2 and v2 vp v1 t v2.

• Case v1 = (d1, false) and v2 = (x2, true):
Consider whether d1 v x2.
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– Case d1 v x2:
By the definition of tp, we know (d1, false) tp (x2, true) = (x2, true).
By the definition of tp, we know (d1, false) vp (x2, true).
Hence v1 vp v1 tp v2.
By reflexivity, (x2, true) vp (x2, true).
Hence v2 vp v1 tp v2.
Therefore v1 vp v1 t v2 and v2 vp v1 t v2.

– Case d1 6v x2:
By the definition of tp, we know (d1, false) tp (x2, true) = (>, false).
Since d1 v >, by the definition of vp we know (d1, false) v (>, false).
Hence v1 vp v1 tp v2.
By the definition of vp, we know (x2, true) v (>, false).
Hence v2 vp v1 tp v2.
Therefore v1 vp v1 t v2 and v2 vp v1 t v2.

• Case v1 = (x1, true) and v2 = (d2, false):
Symmetric with the previous case.
• Case v1 = (x1, true) and v2 = (x2, true):

Consider whether x1 equals x2.
– Case x1 = x2:

By the definition tp, (x1, true) tp (x2, true) = (x1, true).
By reflexivity, (x1, true) vp (x1, true).
Hence v1 vp v1 tp v2.
By reflexivity, (x2, true) vp (x1, true).
Hence v2 vp v1 tp v2.
Therefore v1 vp v1 t v2 and v2 vp v1 t v2.

– Case x1 6= x2:
By the definition tp, (x1, true) tp (x2, true) = (>, false).
By the definition of vp, (x1, true) vp (>, false).
Hence v1 vp v1 tp v2.
By the definition of vp, (x2, true) vp (>, false).
Hence v2 vp v1 tp v2.
Therefore v1 vp v1 t v2 and v2 vp v1 t v2.

3. ⊥p is the least element of Dp.

⊥p is defined to be (⊥, false). In order to be the least element of Dp, it must be less than or equal to every
element of Dp. By Lemma 4, the elements of Dp partition into (d, false) for all d ∈ D, and (x, true) for all
x ∈ X , where X = D − {>}.
We consider both cases:

• (d, false) for all d ∈ D:
By the definition of vp, (⊥, false) vp (d, false) iff ⊥ v d.
Since ⊥ is the least element of D, ⊥ v d.
Therefore ⊥p = (⊥, false) vp (d, false).

• (x, true) for all x ∈ X:
By the definition of vp, (⊥, false) vp (x, true) iff ⊥ v x.
Since ⊥ is the least element of D, ⊥ v x.
Therefore ⊥p = (⊥, false) vp (x, true).

Therefore ⊥p is less than or equal to all elements of Dp.
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4. >p is the greatest element of Dp.

>p is defined to be (>, false). In order to be the greatest element of Dp, every element of Dp must be less than
or equal to it. By Lemma 4, the elements of Dp partition into (d, false) for all d ∈ D, and (x, true) for all
x ∈ X , where X = D − {>}.
We consider both cases:

• (d, false) for all d ∈ D:
By the definition of vp, (d, false) vp (>, false) iff d v >.
Since > is the greatest element of D, d v >.
Therefore (d, false) vp (>, false) = >p.

• (x, true) for all x ∈ X:
By the definition of vp, (x, true) vp (>, false) iff > v >.
Therefore (x, true) vp (>, false) = >p.

Therefore all elements of Dp are less than or equal to >p.

B Quasi-determinism for LVish
In this appendix, we show that LVish programs are quasi-deterministic: on every run, a given LVish program will
either produce the same answer or raise an error.

For working with stores, we make use of Definitions 2, 3, 4, and 5 from the main text of the paper, as well as the
following definition:

Definition 7. The least upper bound (lub) of two stores S1 and S2 (written S1 tS S2) is defined as follows:
• S1 tS S2 = >S iff S1 = >S or S2 = >S .

• S1 tS S2 = >S iff there exists some l ∈ dom(S1) ∩ dom(S2) such that S1(l) tp S2(l) = >p.

• Otherwise, S1 tS S2 is the store S such that:

– dom(S) = dom(S1) ∪ dom(S2), and

– For all l ∈ dom(S):

S(l) =


S1(l) tp S2(l) if l ∈ dom(S1) ∩ dom(S2)
S1(l) if l /∈ dom(S2)
S2(l) if l /∈ dom(S1)

B.1 Decomposition Preservation
Lemma 6 pertains to situations where an LVish expression e can be decomposed two ways: into a context E0 and a
redex e0, and into a context E1 and a redex e1, where E0 and E1 differ.

It says that, if E0[e0] and E1[e1] are initially equivalent (to each other and to e), then, if we substitute any other
e′0 for e0, resulting in E0[e′0], there will be some context E′1 that we can substitute for E1 in E1[e′1], resulting in an
expression E′1[e1] that is equivalent to E0[e′0].

Lemma 6 (Decomposition Preservation). Suppose e = E0[e0] and e = E1[e1], where E0 and E1 are distinct
evaluation contexts and e0 and e1 are redexes. Then, for all e′0, there exists an evaluation context E′1 such that
E0[e′0] = E′1[e1].

Proof. Consider arbitrary e′0. The proof proceeds by induction on the structure of e.
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• Case e = x:

Since there is no decomposition of x into a context and a redex, this case cannot occur. (The only applicable
context is [ ], and x is not a redex.)

• Case e = v:

Since there is no decomposition of v into a context and a redex, this case cannot occur. (The only applicable
context is [ ], and values are not redexes.)

• Case e = ea eb:

First, note that e cannot be a reducible expression. If that were the case, then we would have ea = λx. e′a
for some e′a and eb = v for some value v. Since λx. e′a and v are both values, then there would be only one
decomposition of e into context and redex (context [ ] and redex e), which contradicts the lemma’s assumption
that e decomposes into E0[e0] and E1[e1], where E0 and E1 are distinct.

Now, let us proceed by case analysis on E0 andE1. Note that the number of cases we have to consider is limited
by the fact that e = ea eb is an application.

– Case E0 = ea Eb0 and E1 = ea Eb1 :
We have that e = E0[e0] and e = E1[e1] and e = ea eb.
Hence e = E0[e0] = ea Eb0 [e0] = E1[e1] = ea Eb1 [e1].
Hence eb = Eb0 [e0] = Eb1 [e1].
Note that Eb0 and Eb1 must be distinct, since E0 and E1 are distinct by assumption, and E0 = ea Eb0 and
E1 = ea Eb1 .
Also, note that e0 and e1 are redexes, by assumption.
Hence, by IH, there exists an E′b1 such that Eb0 [e′0] = E′b1 [e1].
Hence ea Eb0 [e′0] = ea E

′
b1

[e1].
Choose E′1 = ea E

′
b1

.
Then E0[e′0] = E′1[e1].

– Case E0 = Ea0 eb and E1 = Ea1 eb:
Similar to the previous case.

– Case E0 = ea Eb0 and E1 = Ea1 eb:
We have that e = E0[e0] and e = E1[e1] and e = ea eb.
Hence e = ea Eb0 [e0] = Ea1

[e1] eb = ea eb.
Hence ea = Ea1 [e1] and eb = Eb0 [e0].
Choose E′1 = Ea1

Eb0 [e′0].
Then E0[e′0] = ea Eb0 [e′0] = Ea1

[e1] Eb0 [e′0] = E′1[e1].

– Case E0 = Ea0
eb and E1 = Ea Eb1 :

Similar to the previous case.

• Case e = get ea eb:

Similar to the application case.

• Case e = put ea eb:

Similar to the application case.

• Case e = freeze ea:

In this case, E0 = freeze Ea0
and E1 = freeze Ea1

.

So e′ = Ea0
[e0] = Ea1

[e1].
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Note that Ea0 and Ea1 are distinct, since, if they were not, then E0 and E1 would also not be distinct, contra-
dicting the assumption of the theorem.

Hence by IH, there exists an E′a1
such that Ea0 [e′0] = E′a1

[e1].

Hence, by congruence of equality, freeze Ea0
[e′0] = freeze E′a1

[e1].

So we can take E′1 = freeze E′a1
.

• Case e = freeze ea after eb with ec:

This is a reducible expression, and hence E0 = E1 = [ ] and e0 = e1 = e, which contradicts the hypothesis.

• Case e = freeze va after vb with vc, {e1, . . . , en} , H:

First, note that e cannot be a reducible expression (i.e., each ei = vi for 1 to n). If that were the case, then
E0 = E1 = [ ], which contradicts the assumption of the theorem.

Therefore E0 = freeze va after vb with vc, {v1, . . . , Evi , . . . , vn} , H .
Therefore E1 = freeze va after vb with vc,

{
v1, . . . , Evj , . . . , vn

}
, H .

Now consider whether i = j.

– Case i = j:
In this case, we know that Evi

[e0] = Evj [e1].
By induction, we have E′vj such that Evi [e

′
0] = E′vj [e1].

Then we can take E′1 = freeze va after vb with vc,
{
e1, . . . , E

′
vj , . . . , en

}
, H .

– Case i 6= j:
Without loss of generality, suppose i < j.
In this case, we know that ei = Evi [e0] and ej = Evj [e1].
Choose E′1 = freeze va after vb with vc,

{
. . . , Evi [e

′
0], . . . , Evj , . . .

