
UNDERSTANDING and EXPRESSING
SCALABLE CONCURRENCY

F

Aaron Turon

April 19, 2013

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy

to the

Faculty of the College
of Computer and Information Science

Northeastern University
Boston, Massachusetts

colophon

�is document was typeset using LATEX, with a mixture of classicthesis
1 1 http://code.google.com/p/

classicthesis/developed by André Miede and tufte-latex,2 which is based on Edward
2 https://code.google.com/p/

tufte-latex/Tu�e’s Beautiful Evidence.�e bibliography was processed by Biblatex.3
3 http://www.ctan.org/pkg/biblatexRobert Slimbach’s Minion Pro acts as both the text and display type-

face. Sans-serif text is typeset in Slimbach and Carol Twombly’s Myriad

Pro; monospaced text uses Jim Lyles’s Bitstream Vera Mono (“Bera Mono”).

Donald Knuth’s Computer Modern is used throughout, but I’m not saying

where.

Understanding and expressing scalable concurrency
© April 19, 2013, Aaron Turon

http://code.google.com/p/classicthesis/
http://code.google.com/p/classicthesis/
https://code.google.com/p/tufte-latex/
https://code.google.com/p/tufte-latex/
http://www.ctan.org/pkg/biblatex

Abstract
�e Holy Grail of parallel programming is to provide good speedup while

hiding or avoiding the pitfalls of concurrency. But some level in the tower

of abstraction must face facts: parallel processors execute code concurrently,

and the interplay between concurrent code, synchronization, and the mem-

ory subsystem is a major determiner of performance. E�ective parallel pro-

gramming must ultimately be supported by scalable concurrent algorithms—
algorithms that tolerate (or even embrace) concurrency for the sake of scaling

with available parallelism.�is dissertation makes several contributions to

the understanding and expression of such algorithms:

● It shows how to understand scalable algorithms in terms of local protocols
governing each part of their hidden state.�ese protocols are visual arti-

facts that can be used to informally explain an algorithm at the whiteboard.

But they also play a formal role in a new logic for verifying concurrent

algorithms, enabling correctness proofs that are local in space, time, and

thread execution. Correctness is stated in terms of re�nement: clients of an

algorithm can reason as if they were using the much simpler speci�cation

code it re�nes.

● It shows how to express synchronization in a declarative but scalable
way, based on a new library providing join patterns. By declarative, we

mean that the programmer needs only to write down the constraints of

a synchronization problem, and the library will automatically derive a

correct solution. By scalable, we mean that the derived solutions deliver

robust performance with increasing processor count and problem com-

plexity.�e library’s performance on common synchronization problems

is competitive with specialized algorithms from the literature.

● It shows how to express scalable algorithms through reagents, a new
monadic abstraction. With reagents, concurrent algorithms no longer

need to be constructed from “whole cloth,” i.e., by using system-level prim-
itives directly. Instead, they are built using a mixture of shared-state and

message-passing combinators. Concurrency experts bene�t, because they

can write libraries at a higher level, with more reuse, without sacri�cing

scalability.�eir clients bene�t, because composition empowers them to

extend and tailor a library without knowing the details of its underlying

algorithms.

v

Research is what I’m doing when I don’t know what I’m doing.
—Wernher von Braun

Acknowledgments
In the 2007 PhD orientation at Northeastern, students were shown a curious

graph. �e x-axis read Time and spanned 0 to 5 years. �e y-axis read
Happiness and, although the units were unlabelled, the trajectory was clear: a
fairly steady high for the �rst couple of years, followed by a precipitous drop

and a slow climb that, in the end, never quite recovered. I remember thinking,

Five years to dig deep into the �eld that I love?�ere’s no way that chart applies
to me. Little did I know.
No one canmake it fromnaive enthusiasm to �nished dissertationwithout

a lot of support, both technical and emotional. I was fortunate to be supported

by a committee with diverse perspectives, taste, and wisdom—and to have

each member enter the scene at just the right time (in the order below):

● MitchellWand, my advisor, was originally assigned asmy “facultymentor”
and immediately dispensed some advice: read papers until you �nd one

that makes you say I could do better than that.4 As the formative early 4 Incidentally, this slogan applies to one’s

own papers as well.reading gave way to research, Mitch had just one stipulation: I had to

present a clear and compelling case for why and how we would do better.
His combination of high standards and patience meant I got a lot of
practice trying to make such cases.

● ClaudioRussowas o�ciallymy internship supervisor atMSRCambridge—
but, with characteristic humility, he treated me as an equal collaborator.

�e summer we spent hacking together was one of the most enjoyable

and rewarding periods of grad school, and I remain inspired by Claudio’s

restless curiosity and deep integrity, and grateful for his friendship.

● Doug Leameasures research impact in billions of computers,5 yet he is one 5 His java.util.concurrent ships with

Java, which runs on 1.1 billion desktop

computers—and that’s not even counting

mobile phones or embedded devices.

of the kindest and most approachable researchers or hackers you’ll meet.

As they say,6 programs must be written for people to read, and only inci-

6 Abelson and Sussman, �e Structure and
Interpretation of Computer Programs

dentally for machines to execute—and Doug’s concurrency library is an

excellent textbook, one that deeply informs the work in this dissertation.

● Olin Shivers knows how to write, and I returned to his writing over and
over again for inspiration while producing my own. I also learned a great

deal about the human side of research by being within earshot of Olin.

● Amal Ahmed arrived at Northeastern just before my thesis proposal was
due, and enthusiastically agreed to help me “do better than” my previous

work on concurrency veri�cation. Her generosity with her time, her

passion and raw mental horsepower helped make my �nal year my best

one; her energy and attitude will serve as a North Star for years to come.

�e Northeastern PRL has a persistently functional culture—from torture

chambers, PL Jr., happy hour, and Elevator Pitch Idol, to a near total lack

ix

of ego and un�inching commitment to helping each other improve. While

some of this culture is the handiwork of faculty, most of it is passed down

through generations of remarkable students and post docs. I am indebted for

the friendship, insight, and caring of an incredible number of them:

Dan Brown, who can explain anything to anyone;
Harsh Raju Chamarthi, a true student of the masters;
Steve Chang, who knows when to be lazy;
Jed Davis, who inhabits all levels of abstraction;
Christos Dimoulas, who always remembers the big picture;
Carl Eastlund, humor ampli�er;
Tony Garnock-Jones,metacircular visionary;
Dave Herman, who puts up with the Internet;
Ian Johnson,man of steel;
Jamie Perconti, who sees the Matrix in color;
Jonathan Schuster, whose research will someday be divulged;
Justin Slepak,master of the precision strike;
Vincent St-Amour, the contrarian who cares;
Paul Stansifer, purveyor of puns, collector of cleverness, and boxer of bats;
Stevie Strickland, who reminds us to have fun;
Asumu Takikawa, quietly succeeding from day one;
Sam Tobin-Hochstadt, who knows everything;
Jesse Tov, who puts us all to shame;
Dimitris Vardoulakis, who keeps making it happen;
David Van Horn, enigmatic and admired.

I will miss you all.

�ere are a number of others who stepped in at one crucial juncture or

another. Anne Rogers and John Reppy are the reason I got into research in

the �rst place. Pete Manolios’s seminar and our early work together laid a

�rm foundation for the rest of my time at Northeastern. Derek Dreyer has

been a recurring presence, and now a collaborator, mentor, and reason to

move across an ocean; his impact in one year makes me wonder if I’ll even

recognize myself in twomore. Lars Birkedal and Jacob�amsborg graciously

o�ered to collaborate rather than compete, and I am still reaping the bene�ts.

�e 2010 summer in Cambridge, UK was a turning point for me, in no

small part due to the encouragement and enthusiasmof PhilippaGardner and

Peter O’Hearn.�anks also to Mike Dodds, Matthew Parkinson, and Viktor

Vafeiadis, whowarmly welcomedme into their branch of the separation logic

family.MSR funded not just the internship that summer, butmuch ofmy time

in grad school as well, for which I am very grateful.

But none of this could have happened without my family. For as long as I

can remember, my parents have encouraged me to pursue my interests and

provided me with a safe place in which to do so.�ank you, Mom and Dad.

And Jessica, my partner and my home: I am glad that I have the rest of my

life to repay my debt to you, because it will take at least that long.