}
, H .

Then E′0[e′0] = freeze va after vb with vc, {. . . , Evi [e
′
0], . . . , vj , . . .} , H .

So E′0[e′0] = freeze va after vb with vc,
{
. . . , Evi

[e′0], . . . , Evj [e1], . . .
}
, H = E′1[e1].

B.2 Monotonicity
Lemma 7 (Monotonicity). If 〈S; e〉 ↪−→ 〈S′; e′〉, then S vS S

′.

Proof. By induction on the derivation of 〈S; e〉 ↪−→ 〈S′; e′〉, by cases on the last rule in the derivation.

• Case E-EVAL-CTXT:

Given: 〈S; E[e]〉 ↪−→ 〈S′; E[e′]〉.
To show: S vS S

′.

From the premise of E-EVAL-CTXT, 〈S; e〉 ↪−→ 〈S′; e′〉.
Hence by IH, S vS S

′, as we were required to show.

• Case E-BETA:

Immediate by the definition of vS , since S does not change.

• Case E-NEW:

Given: 〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉.
To show: S vS S[l 7→ (⊥, false)].

By Definition 3, we have to show that dom(S) ⊆ dom(S[l 7→ (⊥, false)]) and that for all l′ ∈ dom(S),
S(l′) vp (S[l 7→ (⊥, false)])(l′).
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By the definition of store update, S[l 7→ (d1, true)] can only either update an existing binding in S or extend S
with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ (⊥, false)]).

From the side condition of E-NEW, l /∈ dom(S).

Hence S[l 7→ (⊥, false)] adds a new binding for l in S.

Hence S[l 7→ (d1, true)] does not update any existing bindings in S.

Hence, for all l′ ∈ dom(S), S(l′) vp (S[l 7→ (d1, true)])(l′).

Therefore S vS S[l 7→ (⊥, false)], as required.

• Case E-PUT:

Given: 〈S; put l d2〉 ↪−→ 〈S[l 7→ p2]; ()〉.
To show: S vS S[l 7→ p2].

By Definition 3, we have to show that dom(S) ⊆ dom(S[l 7→ p2]) and that for all l′ ∈ dom(S),
S(l′) vp (S[l 7→ p2])(l′).

By the definition of store update, S[l 7→ p2] can only either update an existing binding in S or extend S with a
new binding.

Hence dom(S) ⊆ dom(S[l 7→ p2]).

From the premises of E-PUT, S(l) = p1. Therefore l ∈ dom(S).

Hence S[l 7→ p2] updates the existing binding for l in S from p1 to p2.

From the premises of E-PUT, p2 = p1 tp (d2, false).

Hence, by the definition of tp, p1 vp p2.

S[l 7→ p2] does not update any other bindings in S, hence, for all l′ ∈ dom(S), S(l′) vp (S[l 7→ p2])(l′).

Hence S vS S[l 7→ p2], as required.

• Case E-PUT-ERR:

Given: 〈S; put l d2〉 ↪−→ error.

By the definition of error, error = 〈>S ; e〉 for any e.

To show: S vS >S .

Immediate by the definition of vS .

• Case E-GET:

Immediate by the definition of vS , since S does not change.

• Case E-FREEZE-INIT:

Immediate by the definition of vS , since S does not change.

• Case E-SPAWN-HANDLER:

Immediate by the definition of vS , since S does not change.

• Case E-FREEZE-FINAL:

Given: 〈S; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉.
To show: S vS S[l 7→ (d1, true)].

By Definition 3, we have to show that dom(S) ⊆ dom(S[l 7→ (d1, true)]) and that for all l′ ∈ dom(S),
S(l′) vp (S[l 7→ (d1, true)])(l′).
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By the definition of store update, S[l 7→ (d1, true)] can only either update an existing binding in S or extend S
with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ (d1, true)]).

From the premises of E-FREEZE-FINAL, S(l) = (d1, frz 1). Therefore l ∈ dom(S).

Hence S[l 7→ (d1, true)] updates the existing binding for l in S from (d1, frz 1) to (d1, true).

By the definition of vp, (d1, frz 1) vp (d1, true).

S[l 7→ (d1, true)] does not update any other bindings in S, hence, for all l′ ∈ dom(S),
S(l′) vp (S[l 7→ (d1, true)])(l′).

Hence S vS S[l 7→ (d1, true)], as required.

• Case E-FREEZE-SIMPLE:

Given: 〈S; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉.
To show: S vS S[l 7→ (d1, true)].

Similar to the previous case.

B.3 Independence
This is the proof of Lemma 3 from the main text of the paper.

Proof. Consider arbitrary S′′ such that S′′ is non-conflicting with 〈S; e〉 ↪−→ 〈S′; e′〉 and S′ tS S′′ =frz S and
S′ tS S′′ 6= >S .

To show: 〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.
The proof is by induction on the derivation of 〈S; e〉 ↪−→ 〈S′; e′〉, by cases on the last rule in the derivation. In

every case we may assume that 〈S′; e′〉 6= error. Since 〈S′; e′〉 6= error, we do not need to consider the E-PUT-ERR
rule.

The assumption that S′ tS S′′ =frz S is only needed in the E-FREEZE-FINAL and E-FREEZE-SIMPLE cases.

• Case E-EVAL-CTXT:

Given: 〈S; E[e]〉 ↪−→ 〈S′; E[e′]〉.
To show: 〈S tS S′′; E[e]〉 ↪−→ 〈S′ tS S′′; E[e′]〉.
From the premise of E-EVAL-CTXT, we have that 〈S; e〉 ↪−→ 〈S′; e′〉.
Therefore, by IH, we have that 〈S tS S′′; e〉 ↪−→ 〈S′ tS S′′; e′〉.
Therefore, by E-EVAL-CTXT, we have that 〈S tS S′′; E[e]〉 ↪−→ 〈S′ tS S′′; E[e′]〉, as we were required to
show.

• Case E-BETA:

Given: 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉.
To show: 〈S tS S′′; (λx. e) v〉 ↪−→ 〈S tS S′′; e[x := v]〉.
Immediate by E-BETA.

• Case E-NEW:

Given: 〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉.
To show: 〈S tS S′′; new〉 ↪−→ 〈(S[l 7→ (⊥, false)]) tS S′′; l〉.
By E-NEW, we have that 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l′ 7→ (⊥, false)]; l′〉, where l′ /∈ dom(S tS S′′).

By assumption, S′′ is non-conflicting with 〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉.
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Therefore l /∈ dom(S′′).

From the side condition of E-NEW, l /∈ dom(S).

Therefore l /∈ dom(S tS S′′).

Therefore, in 〈(S tS S′′)[l′ 7→ (⊥, false)]; l′〉, we can α-rename l′ to l,
resulting in 〈(S tS S′′)[l 7→ (⊥, false)]; l〉.
Therefore 〈S tS S′′; new〉 ↪−→ 〈(S tS S′′)[l 7→ (⊥, false)]; l〉.
Note that:

(S tS S′′)[l 7→ (⊥, false)] = S[l 7→ (⊥, false)] tS S′′[l 7→ (⊥, false)]

= S tS [l 7→ (⊥, false)] tS S′′ tS [l 7→ (⊥, false)]

= S tS [l 7→ (⊥, false)] tS S′′

= S[l 7→ (⊥, false)] tS S′′.

Therefore 〈S tS S′′; new〉 ↪−→ 〈S[l 7→ (⊥, false)] tS S′′; l〉, as we were required to show.

• Case E-PUT:

Given: 〈S; put l d2〉 ↪−→ 〈S[l 7→ p2]; ()〉.
To show: 〈S tS S′′; put l d2〉 ↪−→ 〈S[l 7→ p2] tS S′′; ()〉.
We will first show that

〈S tS S′′; put l d2〉 ↪−→ 〈(S tS S′′)[l 7→ p2]; ()〉
and then show why this is sufficient.

We proceed by cases on l:

– l /∈ dom(S′′):
By assumption, S[l 7→ p2] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ p2].
Hence S tS S′′ 6= >S .
Therefore, by Definition 7, (S tS S′′)(l) = S(l).
From the premises of E-PUT, S(l) = p1.
Hence (S tS S′′)(l) = p1.
From the premises of E-PUT, p2 = p1 tp (d2, false) and p2 6= >p.
Therefore, by E-PUT, we have: 〈S tS S′′; put l d2〉 ↪−→ 〈(S tS S′′)[l 7→ p2]; ()〉.

– l ∈ dom(S′′):
By assumption, S[l 7→ p2] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ p2].
Hence S tS S′′ 6= >S .
Therefore (S tS S′′)(l) = S(l) tp S′′(l).
From the premises of E-PUT, S(l) = p1.
Hence (S tS S′′)(l) = p′1, where p1 vp p

′
1.

From the premises of E-PUT, p2 = p1 tp (d2, false).
Let p′2 = p′1 tp (d2, false).
Hence p2 vp p

′
2.

By assumption, S[l 7→ p2] tS S′′ 6= >S .
Therefore, by Definition 7, p2 tS S′′(l) 6= >p.
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Note that:

>p 6= p2 tS S′′(l)
= p1 tp (d2, false) tp S′′(l)
= S(l) tp (d2, false) tp S′′(l)
= S(l) tp S′′(l) tp (d2, false)

= (S tS S′′)(l) tp (d2, false)

= p′1 tp (d2, false)

= p′2.