Aaron Turon

Saarbrücken

April 2013

Contents
i prologue 1

1 overview 3

1.1 �e problem . 3

1.2 My thesis . 4

1.2.1 Understanding scalable concurrency 5

1.2.2 Expressing scalable concurrency 6

1.3 Organization . 8

1.4 Previously published material 10

2 concurrency meets parallelism 11

2.1 Concurrency is not parallelism 11

2.1.1 Scalable concurrency 12

2.1.2 What scalable concurrency is not 14

2.2 Top down: the problems of concurrency 14

2.2.1 Expressive interaction 15

2.2.2 �e problem of sharing 18

2.2.3 �e problem of timing 21

2.2.4 �e role of abstraction 23

2.3 Bottom up: the problems of scalability 25

2.3.1 Cache coherence 26

2.3.2 �e foundation of interaction: consensus . . 29

2.4 �e rudiments of scalable concurrency: performance . 31

2.4.1 Fine-grained locking 31

2.4.2 Optimistic concurrency 32

2.4.3 Linked data structures 34

2.4.4 Backo� . 36

2.4.5 Helping and elimination 36

2.4.6 Synchronization and dual data structures . . 37

2.5 �e rudiments of scalable concurrency: correctness . 39

2.5.1 Safety: linearizability 40

2.5.2 Liveness: nonblocking progress properties . 41

ii understanding scalable concurrency 43

3 a calculus for scalable concurrency 45

3.1 �e calculus . 45

3.1.1 Syntax . 47

3.1.2 Typing . 48

3.1.3 Operational semantics 48

3.2 �e memory consistency model 50

3.3 Contextual re�nement 52

3.4 Observable atomicity 53

3.4.1 �e problem with atomic blocks 54

xi

xii contents

3.4.2 Re�nement versus linearizability 55

4 local protocols 59

4.1 Overview . 59

4.1.1 �e state transition system approach 60

4.1.2 Scaling to scalable concurrency 62

4.1.3 A note on drawing transition systems 63

4.2 Spatial locality via local life stories 64

4.2.1 A closer look at linking: Michael and Scott’s

queue . 64

4.2.2 �e story of a node 65

4.3 Role-playing via tokens 69

4.4 �read locality via speci�cations-as-resources 70

4.5 Temporal locality via speculation 73

5 a logic for local protocols 77

5.1 Overview . 77

5.2 Assertions . 79

5.2.1 Characterizing the implementation heap . . 79

5.2.2 Characterizing implementation code 79

5.2.3 Characterizing (protocols on) shared resources 79

5.2.4 Characterizing re�nement and spec resources 80

5.2.5 �e remaining miscellany 81

5.3 Semantic structures . 81

5.3.1 Resources . 81

5.3.2 Islands and possible worlds 82

5.3.3 Environments 83

5.3.4 Protocol conformance 83

5.3.5 World satisfaction 85

5.4 Semantics . 86

5.4.1 Resources, protocols, and connectives 86

5.4.2 Re�nement . 87

5.4.3 Hoare triples and threadpool simulation . . . 88

5.5 Basic reasoning principles 89

5.5.1 Hypothetical reasoning and basic logical rules 90

5.5.2 Reasoning about programs: an overview . . . 90

5.5.3 Reasoning about re�nement 92

5.5.4 Concurrent Hoare logic 92

5.5.5 Atomic Hoare logic 95

5.5.6 Reasoning about speci�cation code 96

5.5.7 Reasoning about recursion 97

5.5.8 Derived rules for pure expressions 97

5.6 Metatheory . 98

5.6.1 Soundness for re�nement 98

5.6.2 Lemmas for threadpool simulation 99

6 example proofs 101

6.1 Proof outlines . 101

contents xiii

6.2 Warmup: concurrent counters 102

6.2.1 �e protocol 103

6.2.2 �e proof . 103

6.3 Warmup: late versus early choice 107

6.4 Elimination: red �ags versus blue �ags 108

6.5 Michael and Scott’s queue 112

6.5.1 �e protocol 112

6.5.2 Spatial locality 114

6.5.3 �e proof: enq 116

6.5.4 �e proof: deq 117

6.6 Conditional CAS . 120

6.6.1 �e protocol 120

6.6.2 �e proof . 122

7 related work: understanding concurrency 127

7.1 High-level language . 127

7.1.1 Representation independence and data abstrac-

tion . 127

7.1.2 Local state . 128

7.1.3 Shared-state concurrency 129

7.2 Direct re�nement proofs 130

7.2.1 Linearizability 130

7.2.2 Denotational techniques 131

7.2.3 RGSim . 131

7.3 Local protocols . 131

7.3.1 �e hindsight approach 131

7.3.2 Concurrent abstract predicates 132

7.3.3 Views and other �ctions of separation 133

7.4 Role-playing . 134

7.5 Cooperation . 134

7.5.1 RGSep . 134

7.5.2 RGSim . 135

7.5.3 Reduction techniques 135

7.6 Nondeterminism . 137

7.6.1 �e linear time/branching time spectrum . . 137

7.6.2 Forward, backward, and hybrid simulation . 138

iii expressing scalable concurrency 139

8 join patterns 141

8.1 Overview . 141

8.2 �e join calculus and Russo’s API 143

8.3 Solving synchronization problems with joins 144

9 implementing join patterns 149

9.1 Overview . 149

9.1.1 �e problem 149

9.1.2 Our approach 150

xiv contents

9.2 Representation . 151

9.3 �e core algorithm: resolving a message 153

9.4 Sending a message: �ring, blocking and rendezvous . 156

9.5 Key optimizations . 159

9.5.1 Lazy message creation 160

9.5.2 Specialized channel representation 160

9.5.3 Message stealing 161

9.6 Pragmatics and extensions 165

9.7 Correctness . 165

9.8 Performance . 167

9.8.1 Methodology 167

9.8.2 Benchmarks 170

9.8.3 Analysis . 172

10 reagents 175

10.1 Overview . 175

10.1.1 Isolation versus interaction 176

10.1.2 Disjunction versus conjunction 177

10.1.3 Activity versus passivity 177

10.2 �e high-level combinators 178

10.2.1 Atomic updates on Refs 178

10.2.2 Synchronization: interaction within a reaction 180

10.2.3 Disjunction of reagents: choice 181

10.2.4 Conjunction of reagents: sequencing and pair-

ing . 183

10.2.5 Catalysts: passive reagents 184

10.2.6 Post-commit actions 186

10.3 Translating join patterns 186

10.4 Atomicity guarantees 187

10.5 Low-level and computational combinators 188

10.5.1 Computed reagents 188

10.5.2 Shared state: read and cas 188

10.5.3 Tentative reagents 189

10.6 �e Michael-Scott queue 189

11 implementing reagents 193

11.1 Overview . 193

11.2 O�ers . 195

11.3 �e entry point: reacting 195

11.4 �e exit point: committing 197

11.5 �e combinators . 198

11.5.1 Shared state 198

11.5.2 Message passing 199

11.5.3 Disjunction: choice 202

11.5.4 Conjunction: pairing and sequencing 202

11.5.5 Computational reagents 203

11.6 Catalysis . 204

contents xv

11.7 Performance . 204

11.7.1 Methodology and benchmarks 204

11.7.2 Analysis . 206

12 related work: expressing concurrency 209

12.1 Composable concurrency 209

12.1.1 Concurrent ML 209

12.1.2 So�ware transactional memory 210

12.1.3 Transactions that communicate 211

12.1.4 Composing scalable concurrent data structures 212

12.2 Join calculus implementations 213

12.2.1 Lock-based implementations 213

12.2.2 STM-based implementations 214

12.2.3 Languages versus libraries 215

12.3 Scalable synchronization 216

12.3.1 Coordination in java.util.concurrent 216

12.3.2 Dual data structures 216

iv epilogue 219

13 conclusion 221

13.1 Looking back . 221

13.2 Looking ahead . 222

13.2.1 Understanding scalable concurrency 222

13.2.2 Expressing scalable concurrency 223

13.2.3 Crossing the streams 224

references 225

v technical appendix 243

a reference: the f
µ
cas calculus 245

b reference: the logic of local protocols 249

c metatheory for the logic of local protocols 255

c.1 Basic properties of the logic of local protocols 255

c.2 Soundness of Hoare-style reasoning 256

c.2.1 Constructions with�readpool Triples . . . 256

c.2.2 Soundness of key inference rules 262

c.3 Soundness of re�nement reasoning 266

c.3.1 Congruence 266

c.3.2 May-re�nement 276

d reference: the joins library api 277

e reference: the reagents library api 281

List of Figures

Figure 3.1 F µ
cas syntax . 46

Figure 3.2 F µ
cas typing . 49

Figure 3.3 F µ
cas primitive reductions 49

Figure 4.1 A simpli�ed variant of Michael and Scott (1998)’s

lock-free queue 64

Figure 4.2 A coarse-grained queue 66

Figure 4.3 A protocol for each node of the Michael-Scott
queue—one per possible memory location. . 66

Figure 4.4 Interpreting the li�ed, global protocol 68

Figure 4.5 Red �ags versus blue �ags 71

Figure 5.1 Syntax of assertions 78

Figure 5.2 Resources and their composition 81

Figure 5.3 Islands and worlds 82

Figure 5.4 Protocol conformance 84

Figure 5.5 �e semantics of resource and protocol assertions,

and the connectives 86

Figure 5.6 �e semantics of value re�nement 87

Figure 5.7 �e semantics of expression re�nement 88

Figure 5.8 �readpool simulation 89

Figure 5.9 �e basic logical laws 91

Figure 5.10 Introduction rules for value re�nement 93

Figure 5.11 Concurrent Hoare logic 94

Figure 5.12 Atomic Hoare logic 96

Figure 5.13 Key, low-level lemmas for soundness 99

Figure 6.1 A proof outline for incBodyi 105

Figure 6.2 Proof outline for re�nement of earlyChoice by

lateChoice . 107

Figure 6.3 Red �ags versus blue �ags 108

Figure 6.4 Proof outline for redFlag 109

Figure 6.5 �e queues . 112

Figure 6.6 �e protocol for MSQ 113

Figure 6.7 Proof for enq 115

Figure 6.8 Proof outline for deq 117

Figure 6.9 Conditional increment, a simpli�cation ofCCAS 119

Figure 6.10 Proof outline for cinc 124

Figure 8.1 Dining Philosophers, declaratively 142

Figure 9.1 Per-message protocol 151

xvi

contents xvii

Figure 9.2 Interfaces to the key data structures 152

Figure 9.3 Resolving a message 155

Figure 9.4 Racing to claim a chord involving msg 156

Figure 9.5 Sending a message 158

Figure 9.6 Claiming a “PENDING” asynchronous message on a

void channel represented using counters . . . 161

Figure 9.7 Per-message protocol, revised to support steal-

ing . 162

Figure 9.8 Sending an asynchronous message, as revised to

support stealing 163

Figure 9.9 Sending a synchronous message while coping with

stealing . 164

Figure 9.10 Speedup on simulated �ne-grained workloads 168

Figure 9.11 Pure synchronization performance 169

Figure 10.1 �e high-level reagent API (in Scala) 178

Figure 10.2 Treiber’s stack, using reagents 179

Figure 10.3 �e low-level and computational combinators 188

Figure 10.4 �e Michael-Scott queue, using reagents . . . 190

Figure 11.1 �e !method, de�ned in Reagent[A,B] 196

Figure 11.2 �e CAS class 199

Figure 11.3 �e Swap class 201

Figure 11.4 Arrow-style li�ing into product types 203

Figure 11.5 �e Lift class 203

Figure 11.6 �e Computed class 204

Figure 11.7 Benchmark results for stacks 205

Figure 11.8 Benchmark results for queues 206

Figure 12.1 Comparison with Haskell-STM implementations

on 48-core machine. Note log scale. 214

Figure A.1 Syntax of values and expressions 245

Figure A.2 Syntax of types 246

Figure A.3 Typing rules . 246

Figure A.4 Execution syntax 247

Figure A.5 Operational semantics 247

Figure A.6 Pure reductions 248

Figure A.7 Contextual re�nement 248

Figure A.8 Derived forms 248

Figure B.1 Syntax of assertions 249

Figure B.2 Semantic structures and operations on them . 250

Part I

PROLOGUE

1
Overview

“If we believe in data structures, we must
believe in independent (hence simultaneous)
processing. For why else would we collect
items within a structure? Why do we tolerate
languages that give us the one without the
other?”

—Alan J. Perlis, “Epigrams on

programming,” #68

▸ Concurrency and parallelism are distinct, and dealing with one with-

out the other is preferable whenever it is possible. But sometimes concurrent

programs must take advantage of parallel hardware. Sometimes achieving

parallelism requires explicit concurrent programming. And, nearly always,

the implementation of libraries (or languages) for parallelismdemands careful
cache-conscious concurrent programming—the very kind of programming

these libraries enable application programmers to avoid.

�e intersection of concurrency and parallelism is “scalable concurrency,”

inwhich concurrent algorithms are designed to scale gracefully with available

parallelism—in some cases by increasing throughput, and in others bymerely

avoiding parallel slowdown.
A good example is the ubiquitous hashtable. To use a sequential hashtable

in a concurrent setting, it su�ces to introduce a single lock, and to surround

every operation with an acquisition and release of that lock. Global locking

provides exclusive access for the duration of each operation, forcing concur-

rent operations to take place in somenonoverlapping sequence. It is a tidyway

to manage concurrency, but a disaster for parallelism. A scalable concurrent
hashtable, by contrast, will allow operations from multiple processes to pro-

ceed in parallel (and hence concurrently), so long as those operations work

on distinct keys of the table, or otherwise do not semantically interfere.�ere

are a variety of strategies for scalability, ranging from �ne-grained locking to

lock-free algorithms, but they all have one thing in common: they increase

concurrency purely for the sake of parallelism. In the end, a scalable hashtable

should externally behave just like one protected by a lock, but internally it
should encourage as much concurrency as it can get away with.

In addition to fully embracing concurrency, scalability requires attention

to the architectural details of parallelism—especially the memory subsystem.

Injecting concurrency sometimes entails additional, �ne-grained coordina-

tion, which in turn requires cross-core (or worse, cross-socket) memory

tra�c. Just a few trips on the memory bus can dwarf the gains gotten from

parallel processing.

1.1 the problem

Asking application programmers to grapple with scalability without suc-

cumbing to concurrency bugs is a tall order, so the proliferation of spe-

3

http://dx.doi.org/10.1145/947955.1083808
http://dx.doi.org/10.1145/947955.1083808

4 overview

cialized libraries of concurrency primitives is unsurprising. For example,

java.util.concurrent1 (JUC) contains a rich collection of carefully engineered 1 Doug Lea, http://gee.cs.oswego.edu/dl/

concurrency-interest/classes, including various kinds of locks, barriers, semaphores, count-down

latches, condition variables, exchangers and futures, together with nonblock-

ing collections like queues, skiplists, and hashtables. Several of these classes

led to research publications.2 A Java programmer faced with a concurrency 2 Lea (2000); William N. Scherer, III et al.
(2006); William N. Scherer, III et al. (2005);
Lea (2005)

problem covered by the library is therefore in great shape. (Intel’s�reading

Building Blocks (TBB)3 provides similar bene�ts to C++ programmers.) 3 http://threadingbuildingblocks.org/

But to paraphrase Perlis,4 a library with ten concurrency primitives is 4 Epigram #11

probably missing some.

Indeed, because libraries like JUC and TBB are such an enormous un-

dertaking, they are inherently conservative. �ey implement only those

data structures and primitives that are well understood and likely to ful�ll

common needs. Unfortunately, a client whose needs are not well-matched

to the library is back to square one: it is generally not possible to extend or

combine the primitives of a library into newprimitives with similar scalability

and atomicity properties.

For example, while JUC provides queues, sets and maps, it does not

provide stacks or bags, and it would be very di�cult to build scalable versions

of the latter on top of the former. JUC’s queues come in both blocking andnon-

blocking varieties, while its sets andmaps are nonblocking only—and there is

no way for users to extend or tailor the library to provide additional blocking

support. Although the queues provide atomic (thread-safe) dequeuing and

sets provide atomic insertion, it is not possible to combine these into a single

atomic operation that moves an element from a queue into a set.

1.2 my thesis “Sometimes a scream is better than a thesis.”

—Ralph Waldo Emerson
�e goal of this dissertation is to improve the above state of a�airs along

two axes. First, by deepening our understanding of sophisticated scalable

algorithms, isolating their essence and thus reducing the barrier to building

new ones. Second, by developing new ways of expressing scalable algorithms

that are abstract, declarative, and user-extensible.

To that end, the dissertation demonstrates two claims:

a. Scalable algorithms can be understood through linked protocols govern-
ing each part of their state, which enables veri�cation that is local in space,

time, and thread execution.

b. Scalable algorithms can be expressed through a mixture of shared-state
and message-passing combinators, which enables extension by clients

without imposing prohibitive overhead.

We elaborate on each claim in turn.

http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://threadingbuildingblocks.org/

my thesis 5

1.2.1 Understanding scalable concurrency “If the data structure can’t be explained on a
beer coaster, it’s too complex.”

—Felix von Leitner, “Source Code

Optimization”

Scalable concurrent algorithms abandon global locks in a quest for greater

parallelism, a choice that fundamentally alters algorithm design: it is no

longer possible to acquire and manipulate a consistent global view of data.

Instead, algorithms must work locally, observing and modifying small parts
of a data structure while maintaining consistency at all times. In other words,

concurrent interaction happens at a very �ne grain in both time and space.

Our approach is to understand scalable algorithms on their own terms:

we think of each piece of the data structure (e.g., each node of a linked list)
as being subject to a protocol that tells its “life story”—how it came to be
allocated, how its contents evolve over time, and how it eventually “dies”

by being disconnected (or deleted) from the data structure.�ese protocols

work at the same granularity of interaction as the algorithms do.

Just as separate parts of a data structure are linked together through

pointers, local protocols can be linked together by placing constraints on

their neighboring protocols. In the limit, local protocols and constraints can

capture ostensibly global properties like reachability, even in the presence of

�ne-grained concurrent interaction. It thus becomes possible to explain algo-

rithms that traverse a data structure while it concurrently changes underfoot:

as the traversal proceeds concretely from one node to the next, it proceeds

abstractly from one local protocol to another, each time using the knowledge

it has obtained in one protocol to yield constraints on the next.

Using protocols, the correctness of an algorithm can be shown by consid-

ering a single, generic execution of its code, where:

● Concurrent threads are modeled abstractly through the protocol (thread
locality);

● �e execution is understood one step at a time, without the need to refer

directly to past or future events (temporal locality);

● Each step is understood in terms of the protocol governing the portion of
the state it interacts with (spatial locality).

Retaining these forms of locality is particularly di�cult for algorithms involv-

ing cooperation5 ormultiple, semantically-connected races; we develop novel 5 For example, algorithms wherein one

thread can complete an operation on behalf

of another; see §2.4.5.
semantic techniques for doing so in Chapter 4.

�e dissertation includes both formal and practical validation of protocols.

Formal validation comes in the form of a semantic model,6 based on 6 Or, viewed di�erently, a logic.

protocols, that is sound for contextual re�nement, showing that no client can
tell they are working with the scalable version of an algorithm instead of

one based on coarse-grained locks.7 �us, clients can safely reason about a 7Modulo performance gains, of course.

scalable library as if all access to it were sequentialized, while at the same time

reaping the e�ciency bene�ts of scalability.�e model is the �rst to support

direct assertions and proofs of re�nement for scalable concurrency.8 It is also 8 A few prior logics have been shown sound

for the related property of linearizability; see
§3.3 and Chapter 7 for further discussion.

http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

6 overview

the �rst model to consider such algorithms in the context of a high-level

language, i.e., one with higher-order functions, abstract and recursive types,
and general (higher-order) mutable references. Of course, JUC is written in

just such a high-level language—Java—and indeed depends on the abstraction
facilities of Java to ensure that the private state of its data structures is hidden

from clients.

Practical validation comes in the form of several worked examples

exhibiting several dimensions of complexity found in scalable concurrent

algorithms.

1.2.2 Expressing scalable concurrency “I regard it as the highest goal of programming
language design to enable good ideas to be
elegantly expressed.”

—C.A.R. Hoare

�e most basic unit of abstraction in most languages—the function9—does

9 Or equivalently, object with methods.

not support the full range of composition needed in a concurrent setting. For

example, the functions exported by JUC and TBB execute “atomically” in

the sense described above, but clients cannot combine them to build larger

atomic functions.

A common workaround with coarse-grained locking is to partially break

the abstraction by exposing the internal, global lock—a technique that allows

clients to combine critical sections but introduces the danger of deadlock.

With scalable concurrency, such a tradeo� is not even possible: �ne-grained

locks can only be exported by giving up on abstraction altogether (and

exposing all implementation details), and with lock-free data structures there

is no lock to export!

Another technique for composing atomicity is so�ware transactional

memory (STM).10 But this technique, too, is a non-starter for scalable concur- 10 Shavit and Touitou (1995), “So�ware

transactional memory”rency: STMworks by ensuring that all reads andwrites in an atomic block are
performed atomically, but the whole point of scalable algorithms is to cleverly

avoid or minimize such checks.11 11�ere are some relaxations of STM that

would allow avoiding atomicity checks, but

they must be explicitly programmed to do

so; see Chapter 12.

And anyway, atomicity is just the beginning: some situations call for the

choice between two operations, such as receiving a message along either of

two channels; others demand layering a blocking interface over a nonblock-

ing abstraction; still others require incorporating timeouts or cancellation.

�is dissertation presents two extensible, yet scalable concurrency libraries.

The first library is based on Fournet and Gonthier (1996)’s join patterns,
which specify that messages should be received along some set of channels

simultaneously and atomically. It has long been known that join patterns

provide an elegant way to solve synchronization problems: one merely de-

scribes the problem declaratively, in terms of channels and joins, and the

implementation of join patterns does the rest. But existing implementations

of join patterns have all used either locks or STM, and so none are suitable

for scalable synchronization. We develop a new, lockless implementation
that achieves scalability on par with custom-built synchronization primi-

http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987

my thesis 7

tives by processing messages in parallel (and thereby avoiding centralized

contention).�e implementation (1) stores messages in lock-free data struc-

tures12 for parallelism, (2) treats messages as resources that threads can race 12 See §2.5.2.

to take possession of, (3) avoids enqueuing messages when possible, and (4)

allows message stealing (“barging”).�e result: clients of the scalable joins

library can express arbitrary new synchronization problems, declaratively,

and the library will automatically derive a correct and scalable solution.

The second library is based on reagents, a new monadic abstraction
designed for expressing scalable concurrent algorithms in a higher-level,

composable style. Reagents blend together synchronous communication

through message passing and atomic updates to shared state. Unlike STM,

only explicitly marked updates are guaranteed to be atomic; other reads and
writes are considered “invisible” to the reagent.�rough this mechanism, an

expert can faithfully express a scalable concurrent algorithmas a reagent, with

the guarantee that no overhead will be introduced. But what is the bene�t?

Because the reagent implementation explicitly marks the key atomic up-

date(s) for an algorithm, it becomes possible to join two reagents into a larger

one that executes both of their algorithms as a single atomic step—much as

with join patterns.�e invisible reads and writes of the algorithms remain

invisible; only their key atomic updates are joined.13 13 Upcoming hardware provides direct sup-

port for such “tiny transactions.” By permit-

ting invisible operations, reagents are better

positioned to take advantage of this hard-

ware support than STM is.

In addition to joins, reagents can be composed through atomic sequencing

and choice. Using these operators, clients can extend and tailor concurrency

primitives without knowledge of the underlying algorithms. For example, if

a reagent provides only a nonblocking version of an operation like dequeue,

a user can easily tailor it to a version that blocks if the queue is empty; this

extension will work regardless of how dequeue is de�ned, and will continue to

work even if the dequeue implementation is changed. Composability is also

useful to algorithm designers, since many sophisticated algorithms can be

expressed as compositions of simpler ones.14 14 See §10.2.3, §10.2.4.

In principle, then, reagents o�er a strictly better situation thanwith current

libraries: when used to express the algorithms provided by current libraries,

reagents provide a higher level of abstraction yet impose negligible overhead;

nothing is lost. But unlike with current libraries, the algorithms can then be

extended, tailored, and combined by their users. Extra costs are only paid

when the new compositions are used.

We demonstrate the expressiveness of each library by using it to build a range
of example concurrency primitives, and scalability by subjecting these exam-
ples to a series of benchmarks comparing them to hand-written counterparts,

as found in the scalable concurrency literature.

8 overview

1.3 organization “TL;DR”

—�e Internet
Chapter 2 provides the technical background and philosophical perspective

that informs the rest of the dissertation. It de�nes concurrency and paral-

lelism (§2.1), and then examines both concepts from several angles. It begins

with an abstract and high-level account of concurrent programming that

completely ignores parallelism (§2.2), teasing out two fundamental concerns

that must be faced in any concurrent program: sharing and timing. A�er

that, it jumps to the bottom layer of abstraction, and considers the architec-
tural details a�ecting parallel programming (§2.3). �ese two perspectives

come together in the �nal two sections, which explore common techniques

for both building scalable concurrent algorithms (§2.4) and assessing their

correctness (§2.5).

�e rest of the dissertation is broken into two largely independent parts:

▸ understanding scalable concurrency

Chapter 3 formalizes a calculus, F µ
cas, which is a variant of the polymorphic

lambda calculus extended with mutable references, cas and fork—the

essential features needed to model scalable concurrent algorithms written

in a high-level language. �e chapter de�nes and discusses a memory

consistency model (§3.2), re�nement (§3.3), and atomicity (§3.4), in par-

ticular contrasting linearizability and re�nement (§3.4.2). Some auxiliary

technical details appear in Appendix A.

Chapter 4 introduces local protocols and develops, through examples, the

key ideas we use to handle scalable algorithms: role playing via to-

kens (§4.3), spatial locality via local life stories (§4.2), thread locality via

speci�cation resources (§4.4), and temporal locality via speculation (§4.5).

Chapter 5 de�nes the syntax (§5.2) and semantics (§5.3 and §5.4) of a logic for

re�nement based on local protocols.�e logic ties together aKripke logical

relation (traditionally used for showing re�nement of one program by

another) withHoare triples (traditionally used for reasoning about a single

program). �e chapter sketches some proof theory for the logic (§5.5)

and outlines a proof of soundness for re�nement (§5.6).�e full logic is

summarized in Appendix B, and detailed proofs are given in Appendix C.

Chapter 6 exercises the logic of local protocols on a series of realistic ex-

amples employing several sophisticated techniques for scalability: elimi-

nation backo� (§6.4), lock-free traversal (§6.5), and helping (§6.6).

Chapter 7 discusses work related to local protocols and our semantic model.

▸ expressing scalable concurrency

Chapter 8 introduces join patterns and Russo (2007)’s joins API for C♯.

It shows how join patterns can solve a wide range of synchronization

organization 9

problems, including many of the problems solved by JUC’s primitives.15 15 Our versions lack some features of the

real library, such as timeouts and cancella-

tion, but these should be straightforward to

add (§9.6).

�e full API is given in Appendix D.

Chapter 9 walks through the implementation of scalable join patterns, in-

cluding excerpts of the core C♯ library code (§9.3 and §9.4) and optimiza-

tions (§9.5). It validates our scalability claims experimentally on seven

di�erent coordination problems (§9.8). For each coordination problem

we evaluate a joins-based implementation running in both Russo’s lock-

based library and our new scalable library, and compare these results to

the performance of direct, custom-built solutions. In all cases, the new

library scales signi�cantly better than Russo’s, and competitively with—

sometimes better than—the custom-built solutions, though it su�ers from

higher constant-time overheads in some cases.

Chapter 10 presents the design of reagents, both in terms of philosophical

rationale (§10.1) and asmotivated by a series of examples (§10.2, §10.5).�e

chapter shows in particular how to write all of the algorithms described

in Chapter 2 concisely and at a higher-than-usual level of abstraction. It

also demonstrates how the join calculus can be faithfully embedded into

the reagent combinators (§10.3).�e full API is given in Appendix E.

Chapter 11 walks through the implementation of reagents (in Scala) in sig-

ni�cant detail, which reveals the extent to which reagents turn patterns

of scalable concurrency into a general algorithmic framework. It includes

benchmarking results comparing multiple reagent-based collections to

their hand-written counterparts, as well as to lock-based and STM-based

implementations. Reagents perform universally better than the lock- and

STM-based implementations, and are competitive with hand-written lock-

free implementations.

Chapter 12 discusses work related to scalable join patterns and reagents.

Finally, the dissertation concludes with Chapter 13, which summarizes the

contributions and raises several additional research questions.

10 overview

1.4 previously published material

�is dissertation draws heavily on the earlier work and writing in the follow-

ing papers, written jointly with several collaborators:

● Turon and Wand (2011). A separation logic for re�ning concurrent objects.
In proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL)

● Turon, �amsborg, Ahmed, Birkedal, and Dreyer (2013). Logical rela-
tions for �ne-grained concurrency. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL)

● Turon and Russo (2011). Scalable Join Patterns. In proceedings of the
ACM SIGPLAN Conference on Object-oriented Programming Systems,

Languages, and Applications (OOPSLA)

● Turon (2012). Reagents. In proceedings of the ACM SIGPLANConference
on Programming Language Design and Implementation (PLDI)

http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/2048066.2048111
http://dx.doi.org/10.1145/2254064.2254084

2
Concurrency meets parallelism

“�e moral of the story was that, essentially
for the sake of e�ciency, concurrency should
become somewhat visible. It became so, and
then, all hell broke loose.”