Hence p′2 6= >p.
Hence (S tS S′′)(l) = p′1 and p′2 = p′1 tp (d2, false) and p′2 6= >p.
Therefore, by E-PUT we have: 〈S tS S′′; put l d2〉 ↪−→ 〈(S tS S′′)[l 7→ p′2]; ()〉.
Note that:

((S tS S′′)[l 7→ p′2])(l) = (S tS S′′)(l) tp ([l 7→ p′2])(l)

= p′1 tp p′2
= p′1 tp p′1 tp (d2, false)

= p′1 tp (d2, false)

and

((S tS S′′)[l 7→ p2])(l) = (S tS S′′)(l) tp ([l 7→ p2])(l)

= p′1 tp p2
= p′1 tp p1 tp (d2, false)

= p′1 tp (d2, false) (since p1 vp p
′
1).

Therefore (S tS S′′)[l 7→ p′2] = (S tS S′′)[l 7→ p2].
Therefore, 〈S tS S′′; put l d2〉 ↪−→ 〈(S tS S′′)[l 7→ p2]; ()〉.

Note that:

(S tS S′′)[l 7→ p2] = S[l 7→ p2] tS S′′[l 7→ p2]

= S tS [l 7→ p2] tS S′′ tS [l 7→ p2]

= S tS [l 7→ p2] tS S′′

= S[l 7→ p2] tS S′′.

Therefore 〈S tS S′′; put l d2〉 ↪−→ 〈S[l 7→ p2] tS S′′; ()〉, as we were required to show.

• Case E-GET:

Given: 〈S; get l P 〉 ↪−→ 〈S; p2〉.
To show: 〈S tS S′′; get l P 〉 ↪−→ 〈S tS S′′; p2〉.
From the premises of E-GET, S(l) = p1 and incomp(P ) and p2 ∈ P and p2 vp p1.

By assumption, S tS S′′ 6= >S .

Hence (S tS S′′) = p′1, where p1 vp p
′
1.

By the transitivity of vp, p2 vp p
′
1.
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Hence, S(l) = p′1 and incomp(P ) and p2 ∈ P and p2 vp p
′
1.

Therefore, by E-GET,

〈S tS S′′; get l P 〉 ↪−→ 〈S tS S′′; p2〉,
as we were required to show.

• Case E-FREEZE-INIT:

Given: 〈S; freeze l after Q with λx. e〉 ↪−→
〈S; freeze l after Q with λx. e, {} , {}〉.
To show: 〈S tS S′′; freeze l after Q with λx. e〉 ↪−→
〈S tS S′′; freeze l after Q with λx. e, {} , {}〉.
Immediate by E-FREEZE-INIT.

• Case E-SPAWN-HANDLER:

Given:

〈S; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→
〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉.
To show:

〈S tS S′′; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→
〈S tS S′′; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉.
From the premises of E-SPAWN-HANDLER, S(l) = (d1, frz 1) and d2 v d1 and d2 /∈ H and d2 ∈ Q.

By assumption, S tS S′′ 6= >S .

Hence (S tS S′′)(l) = (d′1, frz
′
1) where (d1, frz 1) vp (d′1, frz

′
1).

By Definition 1, d1 v d′1.

By the transitivity of v, d2 v d′1.

Hence (S tS S′′)(l) = (d′1, frz
′
1) and d2 v d′1 and d2 /∈ H and d2 ∈ Q.

Therefore, by E-SPAWN-HANDLER,

〈S tS S′′; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→
〈S tS S′′; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉,
as we were required to show.

• Case E-FREEZE-FINAL:

Given: 〈S; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉.
To show: 〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)] tS S′′; d1〉.
We will first show that

〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉
and then show why this is sufficient.

We proceed by cases on l:

– l /∈ dom(S′′):
By assumption, S[l 7→ (d1, true)] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ (d1, true)].
Therefore S tS S′′ 6= >S .
Hence, by Definition 7, (S tS S′′)(l) = S(l).
From the premises of E-FREEZE-FINAL, we have that S(l) = (d1, frz 1).
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Hence (S tS S′′)(l) = (d1, frz 1).
From the premises of E-FREEZE-FINAL, we have that ∀d2 . (d2 v d1 ∧ d2 ∈ Q⇒ d2 ∈ H).
Therefore, by E-FREEZE-FINAL, we have that
〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

– l ∈ dom(S′′):
By assumption, S[l 7→ (d1, true)] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ (d1, true)].
Therefore S tS S′′ 6= >S .
Hence, by Definition 7, (S tS S′′)(l) = S(l) tp S′′(l).
From the premises of E-FREEZE-FINAL, we have that S(l) = (d1, frz 1).
By assumption, S[l 7→ (d1, true)] tS S′′ =frz S.
Therefore frz 1 = true.
Therefore S(l) = (d1, true).
Therefore (S tS S′′)(l) = (d1, true) tp S′′(l).
We proceed by cases on S′′(l):

∗ S′′(l) = (d3, false), where d3 v d1:
By Definition 6, (d1, true) tp (d3, false) = (d1, true).
Therefore (S tS S′′)(l) = (d1, true).
From the premises of E-FREEZE-FINAL, we have that ∀d2 . (d2 v d1 ∧ d2 ∈ Q⇒ d2 ∈ H).
Therefore, by E-FREEZE-FINAL, we have that
〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d3, false), where d3 6v d1:
By Definition 6, (d1, true) tp (d3, false) = (>, false).
Therefore S(l) tp S′′(l) = (>, false).
By Definition 1, (>, false) = >p.
Therefore S(l) tp S′′(l) = >p.
Therefore, by Definition 7, S tS S′′ = >S .
This is a contradiction.
Therefore,
〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d3, true), where d3 = d1:
By Definition 6, (d1, true) tp (d3, true) = (d1, true).
Therefore (S tS S′′)(l) = (d1, true).
From the premises of E-FREEZE-FINAL, we have that ∀d2 . (d2 v d1 ∧ d2 ∈ Q⇒ d2 ∈ H).
Therefore, by E-FREEZE-FINAL, we have that
〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d3, true), where d3 6= d1:
By Definition 6, (d1, true) tp (d3, true) = (>, false).
Therefore S(l) tp S′′(l) = (>, false).
By Definition 1, (>, false) = >p.
Therefore S(l) tp S′′(l) = >p.
Therefore, by Definition 7, S tS S′′ = >S .
This is a contradiction.
Therefore,
〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

In each case we have shown that

〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.
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Note that:

(S tS S′′)[l 7→ (d1, true)] = S[l 7→ (d1, true)] tS S′′[l 7→ (d1, true)]

= S tS [l 7→ (d1, true)] tS S′′ tS [l 7→ (d1, true)]

= S tS [l 7→ (d1, true)] tS S′′

= S[l 7→ (d1, true)] tS S′′.

Therefore

〈S tS S′′; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)] tS S′′; d1〉,
as we were required to show.

• Case E-FREEZE-SIMPLE:

Given: 〈S; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉.
To show: 〈S tS S′′; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)] tS S′′; d1〉.
We will first show that

〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉
and then show why this is sufficient.

We proceed by cases on l:

– l /∈ dom(S′′):
By assumption, S[l 7→ (d1, true)] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ (d1, true)].
Therefore S tS S′′ 6= >S .
Hence, by Definition 7, (S tS S′′)(l) = S(l).
From the premise of E-FREEZE-SIMPLE, we have that S(l) = (d1, frz 1).
Therefore, by E-FREEZE-SIMPLE, we have that
〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

– l ∈ dom(S′′):
By assumption, S[l 7→ (d1, true)] tS S′′ 6= >S .
By Lemma 7, S vS S[l 7→ (d1, true)].
Therefore S tS S′′ 6= >S .
Hence, by Definition 7, (S tS S′′)(l) = S(l) tp S′′(l).
From the premise of E-FREEZE-SIMPLE, we have that S(l) = (d1, frz 1).
By assumption, S[l 7→ (d1, true)] tS S′′ =frz S.
Therefore frz 1 = true.
Therefore (S tS S′′)(l) = (d1, true) tp S′′(l).
We proceed by cases on S′′(l):

∗ S′′(l) = (d2, false), where d2 v d1:
By Definition 6, (d1, true) tp (d2, false) = (d1, true).
Therefore (S tS S′′)(l) = (d1, true).
Therefore, by E-FREEZE-SIMPLE, we have that
〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d2, false), where d2 6v d1:
By Definition 6, (d1, true) tp (d2, false) = (>, false).
By Definition 1, (>, false) = >p.
Therefore S(l) tp S′′(l) = >p.
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Therefore, by Definition 7, S tS S′′ = >S .
This is a contradiction.
Therefore,
〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d2, true), where d2 = d1:
Therefore (S tS S′′)(l) = (d1, true) tp (d2, true).
By Definition 6, (d1, true) tp (d2, true) = (d1, true).
Therefore (S tS S′′)(l) = (d1, true).
Therefore, by E-FREEZE-SIMPLE, we have that
〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

∗ S′′(l) = (d2, true), where d2 6= d1:
By Definition 6, (d1, true) tp (d2, true) = (>, false).
By Definition 1, (>, false) = >p.
Therefore S(l) tp S′′(l) = >p.
Therefore, by Definition 7, S tS S′′ = >S .
This is a contradiction.
Therefore,
〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.