—Edsger W. Dijkstra, “EWD 1303: My

recollections of operating system design”

▸ Synopsis �is chapter provides the technical background and philosophi-

cal perspective that informs the rest of the dissertation. It de�nes concurrency

and parallelism (§2.1), and then examines both concepts from several angles.

It begins with an abstract and high-level account of concurrent programming

that completely ignores parallelism (§2.2), teasing out two fundamental con-

cerns that must be faced in any concurrent program: sharing and timing.

A�er that, it jumps to the bottom layer of abstraction, and considers the archi-
tectural details a�ecting parallel programming (§2.3).�ese two perspectives

come together in the �nal two sections, which explore common techniques

for both building scalable concurrent algorithms (§2.4) and assessing their

correctness (§2.5).

2.1 concurrency is not parallelism

Scalable concurrency sits at the intersection of concurrency and parallelism,

so it is best understood by �rst clarifying their relationship.�e two concepts

are distinct, and neither subsumes the other:1 1�is de�nition and the following discus-

sion draws inspiration from several sources,

old and new: Brinch Hansen (1973); Reppy

(1992); Pike (2012); Harper (2011).

Concurrency is the overlapped execution of processes.
Parallelism is the simultaneous execution of computations.

“Process”2 here is meant broadly as a source of activity within a system, 2We will use the word “thread” as a (pre-

ferred) synonym throughout.encompassing multiple threads of control in a single program, separate

programs as managed by an operating system, and even external devices

and human users.�ese processes are independent in that they do not exert

direct control over each other, but instead interact through a shared medium,

e.g., shared memory or channels. Processes are concurrent when their ac-
tivities (“executions”) overlap in time, and can hence in�uence each other.

Overlapped execution does not entail simultaneous execution. Concurrency
can, for example, be implemented by preemptive scheduling onto a single

processor, which interleaves the executions of the processes into a single

sequence of actions.

Interleaving the execution of threads onto a

single processor is sometimes called multi-
programming ormultitasking.

Parallelism, by contrast, requires simultaneous execution by de�nition—

but of “computations” rather than processes. Computations are, loosely, what

processes do.�us, even in the straightline assembly code

r1 <- add(r2, r3)

r4 <- mul(r2, r5)

11

http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html

12 concurrency meets parallelism

there is an opportunity for instruction-level parallelism, one that is aggres-
sively realized by superscalar processors with redundant arithmetic logic

units (ALUs).�is pervasive source of parallelism within a process is wholly

Excerpt, Intel Nehalem per-core

microarchitecture; note the redundant

ALUs. http://en.wikipedia.org/wiki/

Nehalem_(microarchitecture)

independent from concurrency between processes—at least from the pro-
grammer’s perspective. Of course, if one computation depends on the result

of another, they cannot be run in parallel, so the potential for parallelism is

limited by the longest chain of sequential dependencies, which is called the

depth (or critical path length) of the computation.3

3 Blelloch (1996), “Programming parallel

algorithms”

Concurrency is a system-structuring mechanism. An interactive system

that deals with disparate asynchronous events is naturally structured by

division into concurrent threads with disparate responsibilities. Doing so

creates a better �t between problem and solution, and can also decrease the

average latency of the system by preventing long-running computations from

obstructing quicker ones.

Parallelism is a resource. A given machine provides a certain capacity for
parallelism, i.e., a bound on the number of computations it can perform
simultaneously.�e goal is tomaximize throughput by intelligently using this A machine supporting programmable, par-

allel execution is called amultiprocessor.resource. For interactive systems, parallelism can decrease latency as well.

Parallelism always involves concurrency, but this fact may be pro�tably

hidden behind an abstraction. For example, even the assembly language “�e point is that concurrency is not relevant
to parallelism, even if the engineers who build
our parallel computing platforms must deal
with concurrency. Another way to say the
same thing is that parallelism is a useful ab-
straction, and abstractions should never be
confused with their implementations.”

—Robert Harper, “Parallelism is not

concurrency”

used in the snippet above is an abstraction of an underlying machine whose

execution is both parallel and concurrent.�e ALUs, control units, and other

components of the machine are �xed, independent processes whose job it is

to actually implement the machine’s language.�is is an example of implicit
parallelism, in which an apparently sequential program is executed in parallel
by communicating concurrent processes.

Conversely, concurrency can involve parallelism: the threads of an ex-

plicitly concurrent program may be executed in parallel.4 �e threads may 4�e validity of a parallel execution strat-

egy is actually quite subtle, since the shared

memory model of parallel processors with

independent caches is much weaker than

the straightforward (but naive) model one

imagines for concurrent programming. Re-

cent language standards take this into ac-

count by weakening their model of concur-

rent shared memory (Manson et al. 2005;
Batty et al. 2011; Boehm and Adve 2008).

originate naturally from the structure of the problem, as a re�ection of

independent problems, resources, or external processes. Alternatively, they

may arise through explicit parallelism, where concurrent processes are used
to directly control parallel resources.

2.1.1 Scalable concurrency

Whichever way concurrency and parallelism are mixed, a fundamental

question arises: how can concurrent threads coordinate in a way that takes

advantage of—or at least does not needlessly tie up—parallel hardware? In

other words, how can we build concurrency constructs that scale with the
number of parallel processing units?

To see the relevance and importance of this question, consider one of the

most widely-used data structures in programming practice: the hashtable. If

concurrent threads share access to a single hashtable, its implementationmust

guarantee that the threads do not interfere by, say, inadvertently overwriting

each other’s changes to an entry. From the point of view of concurrency alone,

http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://dx.doi.org/10.1145/227234.227246
http://dx.doi.org/10.1145/227234.227246
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/

concurrency is not parallelism 13

it su�ces to protect the hashtable with a single global lock, thereby providing

each thread temporary but exclusive access for the duration of a read or write
to the table. But such a solution fails to scale on even moderately parallel

machines.�e problem is not just the time spent waiting for the lock to be

released, but that (for a “popular” hashtable) it takes a cache miss just to

determine whether the lock is available.5 5We examine this point in much greater

detail in §2.3.�e Linux kernel uses a global hashtable called the dcache (directory
entry cache) to drastically speed up pathname lookup. Prior to version 2.6

of the kernel,6 concurrent access to this hashtable was mediated by a single 6 According to www.kernel.org, Linux 2.6.0

was released in December 2003.global lock. Switching to amore scalable concurrent hashtable without global

locking provided a 12% increase in overall system throughput on a machine
with 16 CPUs, as measured by the SPECweb99 benchmark.7 �us a single 7McKenney et al. (2004), “Scaling dcache

with RCU”lock in a single data structure turned out to be amassive scalability bottleneck

for an entire OS kernel.

Hashtables exhibit “natural parallelism”: concurrent threads are likely to

access disjoint parts of the table, in which case their operations commute—
and there is no intrinsic reason for them to coordinate such actions.8 Never- 8 Herlihy and Shavit (2008), “�e Art of

Multiprocessor Programming”theless, because some hashtable operations do not commute, expensive syn-
chronization is unavoidable in general.9 A scalable hashtable must balance 9 Attiya et al. (2011), “Laws of order”
between these scenarios, avoiding synchronization where possible, but with-

out sacri�cing too much absolute performance in comparison to an e�cient
sequential implementation. Achieving the right balance is o�en a matter of

choosing the right battles; since hashtable lookup is far more common than

update, the biggest scalability gains come from enabling parallel reads with

zero coordination. We examine the relevant algorithmic techniques in §2.4.
A scalable hashtable is useful not just for concurrent systems; it can also be

a boon for explicit parallel programming. A simple but vivid example is the

problem of duplicate removal: given a vector of items, return the items in any
order, but without any duplicates.10 Since the input is unstructured, any way 10 Blelloch et al. (2012), “Internally

deterministic parallel algorithms can

be fast”
of dividing it amongst parallel threads appears to require global coordination

to discover duplicate items. �e key to avoiding a multiprocessor game of

“Go Fish” is to focus on producing the output rather than dividing the input.

If threads share a scalable hashtable that allows parallel insertion of distinct

elements, they can construct the correct output with (on average) very little

coordination, by simply each inserting a segment of the input into the table,

one element at a time.

Scalable concurrent data structures are also crucial for implicit parallel

programming.�e data structures are not used directly by the application

(which is written sequentially), but are instead used by the runtime system

to manage the work produced by the application, dynamically balancing it

between the available processors. Work balancing can easily become a bottle-

neck, erasing the gains from parallelism, so implementations generally use

scalable concurrent dequeues to implement strategies like “work stealing”.11 11 Blumofe et al. (1996), “Cilk: An e�cient
multithreaded runtime system”In short, scalable concurrency is indispensable for a wide array of con-

current and parallel programming problems.

www.kernel.org
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1006/jpdc.1996.0107

14 concurrency meets parallelism

2.1.2 What scalable concurrency is not

Lest we oversell scalability, however, it is important to keep a basic principle

in mind:

�e fastest way to communicate is to not communicate at all.

Many concurrent and/or parallel systems can be structured to avoid commu-

nication, or to communicate in only highly structured ways. Doing so is al-

most always a win, both in terms of performance and in terms of correctness.
So scalable concurrency should only be applied to handle situations where

communication or coordination is di�cult or impossible to avoid.

Of course, as scalable algorithms evolve, so do the tradeo�s. For example,

the duplicate removal algorithm described above is a fast and “obviously

correct” implementation, but is made possible only by taking for granted the

availability of a sophisticated scalable data structure: the hashtable. Building a

parallel implementation of duplicate removal from scratch (whileminimizing

communication) would take signi�cant ingenuity. As usual, one should use

the right tool for the job.

We will not address the question of where and when to use scalable con-

currency in application- or systems-level programming. As we have argued

above, it is clear that it has some role to play in many di�erent kinds of
programming, and our goal is to better understand and express scalable

concurrent algorithms when they arise.

2.2 top down: the problems of concurrency

ParadigmMyths, a partial list:
● Mutual exclusion is irrelevant to mes-

sage passing.

● Proper use of monitors prevents races.

● Message passing avoids races.

● Message passing avoids deadlock.

● Message passing is “shared nothing.”

Concurrency has long resisted treatment by a de�nitive computational or

linguistic formalism; there is no agreed-upon analog to Turing machines or

the lambda calculus for concurrent programming. One reason for this state

of a�airs is the typical division of concurrent programming into two warring

paradigms, shared state andmessage passing, for governing thread interaction:

● In the shared state model, threads interact by inspecting and altering

shared, external resources.

● In themessage passingmodel, threads interact by exchangingmessages

at explicitly-controlled times.

We are ultimately going to argue that this division is a false dichotomy—both
semantically (in this chapter) and practically (in Chapter 10).

�e most knock-down semantic argument is a simple one: almost any

incarnation of one of the paradigms can easily encode12 almost any incar- 12�ese encodings can be given locally, so

that each set of primitives is merely “syntac-

tic sugar” for a particular use of the other’s.

Hence each paradigm ismacro expressible in
terms of the other (Felleisen 1991).

nation of the other. �e most sophisticated encodings produce idiomatic

programs in either paradigm, and therefore transport common pitfalls from

one paradigm into the other.13�ese encodings demonstrate that, at least for
13 Lauer and Needham (1979), “On the

duality of operating system structures”
particular incarnations, the two paradigms are co-expressive. �us from a

http://dx.doi.org/10.1145/850657.850658
http://dx.doi.org/10.1145/850657.850658

top down: the problems of concurrency 15

semantic standpoint there is little reason to distinguish them, a point which
has been borne out by semantic models that seamlessly support both.14 14 Brookes (2002), “Traces, Pomsets,

Fairness and Full Abstraction for

Communicating Processes”
�ere is a deeper semantic reason that the dichotomy is a false one:

Shared state and nondeterminism are unavoidable
in an expressive concurrent programming model.

“�e trouble is that essentially all the inter-
esting applications of concurrency involve

the deliberate and controlled mutation of

shared state, such as screen real estate, the
�le system, or the internal data structures of
the program. �e right solution, therefore, is
to provide mechanisms which allow (though
alas they cannot enforce) the safe mutation of
shared state.”

—Peyton Jones et al., “Concurrent Haskell”
(Emphasis theirs.)

�at is, any “expressive” model of concurrency is inherently shared-state. In

the next section (§2.2.1), we will give an informal argument for this claim

by introducing a notion of expressive interaction in concurrent programming.
Most shared-state or message-passing constructs are expressive in this sense.

�e fundamental problemof concurrency, in our view, follows from the

inherently shared-state, nondeterministic nature of expressive interaction:

Concurrent programming is the management of sharing and timing.

�ere is no silver bullet formanaging sharing and timing: as we discuss below, “Building so�ware will always be hard.�ere
is inherently no silver bullet.”