In each case we have shown that

〈S tS S′′; freeze l〉 ↪−→ 〈(S tS S′′)[l 7→ (d1, true)]; d1〉.
Note that:

(S tS S′′)[l 7→ (d1, true)] = S[l 7→ (d1, true)] tS S′′[l 7→ (d1, true)]

= S tS [l 7→ (d1, true)] tS S′′ tS [l 7→ (d1, true)]

= S tS [l 7→ (d1, true)] tS S′′

= S[l 7→ (d1, true)] tS S′′.

Therefore 〈S tS S′′; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)] tS S′′; d1〉, as we were required to show.

B.4 Stability Preservation
Definition 8 (Stable Configurations). A configuration 〈S; e〉 is stable if the free locations of e are a subset of dom(S).

Lemma 8 (Stability Preservation). If σ is stable and σ ↪−→ σ′, then σ′ is stable.

Proof. Routine induction on the derivation of the reduction relation.

B.5 Renaming
Lemma 9 (Renaming). If π is a permutation and σ ↪−→ σ′, then π(σ) ↪−→ π(σ′).

Proof. Routine induction on the derivation of the reduction relation.

In the proof of confluence (i.e., all following theorems), we implicitly assume that all configurations mentioned
are stable.
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B.6 Reordering
Lemma 10 (Reordering). If 〈S; ea〉 ↪−→ 〈Sa; e′a〉 and 〈S; eb〉 ↪−→ 〈Sb; e

′
b〉, then either

• There exists S′ and permutations πa and πb such that πa(S) = πb(S) = S and

1. 〈πb(Sb); ea〉 ↪−→ 〈S′; πa(e′a)〉 and

2. 〈πa(Sa); eb〉 ↪−→ 〈S′; πb(e′b)〉 and

3. πb(πa(e′a)) = πa(e′a) and πa(πb(e
′
b)) = πb(e

′
b),

or

• 〈Sb; ea〉 ↪−→ error or 〈Sa; eb〉 ↪−→ error.

Proof. Assume Da :: 〈S; ea〉 ↪−→ 〈Sa; e′a〉 and Db :: 〈S; eb〉 ↪−→ 〈Sb; e
′
b〉.

Now, consider whether Sa =frz S and Sb =frz S.

• If Sa =frz S and Sb =frz S:

Let ∆a = dom(Sa)− dom(S) and let ∆b = dom(Sb).
Suppose ∆a = {l1, . . . , ln}.
Now choose L = {l′1, . . . , l′n} such that l′i 6∈ dom(Sa) ∪ dom(Sb).
Suppose ∆b = {m1, . . . ,mk}.
Now choose M = {m′1, . . . ,m′k} such that m′i 6∈ dom(Sa) ∪ dom(Sb) ∪ L.
Let πa = (l1 l

′
1) · · · (ln l′n).

Let πb = (m1 m
′
1) · · · (mk m

′
k).

Since ∆a ∩ dom(S) = ∅, we know that πa(S) = S.
Since ∆b ∩ dom(S) = ∅, we know that πb(S) = S.

By renaming (Lemma 9), 〈S; ea〉 ↪−→ 〈πa(Sa); πa(e′a)〉.
By renaming (Lemma 9), 〈S; eb〉 ↪−→ 〈πb(Sb); πb(e

′
b)〉.

So we know that πa(e′a) is supported by dom(πa(Sa)).
So we know that πb(e′b) is supported by dom(πb(Sb)).
Hence πb(πa(e′a)) = πa(e′a), since πb is the identity on S, and does not act on L.
Hence πa(πb(e

′
b)) = πa(e′a), since πa is the identity on S, and does not act on M .

Furthermore, we know that πb(Sb) does not conflict with 〈S; ea〉 ↪−→ 〈πa(Sa); πa(e′a)〉.
This contradicts the construction of π:
Assume an l ∈ (dom(πa(Sa))− dom(S)) ∩ (dom(π(Sb))− dom(S)).
Then l ∈ (dom(πa(Sa))− dom(S)) and l ∈ (dom(π(Sb))− dom(S)).
Hence l = l′i for some l′i ∈ L, since l ∈ (dom(πa(Sa))− dom(S)).
But since l ∈ (dom(π(Sb))− dom(S)), we know l ∈M , a contradiction, since that implies l 6∈ L.

Symmetrically, we know that πa(Sa) does not conflict with 〈S; eb〉 ↪−→ 〈πb(Sb); πb(e
′
b)〉.

If it did, then there is an l ∈ (dom(πa(Sa))− dom(S)) ∩ (dom(πb(Sb))− dom(S)).
Again, this contradicts the construction of πa and πb.

Next, we know by monotonicity (Lemma 7) that S vS πa(Sa) and S vS πb(Sb).
Hence S tS πa(Sa) = πa(Sa) and S tS πb(Sb) = πb(Sb).

Now consider whether πa(Sa) tS πb(Sb) = >S .
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– Case πa(Sa) tS πb(Sb) 6= >S :
By independence (Lemma 3), 〈S tS πa(Sa); eb〉 ↪−→ 〈πb(Sb) tS πa(Sa); πb(e

′
b)〉.

By independence (Lemma 3), 〈S tS πb(Sb)); ea〉 ↪−→ 〈πa(Sa) tS πb(Sb); πa(e′a)〉.
So 〈πa(Sa); eb〉 ↪−→ 〈πb(Sb) tS πa(Sa); πb(e

′
b)〉.

So 〈πb(Sb); ea〉 ↪−→ 〈πa(Sa) tS πb(Sb); πa(e′a)〉.
We take S′ = πa(Sa) tS πb(Sb), πa = π and πb = id as witnesses.

– Case πa(Sa) tS πb(Sb) = >S :
By definition, there is an l such that πa(Sa)(l) tp πb(Sb)(l) = >p.
From the construction of π, it follows that l ∈ dom(S).
Since πa(S) = S, it follows that πa(Sa)(l) = Sa(l).

We know S tS πa(Sa) = πa(Sa) and S tS πb(Sb) = πb(Sb).

We now show that πa(Sa)(l) 6= S(l), and πb(Sb)(l) 6= S(l).
Suppose πa(Sa)(l) = S(l).
Then S(l) tp πb(Sb)(l) = >p, since πa(Sa)(l) tp πb(Sb)(l) = >p.
But we know that S tS πb(Sb) = πb(Sb), and so S(l) tp πb(Sb)(l) = πb(Sb)(l).
This is a contradiction, and so πa(Sa)(l) 6= S(l).
Similarly, πb(Sb)(l) 6= S(l).

The only rule which changes the store, without changing status, is E-PUT.
Hence Da and Db end in E-PUT.
So ea = put l πa(Sa)(l) and eb = put l πb(Sb)(l).
Since πa(Sa)(l) = l, we also know that ea = put l Sa(l).
By E-PUT-ERR, 〈Sa; put l πb(Sb)(l)〉 ↪−→ error.

• Case Sa 6=frz S or Sb 6=frz S:

Without loss of generality, suppose that Sa 6=frz S.
The only rule which changes the status of the store is E-FREEZE-FINAL.
Hence Da uses the E-FREEZE-FINAL.
Hence ea = freeze l after Q with v, {v . . . } , H .
Hence S(l) = (d, false).
Hence e′a = d.
Hence Sa = S[l 7→ (d, true)].
Now we proceed by cases on Db.

– Case E-BETA:
In this case, eb = λx. e v and e′b = [v/x]e and Sb = S.
We take the witness S′ = Sa and π = id.
By rule E-APP, 〈Sa; λx. e v〉 ↪−→ 〈Sa; [v/x]e〉.
Hence 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
By assumption 〈S; ea〉 ↪−→ 〈Sa; e′a〉.
Hence 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

– Case E-NEW:
In this case, eb = new and e′b = l and Sb = S[l′ 7→ (⊥, false)], where l 6∈ dom(S).
Since dom(S) = dom(Sa), we know l 6∈ dom(Sa).
By rule E-NEW, 〈Sa; new〉 ↪−→ Sa[l′ 7→ (⊥, false)]l′. By rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈Sa[l′ 7→
(⊥, false)]; d〉.
We can take S′ = Sa[l′ 7→ (⊥, false)] and πa = πb = id.
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– Case E-PUT:
In this case, eb = put l′ d′. In this case, e′b = ().
In this case, p1 = S(l′).
In this case, p2 = p1 tp (d, false) 6= >.
In this case, Sb = S[l′ 7→ p2]. Now consider whether l = l′:

∗ Case l 6= l′:
Take πa = πb = id, and S′ = Sa[l′ 7→ p2].
Since l 6= l′, p1 = Sa(l′).
By rule E-PUT, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
By rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

∗ Case l = l′:
Consider whether d′ ≤ d:
· Case d′ ≤ d:

First, note that Sb = S, since (d, false) tp (d′, false) = (d, false).
Next, note that Sa(l) = (d, true).
By definition, (d, true) tp (d′, false) = (d, true).
So take S′ = Sa and πa = πb = id.
By rule E-PUT, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
By rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.
· Case d′ > d:

Note that Sa(l) = (d, true).
By definition, (d, true) tp (d′, false) = >p.
By rule E-PUT-ERR, 〈Sa; eb〉 ↪−→ error.

∗ Case E-PUT-ERR:
Can’t happen.

∗ Case E-GET:
We take S′ = Sa and πa = πb = id.

By inversion, we get eb = get l′ P , and S(l′) = p1, and incomp(P )
and p2 ∈ P and p2 vp p1 and e′b = p2 and Sb = S.
Since Sb = S, by equality 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

By monotonicity, S vS Sa.
Hence S(l′) vp Sa(l′).
Hence we can take p′1 = Sa(l′) and then p2 vp p

′
1 by transitivity. By rule E-GET, 〈Sa; eb〉 ↪−→ Sap2.

So 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
∗ Case E-FREEZE-INIT:

By inversion, eb = freeze l after Q′ with λx. e.
By inversion, e′b = freeze l after Q′ with λx. e, ∅, ∅.
By inversion, Sb = S.

Take πa = πb = id and S′ = Sa.
By rule E-FREEZE-INIT, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
Since Sb = S, Da :: 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

∗ Case E-SPAWN-HANDLER:
Take πa = πb = id and S′ = Sa.

By inversion, eb = freeze l′ after Q′ with λx. e0, {e, . . .} , H ′.
By inversion, e′b = freeze l′ after Q′ with λx. e0, {[d2/x]e0, e, . . .} , H ′.
By inversion, Sb = S.
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By inversion, S(l) = (d1, frz1) and d2 v d1 and d2 /∈ H ′ and d2 ∈ Q′.

By monotonicity (Lemma 7), S tS Sa.
Hence Sa(l) = (d′1, frz

′
1) such that (d1, frz1) vp (d′, frz′).

Hence d2 v d′1.
Hence by rule E-SPAWN-HANDLER, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
Since Sb = S, we know 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

∗ Case E-FREEZE-FINAL:
By inversion, eb = freeze l′ after Q′ with v′, {v′, . . .} , H ′.
By inversion, S(l′) = (d′1, frz

′
1).

By inversion, ∀d′2 v d′1. d′2 ∈ Q′ =⇒ d′2 ∈ H ′.
By inversion, Sb = S[l′ 7→ (d′1, true)].
By inversion, e′b = d′1.
Consider whether l = l′:
· Case l 6= l′: In this case, define S′ = Sa[l′ 7→ (d′1, true)], and πa = πb = id.

Note that Sa(l′) = S(l′) and Sb(l) = S(l).
Then by rule E-FREEZE-FINAL, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
Then by rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.
· Case l = l′: In this case, d1 = d′1.

Hence Sb = Sa.
Take S′ = Sa and πa = πb = id.

We know Sa(l) = (d′1, true).
So we know ∀d′2 v d′1. d′2 ∈ Q′ =⇒ d′2 ∈ H ′.
By rule E-FREEZE-FINAL, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.

We know Sb(l) = (d1, true).
So we know ∀d2 v d1. d2 ∈ Q =⇒ d2 ∈ H .
By rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.

∗ Case E-FREEZE-SIMPLE:
By inversion, eb = freeze l′.
By inversion, S(l′) = (d′1, frz

′
1).

By inversion, Sb = S[l′ 7→ (d′1, true)].
By inversion, e′b = d′1.
Consider whether l = l′:
· Case l 6= l′: In this case, define S′ = Sa[l′ 7→ (d′1, true)], and πa = πb = id.

Note that Sa(l′) = S(l′) and Sb(l) = S(l).
Then by rule E-FREEZE-FINAL, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.
Then by rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.
· Case l = l′: In this case, d1 = d′1.

Hence Sb = Sa.
Take S′ = Sa and πa = πb = id.

We know Sa(l) = (d′1, true).
By rule E-FREEZE-SIMPLE, 〈Sa; eb〉 ↪−→ 〈S′; e′b〉.

We know Sb(l) = (d1, true).
So we know ∀d2 v d1. d2 ∈ Q =⇒ d2 ∈ H .
By rule E-FREEZE-FINAL, 〈Sb; ea〉 ↪−→ 〈S′; e′a〉.
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B.7 Context Extension
Lemma 11 (Context Extension). If 〈S; e〉 ↪−→ 〈S′; e′〉, then 〈S; E[e]〉 ↪−→ 〈S′; E[e′]〉.

Proof. Consider whether 〈S; e〉 ↪−→ 〈S′; e′〉 steps by the E-EVAL-CTXT rule or not.

• Case 〈S; E0[e]〉 ↪−→ 〈S′; E0[e′0]〉.
By inversion, 〈S; e〉 ↪−→ 〈S′; e′0〉.
By rule E-EVAL-CTXT with the context E[E0[ ]], 〈S; E[E0[e]]〉 ↪−→ 〈S′; E[E0[e′0]]〉.

• Otherwise:

In this case e is a reducible expression.
By rule E-EVAL-CTXT with the context E, 〈S; E[e]〉 ↪−→ 〈S′; E[e′]〉.

B.8 Contextual Reordering
Lemma 12 (Contextual Reordering). If σ ≡ 〈S; e〉 ↪−→ σa and σ ↪−→ σb using the E-EVAL-CTXT rules, then either

• there exists πa and πb such that πa(S) = πb(S) = S and σ′ such that πa(σa) ↪−→ σ′ and πb(σb) ↪−→ σ′, or

• σa ↪−→ error or σb ↪−→ error.

Proof. By inversion, we get σ = 〈S; e〉, with e = Ea[ea] = Eb[eb],
and σa = 〈Sa; Ea[e′a]〉 and σb = 〈Sb; Eb[e

′
b]〉,

and 〈S; ea〉 ↪−→ 〈Sa; e′a〉 and 〈S; eb〉 ↪−→ 〈Sb; e
′
b〉.

We proceed by induction on the sum of the heights of Ea and Eb, by cases on e:

• Case e = x:

Impossible.

• Case e = v:

Values can’t step, so this case is impossible.

• Case e is reducible:

Since e is reducible, so both contexts are [ ].
Hence the result follows from reordering (Lemma 10).

• Case e = e1 e2:

Now, we proceed by cases on the shape of Ea and Eb:

– Ea = Fa e2 and Eb = Fb e2.

In this case e1 = Fa[ea] = Fb[eb].
By rule E-EVAL-CTXT, 〈S; Fa[ea]〉 ↪−→ 〈Sa; Fa[e′a]〉.
By rule E-EVAL-CTXT, 〈S; Fb[eb]〉 ↪−→ 〈Sb; Fb[e

′
b]〉.

By induction, there exists an S′, e′1, πa and πb such that πa(S) = S and πb(S) = S,
and 〈πb(Sb); Fa[ea]〉 ↪−→ 〈S′; e′1〉 and 〈πa(Sa); Fa[ea]〉 ↪−→ 〈S′; e′1〉.
By context extension (Lemma 11), 〈πb(Sb); Fa[ea] e2〉 ↪−→ 〈S′; e′1 e2〉.
By context extension (Lemma 11), 〈πa(Sa); Fb[eb] e2〉 ↪−→ 〈S′; e′1 e2〉.
Hence 〈πb(Sb); Ea[ea]〉 ↪−→ 〈S′; e′1 e2〉 and 〈πa(Sa); Eb[eb]〉 ↪−→ 〈S′; e′1 e2〉.
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– Ea = e1 Fa and Eb = e1 Fb.

Similar to the previous case.

– Ea = Fa e2 and Eb = e1;Fb.
Then e1 e2 = Fa[ea] Fb[eb].
By reordering, we have πa and πb such that πa(S) = πb(S) and
〈πa(Sa); eb〉 ↪−→ 〈S′; πb(e′b)〉 and
〈πb(Sb); ea〉 ↪−→ 〈S′; πa(e′a)〉 and
πa(πb(e

′
b)) = πb(e

′
b) and πb(πa(e′a)) = πa(e′a).

By E-EVAL-CTXT with E = Fa[πa(e′a)] Fb, 〈πa(Sa); E[eb]〉 ↪−→ 〈S′; E[πb(e
′
b)]〉.

By E-EVAL-CTXT with E′ = Fa Fb[πb(e
′
b)], 〈πb(Sb); E

′[ea]〉 ↪−→ 〈S′; E′[πa(e′a)]〉.
Observe that E[πb(e

′
b)] = E′[πa(e′a)].

– Ea = e1 Fa and Eb = Fb e2.

Similar to the previous case.

• Case e = get e1 e2:

Similar to the previous case.

• Case e = put e1 e2:

Similar to the previous case.

• Case e = freeze e1:

In this case, we can see that Ea = freeze Fa[ea] and Eb = freeze Fb[eb].
We may assume Ea and Eb are not [ ] since we’ve already handled the case when e is reducible.
In this case e1 = Fa[ea] = Fb[eb].
By rule E-EVAL-CTXT, 〈S; Fa[ea]〉 ↪−→ 〈Sa; Fa[e′a]〉.
By rule E-EVAL-CTXT, 〈S; Fb[eb]〉 ↪−→ 〈Sb; Fb[e

′
b]〉.

By induction, there exists an S′, e′1, πa and πb such that πa(S) = S and πb(S) = S,
and 〈πb(Sb); Fa[ea]〉 ↪−→ 〈S′; e′1〉 and 〈πa(Sa); Fa[ea]〉 ↪−→ 〈S′; e′1〉.
By context extension (Lemma 11), 〈πb(Sb); freeze Fa[ea]〉 ↪−→ 〈S′; freeze e′1〉.
By context extension (Lemma 11), 〈πa(Sa); freeze Fb[eb]〉 ↪−→ 〈S′; freeze e′1〉.

• Case freeze e1 after e2 with e3:

Similar to the application case.