—Brooks, Jr. “No Silver Bullet: Essence and

Accidents of So�ware Engineering”

races for access to shared resources are o�en part of the speci�cation for
concurrent so�ware, so a programming approach thatmakes races or sharing

impossible is a non-starter for at least some kinds of problems.15

15 Van Roy and Haridi (2004), “Concepts,

Techniques, and Models of Computer

Programming”

Some argue that the advantage of (synchronous) message passing is that

its primitives weld together the management of sharing (a shared message

queue) with timing (synchronized access to it), or view such a welding

as a de�ning characteristic of message-passing programming.16 But as we 16 Reppy (1992), “Higher-order

concurrency”discussed above, shared-state primitives can be encoded even in synchronous

message-passing systems, which means that it is possible to build up unsyn-

chronized access to shared state in such systems. Conversely, many shared-

state models do in fact weld synchronization to access, e.g., so�ware transac-
tional memory and Brinch Hansen-style monitors.

In our view, concurrent programming presents a range of sharing and

timing problems, each best solved by di�erent “primitives”—and so to enable

e�ective programming, a language should provide facilities to build new
concurrency abstractions with varying approaches to sharing and timing.

(�ere is nothing special about a message queue: it is one abstraction among

many.)We examine traditional abstractionmechanisms in §2.2.4. Chapter 10

gives a deeper analysis, together with a synthesis of these ideas in the form of

a new, more powerful mechanism for creating concurrency abstractions.

In the next section (§2.2.1), we de�ne expressive interaction, introduce the

problems of sharing and timing, and argue that they are intrinsic to concur-

rent programming.We then discuss sharing (§2.2.2) and timing (§2.2.3) more

deeply, before explaining how abstraction is a keymechanism formitigating—
but not eliminating—sharing and timing problems (§2.2.4).

2.2.1 Expressive interaction

Our de�nition of concurrency stipulates only that thread execution is over-

lapped, not how (or whether) this overlapping is observed.�e style of thread

http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1145/237721.237794
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz

16 concurrency meets parallelism

interaction is a de�ning characteristic of a model of concurrency—and there

are many such models.17 17�ough, as we argued above, most are

equivalent from a semantic standpoint.For concreteness, wewill examine expressivity using archetypical, modern

primitives in the shared-state and message-passing styles, but the discussion

applies to a wide variety of formulations (including, e.g., Erlang-style mail-
boxes):

Shared state

newRef ∶ ∀α. α → ref(α)
get ∶ ∀α. ref(α)→ α
set ∶ ∀α. ref(α) × α → unit

Message passing

newChan ∶ ∀α. unit→ chan(α)
recv ∶ ∀α. chan(α)→ α
send ∶ ∀α. chan(α) × α → unit

We take dynamically-allocated references (in the style ofML) as the basic unit
of mutable state.18 Cells are created with initial contents; calling get yields the 18 In typical object-oriented languages, the

basic unit of state is instead an object, which

may posses many �elds, each of which be-

haves like an independent reference cell.

last value that was set, or the initial contents if no set has occurred. References

are unforgeable �rst-class values, so two threads can communicate through a

reference if and only if both have access to it as a value.

On the message-passing side, we will consider synchronous channels in
which a thread sending or receiving a value on a channel must wait until

another thread performs the opposite action. �e channels are point-to-
point: many threads may attempt to send or receive on the same channel
concurrently, but each sender is paired with exactly one receiver.19 As with 19Most message-passing models allow some

form of nondeterministic merging, either

directly through channels or else through an

explicit “choice” or “merge” construct.

references, communication through a channel requires the involved threads

to have access to it as a value.

▸ An interaction model is expressive if it allows client-server communica-

tion, i.e., if inter-thread in�uence can be arranged as follows:20 20�is de�nition captures the distinction

Van Roy and Haridi (2004) makes between

declarative and more expressive, nondeter-
ministic forms of concurrency.

Q

P1

⋮

Pn

�e thread Q plays the role of the server or resource.�e other threads can
make requests of Q and receive responses (in�uence is bidirectional). But,
crucially, Q will service these requests as they appear, without stipulating
which of the client threads makes the next request (in�uence is timing-

dependent).�us, the behavior of the cluster of threads may depend on the

relative timing of the clients.

top down: the problems of concurrency 17

It is quite easy to create such a pattern of interaction with either shared-

state or message-passing primitives. We simply introduce references (resp.

channels) for each edge of in�uence, and use reads/writes (resp. sends/re-

ceives) to communicate:

Q

P1

⋮

Pn

r1

rn

q Q

P1

⋮

Pn

c1

cn

d

Any expressive model of interaction immediately enables shared access and
timing dependence between threads. We can see this fact at an abstract level
by decomposing expressive interaction into two simpler patterns:

Q

P1

⋮

Pn

The first patternexhibits sharing.What is being shared “Once the memory is no longer at the behest
of a single master, then the master-to-slave
(or: function-to-value) view of the program-
to-memory relationship becomes a bit of a �c-
tion. . . . It is better to develop a general model
of interactive systems in which the program-
to-memory interaction is just a special case
of interaction among peers. . . . To remove
the active/passive distinction, we shall elevate
[shared memory] to the status of a process;
then we regard program variables x, y, . . .
as the names of channels of interaction be-
tween program and memory. ”

—Robin Milner, “Elements of interaction:

Turing award lecture”

here is not a passive medium (e.g., reference or channel), but
rather bidirectional communication with a single thread. If

that shared thread is truly in�uenced by communication, its

behavior changes over time—and it is therefore stateful:

An object is said to “have state” if its behavior is in�uenced by
its history.

—Harold Abelson and Gerald Jay Sussman, “Structure and

Interpretation of Computer Programs”

In other words, the existence of shared state follows from expressive inter-

action between threads. �is insight dates from the dawn of concurrency

theory: Milner showed how a wide range of passive communication media

could be understood instead as active threads.21 �e key is that, whether 21 R Milner (1982), “A Calculus of

Communicating Systems”active or passive, access to these objects or threads is shared amongstmultiple

other threads.�e timing of this shared access, however, may be determined
in advance, e.g., Q may wait for messages from the Pi threads in some
speci�ed order, or concurrency may be cooperative (so that threads yield
access to each other only at explicitly-marked times).

Q

P1

⋮

Pn

The second pattern exhibits timing-dependence “An Arbiter is like a tra�c o�cer at an in-
tersection who decides which car may pass
through next. Given only one request, an
Arbiter promptly permits the corresponding
action, delaying any second request until the
�rst action is completed. When an Arbiter
gets two requests at once, itmust decidewhich
request to grant �rst. . . . �e Arbiter guar-
antees that there are never two actions under
way at once, just as the tra�c o�cer prevents
accidents by ensuring that there are never
two cars passing through the intersection on
a collision course.”

—Sutherland and Ebergen, “Computers

without Clocks”

through arbitration. �at is, the Pi threads may send mes-
sages to Q at any time, but when multiple threads attempt
to send a message concurrently, some arbitrary order of

messages is chosen.

Arbitration makes computation unpredictable, but it is

necessary precisely because timing is so unpredictable: it

allows a thread to respond immediately when events occur, even if the relative

timing of their occurrence is not known in advance. For example, an explicitly

parallel program that tries to balance work between several threads may

not know in advance how long each bit of work will take. To maximize

http://dx.doi.org/10.1145/151233.151240
http://dx.doi.org/10.1145/151233.151240
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://dx.doi.org/10.1038/scientificamerican0802-62
http://dx.doi.org/10.1038/scientificamerican0802-62

18 concurrency meets parallelism

throughput, the assignment of work to threads must be dynamic; it must
emerge from the timing properties of the system. Sometimes systems are

also speci�ed in a way that forces them to be timing-dependent. For example, “Concurrency is all about managing the un-
manageable: events arrive for reasons beyond
our control, and we must respond to them.
A user clicks a mouse, the window manager
must respond, even though the display is de-
manding attention. Such situations are inher-
ently nondeterministic, but we also employ
pro formanondeterminism in a deterministic
setting by pretending that components signal
events in an arbitrary order, and that we
must respond to them as they arise. Nondeter-
ministic composition is a powerful program
structuring idea.”

—Robert Harper, “Parallelism is not

concurrency”

operating system services are inherently race-prone: one program should

be able to request—and potentially receive—service without any regard for

other programs.�us, the potential for races in thread in�uence is not just
inevitable; it is sometimes desirable or even required! Indeed, every example
of scalable concurrency we gave in §2.1.1 is built on that potential.

�e danger, of course, is that such races can lead to systems whose overall
observable behavior is likewise unpredictable—in particular, systems that

sometimes produce wrong answers that are hard to reproduce. One should

always use the smallest programming tool for the job,22 and there is a

22 An epigram due to Olin Shivers.

good argument that timing dependence is the wrong default, that much

concurrent programming (and certainly much parallel programming) can be

done without it.23

23 Van Roy and Haridi (2004), “Concepts,

Techniques, and Models of Computer

Programming”

Shared state alone does not introduce timing problems or nondetermin-

ism; only models that o�er some means of arbitration o�er the possibilities

and pitfalls of timing dependence. For example, Kahn networks provide bidi-

rectional communication between threads, which are connected via channels

in a potentially cyclic manner.24 �e channels, however, are strictly one-to- 24 Kahn (1974), “�e semantics of a simple

language for parallel programming”one: there is exactly one sending and one receiving thread associated with
each.�ere is, moreover, no way for a thread to selectively receive, e.g., by
“peeking” on a channel to see whether a message is ready or by o�ering to

receive on several channels at once. Once a thread has chosen to listen for

a message on a particular channel (and hence from a single other thread),
it is committed. �e result is that Kahn networks are deterministic; their

behavior is timing-independent. Other models like IVars,25 and the very 25 Arvind et al. (1989), “I-structures: data
structures for parallel computing”general LVars,26 make similar tradeo�s.
26 Kuper and Newton (2012), “A Lattice-

Based Approach to Deterministic

Parallelism with Shared State”

Nevertheless, expressive models of concurrency have a role to play,

whether in handling the “last mile” of concurrent programming that cannot

be addressed easily or e�ciently with weaker models, or in implementing

those weaker models in the �rst place. In any case, expressiveness is essential

to scalable concurrency as we know it today.

We next consider the problems of sharing and timing more deeply.

2.2.2 �e problem of sharing “Sharing is caring.”

—Unknown
If state is behavior being in�uenced by history, shared state is history—hence
behavior—being in�uenced by someone else.�e division of a program into

parties need not fall along thread lines, or even coincide with static regions

of code. It is possible to think of separate invocations of the same function,

for example, as all sharing (and communicating via) state.�us shared state

is not endemic to concurrency; it can be found wherever control can “leave”

and “come back,” with a stateful object changing in between.

http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://dx.doi.org/10.1145/69558.69562
http://dx.doi.org/10.1145/69558.69562

top down: the problems of concurrency 19

In a pure, expression-oriented language, data and control �ow are tightly

coupled: a subexpression is given control during evaluation, and returns

control once an answer (some data) has been produced. Sharing, by contrast,

allows data to �ow inmore subtle ways: a subexpression can communicate by

altering a shared resource, instantly broadcasting changes to all other sharers,

even those that do not receive the return value of the subexpression.

▸ The problem with sharing is its destructive e�ect on local reasoning.

�e tradeo�s are best understood through example, so assume that r is an
integer reference and f is a unit to unit function, and consider the following
expression:27 27 All of the examples in this section are

written in the calculus F µ
cas that we introduce

in Chapter 3; it is a variant of System F

with equi-recursive types (µ), general mu-
table references, and compare-and-set (cas,
explained in §2.3.2).

r ∶= 0; f (); get r

What values might this expression return? �e answer is it depends—and
what it depends on is precisely whether f has shared access to r and, if so, in
what ways f and r interact. Without knowledge about f , we can only say that
the expression returns an integer, a guarantee provided by the type system

governing all access to r. When an object is shared arbitrarily, we cannot
reason locally about its state: we must know something about other code that

accesses it.

A simple way to restrict interaction between f and r is to keep r private.
For example, if the expression allocates r locally,

let r = new 37 in r ∶= 0; f (); get r

then we can conclude that the result will be 0, because f cannot possibly have
or gain access to r.28 When we know an object is not shared, we can reason 28Meyer and Sieber (1988), “Towards fully

abstract semantics for local variables”about it completely locally.

In the absence of concurrency, we can also exercise signi�cant local control
over the timing of interactions with shared objects, and thereby mitigate the
e�ects of sharing. For example, by changing the sequence of events,

f (); r ∶= 0; get r

we can again deduce that the expression always returns 0 with no knowledge

about f . Whatever f does to r, the e�ect is wiped out by the subsequent
local assignment—and there is no opportunity between that assignment

and the following dereference for f to have any further impact. Sharing is
only observable when control is relinquished,29 and in a sequential language 29 If external parties are not allowed to run,

they cannot interact with shared objects.control must be given up explicitly. By controlling the timing of shared access,

we control the times at which purely local reasoning applies.