• Case freeze l after Q with λx. t, {t1, . . . , tn} , H:

In this case, Ea = freeze l after Q with λx. t, {t1, . . . , Fa, . . . , tn} , H .
In this case, Eb = freeze l after Q with λx. t, {t1, . . . , Fa, . . . , tn} , H .
There are two possibilities, depending on whether or not Fa and Fb are at the same position i or not.

– Same subterm:
Then e = freeze l after Q with λx. t, {t1, . . . , Fa[ea], . . . , tn} , H .
Then e = freeze l after Q with λx. t, {t1, . . . , Fb[eb], . . . , tn} , H .
Then ti = Fa[ea] = Fb[eb].
So by E-EVAL-CTXT, we have 〈S; Fa[ea]〉 ↪−→ 〈Sa; Fa[e′a]〉.
So by E-EVAL-CTXT, we have 〈S; Fb[eb]〉 ↪−→ 〈Sb; Fb[e

′
b]〉.

By induction, we have S′, πa, πb and t′i such that
πa(S) = πb(S) = S and
〈πb(Sb); Fa[ea]〉 ↪−→ 〈S′; t′i〉 and
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〈πa(Sa); Fb[eb]〉 ↪−→ 〈S′; t′i〉.
By context extension (Lemma 11), 〈πb(Sb); Ea[ea]〉 ↪−→ 〈S′; freeze l afterQ with λx. t, {t1, . . . , t′i, . . . , tn} , H〉.
By context extension (Lemma 11), 〈πa(Sa); Eb[eb]〉 ↪−→ 〈S′; freeze l afterQ with λx. t, {t1, . . . , t′i, . . . , tn} , H〉.

– Fa[ea] and Fb[eb] are different subterms:
Then e = freeze l after Q with λx. t, {t1, . . . , Fa[ea], . . . , Fb[eb], . . . , tn} , H .
By reordering, we have πa and πb such that πa(S) = πb(S) and
〈πa(Sa); eb〉 ↪−→ 〈S′; πb(e′b)〉 and
〈πb(Sb); ea〉 ↪−→ 〈S′; πa(e′a)〉 and
πa(πb(e

′
b)) = πb(e

′
b) and πb(πa(e′a)) = πa(e′a).

Let E′a = freeze l after Q with λx. t, {t1, . . . , Fa[ ], . . . , Fb[πb(e
′
b)], . . . , tn} , H .

Let E′b = freeze l after Q with λx. t, {t1, . . . , Fa[πa(e′a)], . . . , Fb[ ], . . . , tn} , H .
Let e′ = freeze l after Q with λx. t, {t1, . . . , Fa[πa(e′a)], . . . , Fb[πb(e

′
b)], . . . , tn} , H .

Note that e′ = E′a[πa(e′a)] = E′b[πb(e
′
b)].

By rule E-EVAL-CTXT, 〈πb(Sb); E
′
a[ea]〉 ↪−→ 〈S′; e′〉.

By rule E-EVAL-CTXT, 〈πa(Sa); E′b[eb]〉 ↪−→ 〈S′; e′〉.

B.9 Strong Local Quasi-Diamond
Lemma 13 (Strong Local Quasi-Diamond). If σ ≡ 〈S; e〉 ↪−→ σa and σ ↪−→ σb, then either:

1. there exist i, j, πa, πb and σc such that πa(S) = πb(S) = S and πa(σa) ↪−→i σc and πb(σb) ↪−→j σc and
i ≤ 1 and j ≤ 1, or

2. σa ↪−→ error or σb ↪−→ error.

Proof. By induction on the size of the derivation of σ ↪−→ σa, by cases on syntax of the term e in σ = 〈S; e〉.

• E-EVAL-CTXT: σ = 〈S; E[e]〉, and σa = 〈S′; E[e′]〉.
Now, consider σ ↪−→ σb.
If it steps by the E-EVAL-CTXT rule, then we conclude with context reordering (Lemma 12), choosing i = j =
1.
If it steps by another rule, then E[e] is a reducible expression, and E[−] = [ ].
Then the result follows by reordering (Lemma 10), choosing i = j = 1.

• E-BETA: σ = 〈S; (λx. e) v〉, and σa = 〈S; e[x := v]〉.
Given:

– 〈S; (λx. e) v〉 ↪−→ 〈S; e[x := v]〉, and

– 〈S; (λx. e) v〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S; e[x := v]〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S; e[x := v]〉.
Choose σc = 〈S; e[x := v]〉, i = 0 and j = 0.

Then 〈S; e[x := v]〉 = σc and σb = σc, as required.

• E-NEW: σ = 〈S; new〉, and σa = 〈S[l 7→ (⊥, false)]; l〉.
Given:
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– 〈S; new〉 ↪−→ 〈S[l 7→ (⊥, false)]; l〉, and

– 〈S; new〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S[l 7→ (⊥, false)]; l〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S[l′ 7→ (⊥, false)]; l′〉.
From the side condition of E-NEW, l /∈ S.

Therefore, in 〈S[l′ 7→ (⊥, false)]; l′〉, we can α-rename l′ to l, resulting in 〈S[l 7→ (⊥, false)]; l〉.
Choose σc = 〈S[l 7→ (⊥, false)]; l〉, i = 0 and j = 0.

Then 〈S; e[x := v]〉 = σc and σb = σc, as required.

• E-PUT: σ = 〈S; put l d2〉, and σa = 〈S[l 7→ p2]; ()〉.
Given:

– 〈S; put l d2〉 ↪−→ 〈S[l 7→ p2]; ()〉, and

– 〈S; put l d2〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S[l 7→ p2]; ()〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S[l 7→ p2]; ()〉.
Choose σc = 〈S[l 7→ p2]; ()〉, i = 0 and j = 0.

Then 〈S[l 7→ p2]; ()〉 = σc and σb = σc, as required.

• E-PUT-ERR: σ = 〈S; put l d2〉, and σa = error.

Given:

– 〈S; put l d2〉 ↪−→ error, and

– 〈S; put l d2〉 ↪−→ σb.

To show: There exist σc, i, j such that

error ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = error.

Choose σc = error, i = 0 and j = 0.

Then error = σc and σb = σc, as required.

• E-GET: σ = 〈S; get l P 〉, and σa = 〈S; p2〉.
Given:

– 〈S; get l P 〉 ↪−→ 〈S; p2〉, and

– 〈S; get l P 〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S; p2〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S; p2〉.
Choose σc = 〈S; p2〉, i = 0 and j = 0.

Then 〈S; p2〉 = σc and σb = σc, as required.
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• E-FREEZE-INIT: σ = 〈S; freeze l afterQ with λx. e〉, and σa = 〈S; freeze l afterQ with λx. e, {} , {}〉.
Given:

– 〈S; freeze l after Q with λx. e〉 ↪−→ 〈S; freeze l after Q with λx. e, {} , {}〉, and

– 〈S; freeze l after Q with λx. e〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S; freeze l after Q with λx. e, {} , {}〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S; freeze l after Q with λx. e, {} , {}〉.
Choose σc = 〈S; freeze l after Q with λx. e, {} , {}〉, i = 0 and j = 0.

Then 〈S; freeze l after Q with λx. e, {} , {}〉 = σc and σb = σc, as required.

• E-SPAWN-HANDLER: σ = 〈S; freeze l after Q with λx. e0, {e, . . . } , H〉, and

σa = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉.
Given:

– 〈S; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→
〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉, and

– 〈S; freeze l after Q with λx. e0, {e, . . . } , H〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1
and j ≤ 1.

By inspection of the operational semantics, one of the following possibilities must hold:

– σ ↪−→ σb by E-SPAWN-HANDLER:
Hence σb = 〈S; freeze l after Q with λx. e0, {e0[x := d′2], e, . . . } , {d′2} ∪H〉.
Here, there are two subcases:

∗ d′2 6= d2:
Choose:
σc = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2, d′2} ∪H〉,
i = 1 and j = 1.
To show:
1. σa ↪−→ σc, where
σa = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 and
σc = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2, d′2} ∪H〉.
The proof is as follows:
From the premises of E-SPAWN-HANDLER,
S(l) = (d1, frz 1) and d′2 v d1 and d′2 /∈ H and d′2 ∈ Q.
Therefore, by E-SPAWN-HANDLER,
〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 ↪−→
〈S; freeze l after Q with λx. e0, {e0[x := d′2], e0[x := d2], e, . . . } , {d′2} ∪ {d2} ∪H〉,
which is equivalent to
〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2, d′2} ∪H〉.
Hence σa ↪−→ σc.

2. σb ↪−→ σc, where
σb = 〈S; freeze l after Q with λx. e0, {e0[x := d′2], e, . . . } , {d′2} ∪H〉, and
σc = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2, d′2} ∪H〉.
The proof is as follows:
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From the premises of E-SPAWN-HANDLER,
S(l) = (d1, frz 1) and d2 v d1 and d2 /∈ H and d2 ∈ Q.
Therefore, by E-SPAWN-HANDLER,
〈S; freeze l after Q with λx. e0, {e0[x := d′2], e, . . . } , {d′2} ∪H〉 ↪−→
〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2} ∪ {d′2} ∪H〉,
which is equivalent to
〈S; freeze l after Q with λx. e0, {e0[x := d2], e0[x := d′2], e, . . . } , {d2, d′2} ∪H〉.
Hence σb ↪−→ σc.

∗ d′2 = d2:
Choose: σc = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉,
i = 0 and j = 0.
Then 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 = σc and σb = σc,
as required.

– σ ↪−→ σb by E-EVAL-CTXT:
Hence σb = 〈S′; freeze l after Q with λx. e0, {e′, . . . } , H〉.
Choose:
σc = 〈S′; freeze l after Q with λx. e0, {e0[x := d2], e′, . . . } , {d2} ∪H〉,
i = 1 and j = 1.
To show:

1. σa ↪−→ σc, where
σa = 〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 and
σc = 〈S′; freeze l after Q with λx. e0, {e0[x := d2], e′, . . . } , {d2} ∪H〉.
The proof is as follows:
From the premise of E-EVAL-CTXT, 〈S; e〉 ↪−→ 〈S′; e′〉.
From the definition of evaluation contexts,
freeze l after Q with λx. e0, {e0[x := d2], [ ], . . . } , {d2} ∪H
is an evaluation context.
Hence, by E-EVAL-CTXT,
〈S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H〉 ↪−→
〈S′; freeze l after Q with λx. e0, {e0[x := d2], e′, . . . } , {d2} ∪H〉.
Hence σa ↪−→ σc.

2. σb ↪−→ σc, where
σb = 〈S′; freeze l after Q with λx. e0, {e′, . . . } , H〉, and
σc = 〈S′; freeze l after Q with λx. e0, {e0[x := d2], e′, . . . } , {d2} ∪H〉.
The proof is as follows:
From the premises of E-SPAWN-HANDLER,
S(l) = (d1, frz 1) and d2 v d1 and d2 /∈ H and d2 ∈ Q.
Hence, by E-SPAWN-HANDLER,
〈S′; freeze l after Q with λx. e0, {e′, . . . } , H〉 ↪−→
〈S′; freeze l after Q with λx. e0, {e0[x := d2], e′, . . . } , {d2} ∪H〉.
Hence σb ↪−→ σc.

• E-FREEZE-FINAL: σ = 〈S; freeze l after Q with v, {v . . . } , H〉, and σa = 〈S[l 7→ (d1, true)]; d1〉.
Given:

– 〈S; freeze l after Q with v, {v . . . } , H〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉, and

– 〈S; freeze l after Q with v, {v . . . } , H〉 ↪−→ σb.

To show: There exist σc, i, j such that

〈S[l 7→ (d1, true)]; d1〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.
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By inspection of the operational semantics, σb = 〈S[l 7→ (d1, true)]; d1〉.
Choose σc = 〈S[l 7→ (d1, true)]; d1〉, i = 0 and j = 0.

Then 〈S[l 7→ (d1, true)]; d1〉 = σc and σb = σc, as required.

• E-FREEZE-SIMPLE: σ = 〈S; freeze l〉, and σa = 〈S[l 7→ (d1, true)]; d1〉.
Given:

– 〈S; freeze l〉 ↪−→ 〈S[l 7→ (d1, true)]; d1〉, and

– 〈S; freeze l〉 ↪−→ σb.

To show: There exist σc, i, j such that 〈S[l 7→ (d1, true)]; d1〉 ↪−→i σc and σb ↪−→j σc and i ≤ 1 and j ≤ 1.

By inspection of the operational semantics, σb = 〈S[l 7→ (d1, true)]; d1〉.
Choose σc = 〈S[l 7→ (d1, true)]; d1〉, i = 0 and j = 0.

Then 〈S[l 7→ (d1, true)]; d1〉 = σc and σb = σc, as required.

B.10 Strong Local Quasi-Confluence
This is the proof of Lemma 2 from the main text of the paper.

Proof. By Lemma 13, either:

1. there exist i, j, πa, πb and σ′c such that πa(S) = πb(S) = S and πa(σa) ↪−→i σ′c and πb(σb) ↪−→j σ′c and i ≤ 1
and j ≤ 1, or

2. σa ↪−→ error or σb ↪−→ error.

In the second case, we’re done.
In the first case, we proceed as follows.
By renaming σb ↪−→j π−1b (σ′c).
By renaming σa ↪−→j π−1a (σ′c).
Choose π = π−1a ◦ πb, and σc = π−1b (σ′c).

B.11 Strong One-Sided Quasi-Confluence
Lemma 14 (Strong One-Sided Quasi-Confluence). If σ ↪−→ σ′ and σ ↪−→m σ′′, where 1 ≤ m, then either:

1. there exist π, σc, i, j such that σ′ ↪−→i σc and σ′′ ↪−→j π(σc) and i ≤ m and j ≤ 1, or

2. there exists k ≤ m such that σ′ ↪−→k error, or there exists k ≤ 1 such that σ′′ ↪−→k error.

Proof. We proceed by induction on m. In the base case of m = 1, the result is immediate from Lemma 2, with k = 1.
For the induction step, suppose σ ↪−→m σ′′ ↪−→ σ′′′ and suppose the lemma holds for m.
We show that it holds for m+ 1, as follows.
We are required to show that either:

1. there exist π, σc, i, j such that σ′ ↪−→i σc and σ′′′ ↪−→j π(σc) and i ≤ m+ 1 and j ≤ 1, or

2. there exists k ≤ m+ 1 such that σ′ ↪−→k error, or there exists k ≤ 1 such that σ′′′ ↪−→k error.

From the induction hypothesis, we have that either:
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1. there exist π′, σ′c, i
′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ π′(σ′c) and i′ ≤ m and j′ ≤ 1, or

2. there exists k′ ≤ m such that σ′ ↪−→k′
error, or there exists k′ ≤ 1 such that σ′′ ↪−→k′

error.

We consider these two cases in turn:

1. There exist σ′c, i
′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ σ′c and i′ ≤ m and j′ ≤ 1:

We proceed by cases on j′:

• If j′ = 0, then σ′′ = σ′c. We can then choose σc = σ′′′ and i = i′ + 1 and j = 0 and π = π′.

• If j′ = 1:
From σ′′ ↪−→ σ′′′ and σ′′ ↪−→j′ π′(σ′c) and Lemma 2, one of the following two cases is true:

(a) There exist σ′′c and i′′ and j′′ such that π′(σ′c) ↪−→i′′ π′′(σ′′c ) and σ′′′ ↪−→j′′ σ′′c and i′′ ≤ 1 and
j′′ ≤ 1. So we also have σ′ ↪−→i′ σ′c ↪−→i′′ ((π′)−1 ◦ π′′)σ′′c . In summary, we pick σc = σ′′c and
i = i′ + i′′ and j = j′′ and π = (π′)−1 ◦ π′′, which is sufficient because i = i′ + i′′ ≤ m + 1 and
j = j′′ ≤ 1.

(b) σ′′′ ↪−→ error or σ′c ↪−→ error.
If σ′′′ ↪−→ error, then choosing k = 1 satisfies the proof.
Otherwise, σ′c ↪−→ error, therefore σ′ ↪−→i′ σ′c ↪−→ error.
Hence σ′ ↪−→i′+1 error.
Since i′ ≤ m, we have that i′ + 1 ≤ m+ 1, and so choosing k = i′ + 1 satisfies the proof.

2. There exists k′ ≤ m such that σ′ ↪−→k′
error, or there exists k′ ≤ 1 such that σ′′ ↪−→k′

error:

If there exists k′ ≤ m such that σ′ ↪−→k′
error, then choosing k = k′ satisfies the proof.

Otherwise, there exists k′ ≤ 1 such that σ′′ ↪−→k′
error. We proceed by cases on k′:

• If k′ = 0, then σ′′ = error.
Hence this case is not possible, since σ′′ ↪−→ σ′′′ and error cannot step.

• If k′ = 1:
From σ′′ ↪−→ σ′′′ and σ′′ ↪−→k′

error and Lemma 2, one of the following two cases is true:

(a) There exist σ′′c and i′′ and j′′ such that error ↪−→i′′ σ′′c and σ′′′ ↪−→j′′ σ′′c and i′′ ≤ 1 and j′′ ≤ 1.
Since error cannot step, i′′ = 0 and σ′′c = error.
Hence σ′′′ ↪−→j′′ error.
Since j′′ ≤ 1, choosing k = j′′ satisfies the proof.

(b) error ↪−→ error or σ′′′ ↪−→ error.
Since error cannot step, σ′′′ ↪−→ error.
Hence choosing k = 1 satisfies the proof.

B.12 Strong Quasi-Confluence
Lemma 15 (Strong Quasi-Confluence). If σ ↪−→n σ′ and σ ↪−→m σ′′, where 1 ≤ n and 1 ≤ m, then either:

1. there exist π, σc, i, j such that σ′ ↪−→i σc and σ′′ ↪−→j π(σc) and i ≤ m and j ≤ n, or

2. there exists k ≤ m such that σ′ ↪−→k error, or there exists k ≤ n such that σ′′ ↪−→k error.

Proof. We proceed by induction on n. In the base case of n = 1, the result is immediate from Lemma 14.
For the induction step, suppose σ ↪−→n σ′ ↪−→ σ′′′ and suppose the lemma holds for n.
We show that it holds for n+ 1, as follows.
We are required to show that either:
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1. there exist π, σc, i, j such that σ′′′ ↪−→i σc and σ′′ ↪−→j π(σc) and i ≤ m and j ≤ n+ 1, or

2. there exists k ≤ m such that σ′′′ ↪−→k error, or there exists k ≤ n+ 1 such that σ′′ ↪−→k error.