�e previous example is unsatisfying, though: our ability to deduce the

result value depends on obliterating the contents of r. To permit meaningful
sharing, yet retain a degree of local reasoning, we can employ abstraction.

http://dx.doi.org/10.1145/73560.73577
http://dx.doi.org/10.1145/73560.73577

20 concurrency meets parallelism

Rather than sharing a stateful object directly, we instead share a set of

operators that can access it:

oddCnt = let r = new 37

inc = λ(). r ∶= get r + 2
read = λ(). get r − 37

2

test = λ(). isOdd(get r)
in (inc, read, test)

�is example inverts the setup of the previous ones: rather than explicitly

invoking an unknown function, the exported object is passive until one of

its methods is invoked. In other words, f has been replaced by an unknown
context (client) into which the abstraction is placed.
Abstraction has a profound e�ect on local reasoning. It is fundamentally

a way of restricting resource access to the code that “implements” the

abstraction, which is usually30 known when the abstraction is introduced. 30More complex forms of access restric-

tion are possible. For example, classes are

an abstraction mechanism, but otherwise-

hidden class members may be available to

subclasses that are introduced a�erwards.

�is “abstraction barrier” enables a modicum of local reasoning even in the

presence of arbitrary sharing. In oddCnt, for example, we can deduce that no

matter what the client does, the value of r will always be odd, and so test will

always return true.�e oddness of r is invariant because it is establishedwhen
the abstraction is created, and preserved by everymethod of the abstraction—

and because r itself never “escapes” to the client. Yet r is still shared, in the
sense that abstraction-mediated access to it can be freely spread to arbitrary

locations in the client code.

Abstraction a�ects client-side reasoning as well. Because the client cannot

access an abstraction’s internal representation directly, its behavior remains

�xed even if that representation changes.31 For example, no client can tell the 31 Reynolds (1983), Mitchell (1986)

di�erence between oddCnt and

cnt = let r = new 0

inc = λ(). r ∶= get r + 1
read = λ(). get r
test = λ(). true

in (inc, read, test)

because any sequence of method invocations on the two objects will yield the

same results.�e bene�t is that clients can reason about their code using a

simple, slow version of an abstraction, but actually link their code against a

complex, fast one—a point we will discuss in greater detail in §2.2.4.

Despite the fact that the explicit call to an unknown function has disap-

peared, the oddCnt and cnt examples still retain signi�cant control over timing

in a sequential language. �e reason is simple: when a client invokes one

of their methods, it hands over control until the method returns. Without

concurrency, only one such method can be invoked at a time.

Control over timing makes it possible to temporarily break invariants

without harm. For example, replacing inc in oddCnt with a two-step version

inc = λ(). r ∶= get r + 1; r ∶= get r + 1

top down: the problems of concurrency 21

would not change the fact that test always returns true.�e test method can

only be invoked a�er inc has �nished, so it cannot observe the intermediate

state in which r is even.

2.2.3 �e problem of timing “�e central issue lurking beneath the com-
plexity of state, sameness, and change is that
. . . we are forced to admit time into our
computational models.”

—Abelson and Sussman, “Structure and

Interpretation of Computer Programs”

With concurrency, timing is not so easy to control.

Take the following all-too-real scenario:32

32�anks to J. Ian Johnson for this bug.

You sit downwith your favorite text editor
33
to perform a tedious task: inserting

33 Emacs.

a pair of braces at the beginning and end of each of a fewdozen lines. To speed up

the process, you record a keyboardmacro that processes one line, and leaves the

cursor at the next line. You happily invoke the macro in quick succession, until

you notice that braces are piling up, seemingly at random, at the beginning and

ends of lines. What happened?

Interactive programs are always part of a concurrent system in which the user

is a process. �ey are o�en written in a message-passing (or event-driven)
style. In this case, it appears that keyboard macros are replayed by a process

sending messages concurrently with the messages sent by the keyboard itself.

�e result is a nondeterministic interleaving of macro actions and fresh key-

board commands—including, it would seem, additional macro invocations,

launching additional macro-replay threads. Once multiple macro replays

begin interleaving with each other, the braces start piling up in odd ways.34 34When the system is quiescent, however,

the total number of inserted openbraceswill

match that of the close braces.
Timing is a delicate problem. �e obvious way to “�x” the keyboard

macros above is to change the message pipeline to allow “compound” mes-

sages, whose payloads are a sequence of commands to run without interrup-

tion.�at change would avert the brace disaster above, only to replace it by

another:

You intend to add braces only to a certain collection of consecutive lines, and

so you type the “invoke macro” chord what seems like a comparable number of

times—inevitably, too many times. Seeing that braces are now being added to

lines you did not intend, you quickly type the “emergency stop” chord, but to no

avail: the system is irrevocably committed to some number of uninterruptable

macro executions. You watch, glumly, wondering whether you will at least be

able to type the “undo” chord the right number of times.

▸ The “easiest” way to solve timing problems is by waiting. We cannot

reliably make one thread run faster than another, but we can make a thread

run arbitrarily slowly, much to the fury of its clients. Waiting is o�en called

synchronization, because it involves multiple threads coordinating their ex-
ecutions. A�er all, there is little reason to wait unless conditions are going

to change, and a waiting thread must rely on concurrent threads to change

those conditions. Synchronization is used to provide uninterrupted resource

access (e.g.,mutual exclusion), to coordinate phases of a joint computation, to
enforce an order of events (e.g., producer-consumer coupling), and for many
other coordination problems.

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/

22 concurrency meets parallelism

For a concrete example, we look again to the cnt abstraction, which pro-

vided a well-behaved implementation of a counter in a sequential language.

Unfortunately, the abstraction fails when its client employs concurrency.

Suppose the construct

cobegin e1 ∥ e2 coend

executes e1 and e2 concurrently, waits until both �nish, and then returns unit.
�en a client of cntmight execute

cobegin inc() ∥ inc() coend; read()

and get the result 1, rather than the expected 2.�e introduction of concur-

rency has empowered the client: it can now instigate overlapped executions of
the abstraction’s code. An unfortunate interleaving of two inc invocations,

r ∶= get r + 1 ∥ r ∶= get r + 1

can result in both threads reading the current value of r, then both updating
it to the same new value—dropping one of the increments. Concurrency has

violated the assumption that each inc invocation could reason locally about

r until explicitly giving up control, because the interleaving of concurrent
threads causes control to be given up arbitrarily.

�e lesson is that, with expressive interaction, a single thread never ex-

ercises unilateral control over a shared resource. It must instead depend on

other threads to follow a protocol governing the resource at all times, because
those threadsmight execute at any time.35Abstraction can guarantee protocol 35Mechanisms like so�ware transactional

memory allow an individual thread to e�ec-

tively gain unilateral control over memory

during an atomic block, but to do so they

impose an expensive, global protocol on all

access to shared state.

conformance by restricting direct access to the resource. For example, we can

change the internal representation of cnt to include a lock,36 and rewrite its

36 Here we treat the lock as a simple boolean

value. �e acq function pauses the thread
until the lock’s value is false and the thread
wins the subsequent race to set it to true.We
will discuss more realistic lock implementa-

tions in §2.4.6.

methods to follow the protocol that access to r is only permitted when the
lock is held:

lockCnt = let r = new 0

lock = new false

inc = λ(). acq(lock); r ∶= get r + 1; rel(lock)
read = λ(). acq(lock); get r; rel(lock)

in (inc, read)

Abstraction previously enabled local reasoning through invariants on shared,

hidden state, but those invariants only needed to hold at explicit control-

transfer points. With concurrency, the invariants become continuously-

followed protocols, but the bene�t of abstraction is the same: we deduce that

the protocols are globally followed by ensuring that they are locally followed.

Locking protocols like the one above then recover something like explicit

control-transfer points—namely, the points at which the lock is not held—

so that invariants on the state protected by the lock only need to hold at such
points. But the locking protocol itself must be followed at all times.

top down: the problems of concurrency 23

▸ Unfortunately, synchronization comes with pitfalls of its own. As

illustrated by the “�x” to keyboard macros above,

Synchronization is a temporary lapse in concurrency,

and such lapses are not always desirable. Concurrency is o�en introduced to

improve latency and/or throughput (§2.1); synchronization cuts away at these

bene�ts. It is especially damaging in a parallel setting, where waiting threads

entail workless processors.

Amore pernicious problemwith synchronization iswhatDijkstra termed37 37 Dijkstra (1965), “EWD123: Cooperating

Sequential Processes”the deadly embrace: deadlock. �e problem lurks whenever a thread is

responsible for creating conditions that another thread is waiting for, but

is also itself susceptible to waiting. For example, consider a simple message-

passing system with four threads connected point-to-point:38 38 Brinch Hansen (1973), “Operating system

principles”

P

Q R

S

empty full

empty full

�e channels connecting the threads are �nitely bu�ered: a thread trying to

send a message on a “full” channel will wait until another thread has received

one of the messages currently in the bu�er. An unfortunate consequence is

the potential for situations like the one above, in which

P waits for R to receive, S waits for Q to send,
R waits for S to receive, Q waits for P to send,

and the systemgrinds to a halt. It is worth stressing that this example uses only

unidirectional communication. Deadlock does not require explicit cycles;
implicit ones will do.

Altogether, then, the problem of timing is to allow the required or desired

races (§2.2.1) and prevent the problematic ones, while guaranteeing global

progress, maximizing throughput, and minimizing latency.39 It is a di�cult 39 Scalable concurrency adds additional

goals: enabling parallelism while

minimizing memory system tra�c.

See §2.3.

balancing act. �ere are numerous proposals for easing timing di�culties,

ranging from design principles (e.g., waiting on conditions in a �xed, global
order) to signi�cant language mechanisms (e.g., so�ware transactional mem-
ory), each with their own tradeo�s and pitfalls. But the most fundamental

technique is one of the most familiar: managing timing in the same way we

manage other so�ware complexity, through layers of abstraction.

2.2.4 �e role of abstraction

Abstraction separates concerns, and thereby isolates complexity. To imple-

ment amodule, a programmermust choose how to represent andmanipulate

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365

24 concurrency meets parallelism

data, o�en with an eye on performance. But when using the module, those

choices can and should be irrelevant. �ey do not a�ect the “answers” (or,

more generally, the observed behavior) that the module produces; they only

a�ect the speed with which those answers are produced. As long as the

module’s client does not observably depend on the module’s speed, it can
bene�t from speed improvements while ignoring how they are achieved.

Take the abstraction ofmutable, �nitemaps.�ere aremanyways to imple-

ment the abstraction—hashtables, skiplists, binary search trees, etc.—varying
in performance and implementation complexity. But a client executing a

sequence of operations on a map, e.g.,

insert(37, “hello”); insert(37, “world”); lookup(37)

expects to get the same answer, “world”, regardless of the implementation

used. It should be possible, moreover, for the client to deduce the answer

ahead of time, on the basis of an abstract speci�cation of amutable �nite map,
which then serves as a formal interface between the client and the module

implementation.

All well and good in the sequential case—but as we saw in the previous

section (§2.2.3), concurrency empowers the client to interact with a module

in ways that go beyond one-at-a-time call and response.40 �is new mode 40 Higher-order languages introduce similar

challenges, because a client can pass a mod-

ule a function (a “callback”) which returns

control to the client during the module’s

execution.

of client-module interaction threatens to reveal how the module handles (or

fails to handle) timing issues, thereby breaking down the abstraction. It also

raises new questions about how to specify such abstractions in the �rst place.

Concretely: what should the following concurrent client of a �nite map

expect to happen? “In single-threaded programs, an object must
assume a meaningful state only between
method calls. For concurrent objects, however,
overlapping method calls may be in progress
at every instant, so the object may never be
between method calls. Any method call must
be prepared to encounter an object state that
re�ects the incomplete e�ects of other concur-
rent method calls, a problem that simply does
not arise in single-threaded programs.”

—Maurice Herlihy and Nir Shavit, “�e Art

of Multiprocessor Programming”

cobegin insert(37, “hello”) ∥ insert(37, “world”) coend; lookup(37)

�e reasonable assumption for any “thread-safe”map is that exactly one of the

two client subthreads will win the race, so that either of “hello” and “world”

are valid answers, and nothing else is. We need a formal speci�cation that

enables such predictions.

For many methods, like insert, the right model of concurrent interaction

is none—as if, in an amazing stroke of luck, the scheduler always avoids
interleaving the executions of concurrent invocations, instead executing

them one at a time. �e beauty of this “atomic” speci�cation of method

execution is that it reduces the explanation of concurrent interaction to that
of nondeterministic sequential interaction. But because it is mediated by an
abstraction, this notion of “atomicity” refers only to the observable behavior
of a module, as opposed to its implementation. �e result is that clients

can reason about a module as if, e.g., it were implemented using a global
lock, when in reality the implementation provides a much greater degree of

concurrency (and scalability).