From the induction hypothesis, we have that either:

1. there exist π′, σ′c, i
′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ π′(σ′c) and i′ ≤ m and j′ ≤ n, or

2. there exists k′ ≤ m such that σ′ ↪−→k′
error, or there exists k′ ≤ n such that σ′′ ↪−→k′

error.

We consider these two cases in turn:

1. There exist π′, σ′c, i
′, j′ such that σ′ ↪−→i′ σ′c and σ′′ ↪−→j′ π′(σ′c) and i′ ≤ m and j′ ≤ n:

We proceed by cases on i′:

• If i′ = 0, then σ′ = σ′c. We can then choose σc = σ′′′ and i = 0 and j = j′ + 1 and π = π′.

• If i′ ≥ 1:
From σ′ ↪−→ σ′′′ and σ′ ↪−→i′ π′(σ′c) and Lemma 14, one of the following two cases is true:

(a) There exist σ′′c and i′′ and j′′ such that σ′′′ ↪−→i′′ σ′′c and π′(σ′c) ↪−→j′′ π′′(σ′′c ) and i′′ ≤ i′ and
j′′ ≤ 1. So we also have σ′′ ↪−→j′ σ′c ↪−→j′′ ((π′)−1 ◦ π′′)(σ′′c ). In summary, we pick σc = σ′′c
and i = i′′ and j = j′ + j′′ and π = (π′)−1 ◦ π′′, which is sufficient because i = i′′ ≤ i′ ≤ m and
j = j′ + j′′ ≤ n+ 1.

(b) There exists k′′ ≤ i′ such that σ′′′ ↪−→k′′
error, or there exists k′′ ≤ 1 such that σ′c ↪−→k′′

error.
If there exists k′′ ≤ i′ such that σ′′′ ↪−→k′′

error, then choosing k = k′′ satisfies the proof, since
k′′ ≤ i′ ≤ m.
Otherwise, there exists k′′ ≤ 1 such that σ′c ↪−→k′′

error.
Therefore, σ′′ ↪−→j′ σ′c ↪−→k′′

error.
Hence σ′′ ↪−→j′+k′′

error.
Since j′ ≤ n and k′′ ≤ 1, j′ + k′′ ≤ n+ 1.
Hence choosing k = j′ + k′′ satisfies the proof.

2. There exists k′ ≤ m such that σ′ ↪−→k′
error, or there exists k′ ≤ n such that σ′′ ↪−→k′

error:

If there exists k′ ≤ n such that σ′′ ↪−→k′
error, then choosing k = k′ satisfies the proof.

Otherwise, there exists k′ ≤ m such that σ′ ↪−→k′
error. We proceed by cases on k′:

• If k′ = 0, then σ′ = error.
Hence this case is not possible, since σ′ ↪−→ σ′′′ and error cannot step.

• If k′ ≥ 1:
From σ′ ↪−→ σ′′′ and σ′ ↪−→k′

error and Lemma 14, one of the following two cases is true:

(a) There exist σ′′c and i′′ and j′′ such that σ′′′ ↪−→i′′ σ′′c and error ↪−→j′′ σ′′c and i′′ ≤ k′ and j′′ ≤ 1.
Since error cannot step, j′′ = 0 and σ′′c = error.
Hence σ′′′ ↪−→i′′ error.
Since i′′ ≤ k′ ≤ m, choosing k = i′′ satisfies the proof.

(b) There exists k′′ ≤ k′ such that σ′′′ ↪−→k′′
error, or there exists k′′ ≤ 1 such that error ↪−→k′′

error.
Since error cannot step, there exists k′′ ≤ k′ such that σ′′′ ↪−→k′′

error.
Since k′′ ≤ k′ ≤ m, choosing k = k′′ satisfies the proof.
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B.13 Quasi-Confluence
Lemma 16 (Quasi-Confluence). If σ ↪−→∗ σ′ and σ ↪−→∗ σ′′, then either:

1. there exists π, σc such that σ′ ↪−→∗ σc and σ′′ ↪−→∗ σc up to a location renaming π, or

2. σ′ = error or σ′′ = error.

Proof. Strong Quasi-Confluence (Lemma 15) implies Quasi-Confluence.

B.14 Quasi-Determinism
This is the proof of Theorem 1 from the main text of the paper.

Proof. By Lemma 16, one of the following two cases applies:

1. There exists π, σc such that σ′ ↪−→∗ σc and σ′′ ↪−→∗ π(σc). In this case, since neither σ′ nor σ′′ can step
further, we must have σ′ = σc and σ′′ = π(σc), hence σ′ = σ′′ up to π.

2. σ′ = error or σ′′ = error, and so the result is immediate.

C Graph Algorithms in LVish: BFS and MIS
The recently proposed Problem Based Benchmark Suite [4] presents a suite of benchmark problems designed to focus
on non-numerical computing on irregular problems. The PBBS release comes with high-quality parallel C++/Cilk
implementations of the benchmarks. We have implemented and measured the performance of LVish versions of
two of the benchmarks from this suite: breadth-first search (BFS) and maximal independent set (MIS). In addition
to implementing the benchmarks themselves, we used LVish to implement a parallel parser for the ASCII graph
representation format that PBBS uses. Our LVish parser implementation can parse a 557MB graph in one second on
12 cores, which is as fast as the C++ parallel parser in PBBS, and potentially scheduled as part of an asynchronous
LVish application, rather than as a separate phase.

In short, we observe between 2.09× and 2.76× parallel speedup on standalone BFS (with no other handlers
registered), depending on graph topology, and 1.34× to 1.79× parallel speedup on MIS. These problems are very
fine-grained, and thus the overhead of (potentially) blocking LVish get operations on every vertex processed is too
high for the LVish versions to be able to perform well. Yet when BFS or MIS are used to discover a part of the graph
that is used as input to nontrivial per-vertex computations downstream, it becomes apparent that one advantage of
using LVish is that it enables such downstream computations to start sooner, as we discuss below.

C.1 Implementation notes
The sequential implementation of MIS is straightforward. To select from a graph a maximal set of vertices that share
no edges, the algorithm iterates through the vertices in order and adds a vertex to the set iff none of its already-
encountered neighbors are marked for inclusion. The deterministic parallel implementation of MIS that comes with
PBBS produces the same answer as the sequential version by using a mechanism called deterministic reservations [4].
Loop iterations are launched in parallel, but a parallel iteration will fail if the neighbor vertices of that iteration’s vertex
have not been processed yet, and iterations marked as having failed are then retried. The effect is exactly like that of
blocking get in LVish; thus the LVish port of this program is elegant—identical to the sequential version with reads
and writes replaced by put and get.

The bad news is that going through the LVish scheduler for every vertex in a graph is too heavyweight a mechanism
to allow the LVish version to be competitive with the PBBS C++/Cilk implementations. In fact, the single-core
performance of the LVish BFS implementation is 60× slower than the PBBS C++/Cilk version: 0.191s compared
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to 11.8s for a million-vertex grid, for example!18 ALthough the LVish BFS implementation does achieve parallel
speedup, this is an untenable starting point for raw BFS performance. However:

• LVish should be directly compared only against other deterministic-by-construction models. No C++ library that
executes client code in parallel can ever provide this guarantee. Of course, every implementation will have some
trusted code; an LVish programmer must trust the LVish library to behave deterministically. The advantage of
LVish is that the trusted computing base is of constant size, rather than scaling with the number of applications.

• Graph processing in LVish is more flexible than it is in the PBBS implementation: the set-based implementation
handles nodes with arbitrary keys (e.g., variables with call histories in k-CFA) and graphs that are discovered
on the fly, rather than with a fixed, dense range of integer node IDs.

Furthermore, graph processing in LVish has certain advantages with respect to composition, latency hiding, and latency
of response, as we discuss below.

C.2 Graph processing as part of a parallel pipeline
A user rarely wants to compute a property of a graph in isolation, with no meaningful node or edge labels, and no tasks
to perform on those labels. Rather, graph algorithms like BFS and MIS play a role in the context of a larger application.
It is in such pipeline-parallel applications that LVish is used to its best advantage, since LVish implementations of
these algorithms can drive other downstream consumers asynchronously, allowing full overlap of different phases of
the computation and creating the potential for latency hiding.

For example, consider a situation where the component discovered by a BFS phase is the input to a downstream
task, but the graph turns out to have long linear chains. In this case, the PBBS C++/Cilk implementation has some
trouble, taking 8.79s for 10 million vertices on one core (11.06s for LVish), rather than 0.191s for a graph with the
same number of vertices but with a grid topology. Moreover, in the C++/Cilk implementation, the downstream task
must wait for the entire BFS phase to complete. In the LVish implementation, on the other hand, the first downstream
tasks execute in 0.14 to 0.23 milliseconds from the beginning of the graph traversal,19 regardless of how many cores
are used, and even when the application is run on one core, due to LVish’s depth-first scheduling approach. This
reduced latency could be important, for example, in an interactive application waiting to update the screen.

18Furthermore, these results are with an LVar type that allows atomic operations on an unboxed array; the performance for a reference Set LVar
is worse for BFS, at 14.17s. In the future, it may make sense for LVish to provide primitive support for bulk handling of many blocking loop
iterations, similar to deterministic reservations.

19This latency measurement includes the overhead launching parallel worker threads.
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