In short, abstraction reduces the degree to which concurrency is observ-

able, while retaining its bene�ts.

Another way of understanding the role of abstraction is through the

granularity at which thread execution is interleaved. �e implementation

bottom up: the problems of scalability 25

of an abstraction may be quite �ne-grained, eschewing locks and instead

allowing threads to interact with the data structure through a series of small,

atomic operations on its hidden (but shared) state. If the client could observe

the data structure’s representation, it could observe the small steps being

taken by each method invocation. But the abstraction barrier means that,

instead, the client merely observes what the methods return, which can be

understood in terms of a coarse-grained interleaving—one in which the

operations “take e�ect” in a single step.41 41 Similar bene�ts can be had even when

methods are not atomic, but instead sup-

port meaningful non-sequential interaction.

�ose interactions can still be understood at

a much coarser grain than their implemen-

tations; see §2.4.6.

▸ Abstraction does not “solve” the problems of sharing and timing,

which are inherent to expressive concurrent programming (§2.2.1). As we saw

with �nitemaps above, an abstraction can be shared bymultiple client threads,

which can race to access or update it, with nondeterministic results.What has
been gained is the ability to reason about those races abstractly, at the level of

e.g., atomic updates to key-value pairs rather than complicated sequences of
updates to a hashtable representation. It remains the client’s responsibility to

govern its use of the �nite map abstraction by a meaningful protocol.

For example, consider the parallel duplicate removal algorithm of §2.1.1.

�ere, a client uses a shared �nite set abstraction (represented by a hashtable),

creating several threads that insert elements into the set concurrently—and

multiple threads might insert the same element at the same time. But the

set is inspected only a�er all of the threads have completed their insertions.

Using an atomic speci�cation for set insertion, it is nearly trivial to see that

the algorithm is correct.�e insertion phase corresponds to inserting all of

the elements of the input list into a set, one at a time, in some order; we reduce
a concurrent execution to a nondeterministic, but sequential one. Since the

contents of the set are only read out a�er the insertion phase, and (abstractly!)

insertions into a set commute, the order of insertion clearly makes no

di�erence.�us the �nal set represents the input list without duplicates. It

would be much harder to see that the client’s race conditions were harmless

if we had to reason in terms of the set implementation, especially when using
a scalable concurrent set.

Finally, abstraction determines the rules of the game for scalable concur-

rency. On the one hand, an abstraction barrier allows a module to govern its

internal state via a protocol of arbitrary cleverness, without fear that the client

could somehow violate that protocol. On the other hand, the net e�ect of that

protocol must be, e.g., observable atomicity from the client’s point of view.
Protocols and their guarantees are the subject of Part 1 of this dissertation.

2.3 bottom up: the problems of scalability “�e best computer scientists are thoroughly
grounded in basic concepts of how computers
actually work, and indeed that the essence of
computer science is an ability to understand
many levels of abstraction simultaneously. ”

—Donald E. Knuth, “Bottom-up education”

�e problems of concurrent programming are fundamental and timeless. Scal-
able concurrent programming, on the other hand, is verymuch contingent on
the system architecture du jour. Of course, many of the basic techniques for
scalability have a long shelf life—some state-of-the-art concurrency libraries

http://dx.doi.org/10.1145/961511.961514

26 concurrency meets parallelism

use variants of algorithms designed ��een years ago for radically di�erent

hardware.42 But in general, achieving high performance concurrency on 42�e java.util.concurrent library, for exam-
ple, uses a variant ofMichael and Scott’s lock-

free queue.
multiprocessors requires attention to architectural details.

Without a doubt, the most important architectural consideration is the

interaction between multiprocessing and the memory subsystem. For a long

time, the gap between e�ective CPU frequency and e�ective memory bus

frequency has been growing:

CPUs are todaymuchmore sophisticated than they were only 25 years ago. In those
days, the frequency of the CPU core was at a level equivalent to that of the memory
bus. Memory access was only a bit slower than register access. But this changed
dramatically in the early 90s, when CPU designers increased the frequency of the
CPU core but the frequency of the memory bus and the performance of RAM chips
did not increase proportionally.

—Ulrich Drepper, “What every programmer should know about memory”

While CPUs got faster, RAM got bigger. �ese architectural trends were

largely hidden, however, through the use of caches to mask memory latency.
Because most code naturally possesses temporal and spatial locality, caches

provided the illusion of memory that is both large and fast.

2.3.1 Cache coherence “�e presence of multiple cores on a chip shi�s
the focus from computation to communica-
tion as a key bottleneck to achieving perfor-
mance improvements. . . . High performance
on-chip communication is necessary to keep
cores fed with work.”

—Jerger, “Chip Multiprocessor Coherence

and Interconnect System Design”

Unfortunately, multiprocessing and caching con�ict.

Caches support the abstraction of a single, global memory space, despite

the fact that they permit multiple copies of a given memory cell to exist—the

fast, cached version(s) and the slow version in RAM.�e scheme works in

the single processor case because the lowest level (fastest) cached version is

authoritative. But multiprocessing brings a new complication: because each
processor (or core) has at least one level of private cache, it is no longer

possible to determine the authoritative state of a memory cell on a core-local

basis, within a single cache hierarchy. Cores must coordinate.

Whether in phones43 or servers, present-day commodity multiprocessors 43 e.g., the ARM Cortex-A9 MPCore.
coordinate through cache coherence. Abstractly, cache coherence is a key
mechanism through which a multiprocessor carries out its memory consis-
tency policy:

We view a cache coherence protocol simply as the mechanism that propagates a
newly written value to the cached copies of the modi�ed location. . . . With this
view of a cache coherence protocol, amemory consistencymodel can be interpreted
as the policy that places an early and late bound on when a new value can be
propagated to any given processor.

—Adve and Gharachorloo, “Shared memory consistency models: a tutorial”

�e consistency policy varies by architecture, but we can assume:

The Fundamental Property ofMemoryModels
44 44 Adve and Gharachorloo (1996), “Shared

memory consistency models: a tutorial”Memory is sequentially consistent for all well-synchronized programs.

http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1109/2.546611

bottom up: the problems of scalability 27

�e sequential consistency policy dictates that all memory accesses from all
processors can be interleaved into a global sequence that is consistent with the
semantics formemory, i.e., a read returns the last valuewritten. All processors
observe the same order of events. We will discuss memory consistency in

more detail in §3.2, in particular explaining what it means for a program to

be well-synchronized.45 For the moment, the important implication is that 45 All of the code in this dissertation is well-

synchronized.by issuing certain synchronization instructions, a program can demand a

sequentially-consistent memory.

To guarantee sequential consistency in the well-synchronized case, ar-

chitectures allow one core to gain exclusive access to a block of memory

while performing a write to it. On the other hand, blocks can be freely

shared between cores for read-only access, massively increasing the e�ective

parallelism of the machine. �e goal of cache coherence is to e�ciently

balance between the two kinds of access.

Cache coherence works by storing ownership metadata in core-local
caches. At a minimum, each local cacheline has a status of I (“Invalid”), S
(“Shared”), or M (“Modi�ed”).�ese statuses re�ect increasing access levels
to a block: no access, read-only access, and read/write access, respectively. Co-

herence protocols maintain the system-wide invariant that, for each memory

block,46 46Martin et al. (2012), “Why on-chip cache
coherence is here to stay”

● either there is exactly one core holding the block with statusM,

● or there are zero or more cores holding the block with status S.

As with a uniprocessor, the lowest-level cache holding a block is authoritative;

cache coherence determines which among several local caches at the same
level is currently authoritative.
�e coherence invariant is reminiscent of reader-writer locking, but there

is a fundamental di�erence: any core may obtain read or write access to a

block at essentially any time. To put it more starkly, exclusive write access to a
block can be revoked arbitrarily, without warning. Any changes to the block

are �ushed (committed), as usual for a cacheline eviction.47 Allowing access 47 In some architectures, the block is sent

directly to the core requesting it, rather than

being routed through a higher level of the

memory hierarchy.

to be revoked is essential; otherwise, one core could prevent another from

making progress, inde�nitely.48 Revocation is primarily driven by a cache
48 Cf. §2.5.2miss on the part of another core, which can be either a read or a write miss

depending on the access required.�e only constraint49 on obtaining access 49 Some architectures go further andprovide

a fairness guarantee in addition to the basic
memory consistency guarantee.

is the coherence invariant, which guarantees mutual exclusion for writing but

guarantees nothing about the duration of that write access.
�e key remaining question is: how is the status metadata in the core-

local caches coordinated?�e answer to this question constitutes a coherence
protocol, which is a major point of variance between architectures, and is
coupled with other architectural decisions. It is nevertheless possible to build

a rough cost model that applies to a range of current architectures. A key

observation is that any coherence protocol involves communication between

core-local caches. Such communication is generally routed through a higher

http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2209249.2209269

28 concurrency meets parallelism

level of the memory hierarchy—one that is shared between the caches being

coordinated—and this routing can make coherence very expensive.

For example, take the recent Nehalem architecture from Intel:

The Nehalem microarchitecture implements the MESIF
cache coherency protocol, an extended version of the well-
known MESI protocol [5, p. 213]. Due to the novelty of
this microarchitecture, we can only refer to a very limited
number of publications that are relevant for our test system.
Some information can be gathered from Intel documents [6],
[7]. However, none of them describe the architecture in much
detail.

We use BenchIT [8] to develop and run our memory
benchmarks as well as for the results evaluation. This
performance measurement suite is designed to run micro-
benchmarks on every POSIX 1.003 compliant system in a
user-friendly way. It helps to compare different algorithms,
implementations of algorithms, properties of the software
stack, and hardware details of whole systems. The software
is available as Open Source.

III. SYSTEM ARCHITECTURE

Previous generation quad-core Xeon processors (Harper-
town) are composed of two dual-core dies each with a shared
L2 cache. In contrast, the Xeon 5500 series processors
(Nehalem-EP) are a native quad-core design. Similar to
quad-core AMD Opteron processors (Shanghai), the L1 and
L2 caches are implemented per core, while the L3 cache is
shared among all cores of one processor. The Front Side Bus
used in previous Intel CPUs is replaced by point-to-point
links called Quick Path Interconnect (QPI). Moreover, each
processor contains its own integrated memory controller
(IMC). The basic design of a two-socket Nehalem system is
depicted in Figure 1.

The Intel Nehalem microarchitecture supports simulta-
neous multithreading (SMT) that allows each core to ex-
ecute two threads in parallel. This technique is well-known
from the Pentium 4 processors based on Intel’s Netburst
microarchitecture. Furthermore, processors based on the
Nehalem microarchitecture feature a dynamic overclocking
mechanism (Intel Turbo Boost Technology) that allows the
processor to raise core frequencies as long as the thermal
limit is not exceeded. Table I shows the key differences
between the Nehalem microarchitecture and other common
x86 64 server CPUs.

Nehalem Quadcore

Core 0

Shared Level 3 Cache

IMC
(3 Channel) QPI

L1

Core 1 Core 2 Core 3

L2 L2L2L2

I/O Hub

L1L1L1

Nehalem Quadcore

Core 4

Shared Level 3 Cache

QPI

L1

Core 5 Core 6 Core 7

L2 L2L2L2

L1L1L1

D
D

R
3

A

IMC
(3 Channel)

D
D

R
3

C

D
D

R
3

B

D
D

R
3

D

D
D

R
3

F

D
D

R
3

E

Figure 1. System overview

Although the basic structure of the memory hierarchy
is similar for Nehalem and Shanghai based processors, the
implementation details differ. While AMD processors use a
“non-inclusive” L3 cache, Intel implements an inclusive last
level cache. “core valid bits” within the L3 cache indicate
that a cache line may be present in a certain core. If a bit is
not set, the associated core certainly does not hold a copy
of the cache line, thus reducing snoop traffic to that core.
However, unmodified cache lines may be evicted from a
core’s cache without notification of the L3 cache. Therefore,
a set core valid bit does not guarantee the presence of
the cache line in a higher level cache. Generally speaking,
the shared last level cache with its core valid bits has the
potential to strongly improve the performance of on-chip
data transfers between cores while filtering most unnecessary
snoop traffic.

Nehalem is the first microarchitecture that uses the MESIF
cache coherency protocol. It extends the MESI protocol used
in previous Xeon generations by a fifth state called forward-
ing. This state allows unmodified data that is shared by two
processors to be forwarded to a third one. We therefore
expect the MESIF improvements to be limited to systems
with more than two processors. The benchmark results of
our dual-processor test system configuration should not be
influenced.

Table I
COMPARISON OF DIFFERENT X86 64 MICROARCHITECTURES

Processor AMD Opteron 238* Intel Xeon 54** Intel Xeon 55**

Microarchitecture Shanghai Harpertown Nehalem-EP
Cache organization non-inclusive inclusive inclusive

Cache coherency protocol MOESI MESI MESIF
Shared last level cache yes no yes

Integrated memory controller yes no yes
Point-to-point processor interconnect yes no yes

Native quad-core design yes no yes

248262

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on February 25,2010 at 15:04:35 EST from IEEE Xplore. Restrictions apply.

A Nehalem system can include multiple processors each with multiple cores,

providing a complexmemory hierarchy.�e lowest two levels of the hierarchy

(L1 and L2 caches) are core-private. �e next level (L3 cache) is shared

between the cores within a processor, but is processor-private.�e last level

of the hierarchy is RAM, but access to it is nonuniform: each processor has
dedicated RAM banks (labeled “DDR3”) which can be accessed relatively

quickly, but processors can access each other’s RAM through the QuickPath
Interconnect (QPI).�e read latency for each level of the hierarchy, measured
in CPU cycles on a 2.933Ghz machine, is as follows:50 50Molka et al. (2009), “Memory

Performance and Cache Coherency

E�ects on an Intel Nehalem Multiprocessor

System”

L1 L2 L3 Local RAM QPI Nonlocal RAM

Latency (cycles) 4 10 38 191 120 191 + 120 = 311
To get a sense for the cost of coherence, we consider a few examples using the

diagrammed Nehalem con�guration above.

Suppose that Core 0 and Core 1 each hold a particular block in L1 cache

(which must therefore be in state S), and that no other cores hold the block
in local cache—and that, moreover, the second processor does not hold the

block in its L3 cache. If Core 0 tries to write to the block, it will encounter

a write miss, since it does not have write access.�is cache miss is purely the
result of coherence. A�er all, the data was already in L1 cache! Such misses are
called “coherencemisses.” Servicing this coherencemiss onNehalem requires

communication not just with the shared L3 cache, but also with the L1 and L2

caches of Core 1, resulting in a measured latency of around 65 cycles—more

than an order of magnitude longer than the 4 cycles it would have taken to

access the L1 cache of Core 0 without coherence.

�e situation is much worse for cross-socket coherence. Consider a com-

parable scenario in which Core 0 andCore 4 hold a block in their L1 caches in

http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22

bottom up: the problems of scalability 29

state S, and no other cores have it locally cached. If Core 0 writes to the block,
the resulting coherence miss takes around 320 cycles to service—nearly two
orders of magnitude slower than accessing the data in L1 directly.

�e two scenarios leave Core 1 and Core 4, respectively, with the block in

L1 cache in state I (invalidated). If the cores immediately try to read the block,
they will take coherence misses with similar costs to the misses experienced

by Core 0.

▸ There is a counterintuitive principle at work here. In a cache-

coherent system, access locality can lead to cache misses, rather than cache
hits.51�is kind of “bad” locality is known as contention, and is characterized 51�is phenomenon is sometimes called

cache ping-ponging.by multiple cores repeatedly accessing data where at least one core is trying

to write to the data.52 �e cost of coherence misses tends to rise with the 52 Ping-ponging can also result from false
sharing, where cores are accessing distinct
data that happens, unfortunately, to fall into

the same cache block.

number of cores contending for a block; the resulting memory system tra�c

makes them more expensive to service than standard cache misses. We can

summarize the situation as follows:

Contended access is slower than uncached access.

where “uncached” is relative to the level on the memory hierarchy encounter-

ing a coherence miss. A good cache coherence protocol will limit the number “�e processor cores themselves run at fre-
quencies where, at full speed, even in perfect
conditions, the connection to thememory can-
not ful�ll all load and store requests with-
out waiting. Now, further divide the available
bandwidth by the number of cores, hyper-
threads, and processors sharing a connection
to the Northbridge and suddenly parallelism
becomes a big problem. E�cient programs
may be limited in their performance by the
available memory bandwidth.”

—Ulrich Drepper, “What every

programmer should know about memory”

and expense of coherence misses, but contention for a memory block is a

source of unavoidablemisses. In the end, laggingmemory latency comes back
with a vengeance.

�e cost of contention has a profound impact on the design of scalable

concurrent algorithms. It is the reason that global locks do not scale: a

contended lock adds the cost of a cache miss to every critical section, no
matter how short those critical sections might otherwise be (see §2.4.2). It

is the reason that semantically read-only operations should be implemented

without writes, whenever possible—which precludes the use of even read-

er/writer locking. It encourages designs in which each write to shared data

does a lot of work, so that fewer writes are needed overall. It can even

trump asymptotic performance: some scalable concurrent algorithms asymp-

totically lag their sequential counterparts in space or time, but their parallel

scalability gives better overall system performance. And the likelihood and

e�ect of contention grows with increasing parallelism.

Starting with the next section, we turn to techniques for concurrent

programming that are mindful of contention’s cost. We begin with hardware-

level primitives (§2.3.2) and work our way up to simple nonblocking algo-

rithms implementing abstract data types (§2.4).

2.3.2 �e foundation of interaction: consensus

One problem with cache coherence, as we have described it, is that it is

impossible for a thread to tightly couple a read and a write. In principle,

another thread might gain exclusive access to the block in between the two

http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf

30 concurrency meets parallelism

operations and perform a write of its own. �is is not a problem that can

be solved by using locks, because it is a problem we face when implementing
locks in the �rst place! Suppose, for example, that we represent a lock using

a simple boolean �ag, where true represents that the lock is held by some

thread, and false represents that it is free. We might arrive at the following

naive spinlock implementation, written in a tail-recursive style:

acq(lock) = if get(lock) then acq(lock) else lock ∶= true

�e implementation is hopelessly broken: a�er this thread observes that the

lock is free, but before claiming it for itself, another thread could acquire the

lock.�ere is not tight coupling between observation and action.
While there are some famous lock implementations that use only simple

reads and writes,53 in practice is it much more e�cient to use a hardware 53 Dijkstra (1965), “EWD123: Cooperating

Sequential Processes”operation that can couple reads and writes, sometimes known as read-modify-
write operations.�e most commonly available such operation is compare-
and-set (CAS), which is usually54 speci�ed as follows: 54�e universal quanti�cation here can be

problematic; see Chapter 3 for details.

cas ∶ ∀α. ref(α) × α × α → bool

cas(r, o, n) = atomic { if get(r) = o then r ∶= n; true else false }

�e idea is that cas, in one indivisible step, reads a reference and updates it

only if it has an expected value, returning a boolean signifying which path

was taken.�us, cas arbitrates between multiple threads racing to perform
an update, ensuring that the outcome of the race is coherent—there is just

one winner. In other words, cas allows threads to come to a consensus.55 55 Formally, the problem of consensus is to al-
lowmultiple threads to each propose a value,

and for all of the threads to subsequently

agree on a winning value.�e cas operation
is universal, because it can solve consensus
for an arbitrary number of threads.�is in

turn means that cas can be used to build a
“wait-free” (§2.5.2) concurrent implementa-

tion for any sequential data structure (Her-
lihy 1991).

Using cas, we can write a correct spinlock as follows, again using a boolean

lock representation:

acq(lock) = if cas(lock, false, true) then () else acq(lock)

Now ifmultiple threads attempt to acquire the lock concurrently, caswill arbi-

trate between them, producing exactly one winner, and thereby guaranteeing

mutual exclusion.

Cache coherence already requires arbitration between processors to resolve
races for write access to a block. A cas instruction can be implemented by

ensuring that such access persists long enough to complete the instruction—

which is essentially the same policy as for a primitive write operation.�us

the coherence implications for one “round” of attempts by n + 1 threads to
cas a location are similar to those for n threads trying to read a location
that one thread is writing to. Processors that already hold a block exclusively

can perform a cas within that block relatively quickly, which means that

reacquisitions of a lock implemented as above are relatively cheap.
All of the scalable concurrent algorithms studied in this dissertation use

cas in one way or another.

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

the rudiments of scalable concurrency: performance 31

2.4 the rudiments of scalable concurrency: performance “An algorithm must be seen to be believed.”

—Donald E. Knuth, “�e Art of Computer

Programming, Volume 1: Fundamental

Algorithms”

Taken together, the preceding two sections have isolated the problem of

scalable concurrency:

● Section 2.2 argued that the fundamental challenge of concurrency is man-
aging sharing and timing, a challenge that can be mitigated by abstraction.

● Section 2.3 argued that, with current architectures, the challenge of scal-
ability is enabling parallelism while attending to cache-coherence e�ects

like contention.

�is section brie�y surveys some of the most important techniques for build-

ing scalable concurrent abstractions in practice.�e rest of the dissertation

is focused on understanding these techniques more formally (Part 1) and

expressing them more declaratively and composably (Part 2).

As observed in §2.2.4, a policy of mutual exclusion between method

invocations is a simple way to specify the behavior of an abstract object
whose methods should only interact sequentially. �at speci�cation leads

immediately to an equally simple implementation strategy: take a sequential

implementation, add a global lock to its internal representation, and delimit

each method with a lock acquisition and release.56 From the standpoint 56Monitors embody this implementation

strategy (Brinch Hansen 1973).of scalable concurrency, we take this coarse-grained locking strategy as the
baseline. It represents, in a sense, the worst we could do: not only does it rule

out parallelismwithin the implementation, it also introduces a singlememory

location (the lock) which must be written to by every method—a recipe for

contention and attendant clogging of the memory subsystem. When used

by an increasing number of processors, the result is o�en parallel slowdown
rather than speedup.

2.4.1 Fine-grained locking

If the state hidden within an abstraction is composed of independent pieces,
a natural way to increase scalability is to protect those pieces by independent

locks. For example, the representation for a hashtable involves some number

of buckets of entries, and operations usually interact with a single bucket for

lookup or insertion. A �ne-grained locking strategy for a hashtable might
associate a lock with each bucket, resulting in a signi�cant increase in

parallelism anddecrease in contention. If two threads attempt to lookup items

whose keys hash to di�erent buckets, they can proceed in parallel, and in fact

do not communicate at all. Although both threads must acquire a lock, the

two locks involved can be arranged to sit in separate cache blocks,57 allowing 57�at is, we can deliberately avoid false

sharing (§2.3.1) by careful layout of data.the threads to gain write access concurrently. Yet the correctness of the data

structure is still fairly intuitive: each bucket is the authority on the keys that

hash to it, and the per-bucket lock means that threads gain exclusive access

to the relevant authority.�us when two threads try to concurrently insert an

32 concurrency meets parallelism

itemwith the same key, for example, the fact that theymust acquire a common

lock will force the operations to take place one at a time, in some order.

As long as the number and identity of buckets are �xed, the above strategy

works fairly well. But we have ignored a crucial, if rare, operation: splitting

the hashtable into a greater number of buckets as it grows. It takes great care

to avoid a harmful race between threads trying to acquire a bucket’s lock

and a thread trying to re�ne the list of buckets. It is not a simple matter of

introducing another lock to protect the buckets themselves; that would put

us back to square one.58 �e lesson is that �ne-grained locking is easiest to 58 See Herlihy and Shavit (2008, chapter 13)

for a survey of concurrent hashtable imple-

mentations.
introduce for �xed size, �at data structures. Such data structures can be under-
stood as a convenient coupling of smaller data structures, each protected by

a (locally) coarse-grained lock. Linked or tree-like data structures, or those

requiring dynamic restructuring, require a much more careful introduction

of �ne-grained locks.

Even when �ne-grained locking is done correctly, it can still su�er from

scalability problems. �e most important problem is that read-only opera-

tions require a lock acquisition—and therefore a write to memory. Although

these writes are spread out over several disparate locks, they can still result in

contention (§2.3.1) between readers if the data is accessed frequently enough.

Since read operations tend to dominate workloads, avoiding this unnecessary

contention can be a signi�cant win.59 Doing so requires moving away from 59 It was the key to improving the Linux

dcache performance mentioned in §2.1.1, for
example.

a simple protocol in which all access to each piece of hidden state is tied to

some set of locks.60 In particular, the fact that a thread is executing a read- 60 Cf. the discussion of locking protocols
in §2.2.3. We will formalize locking proto-

cols in Chapter 4.

only operation must be invisible to concurrent threads, since anything else
would entail coherence misses.�e techniques outlined in the remainder of

this section support invisible reads.

2.4.2 Optimistic concurrency

Locking is a pessimistic way to deal with timing problems: a thread assumes

the worst, i.e., that a concurrent thread will attempt to interfere, and prepares
accordingly by alerting any other threads of its intent to access shared data,
thereby forcing them to delay their work. If the lock is held for a long time, the

delay drastically decreases parallel speedup.61 But if the lock is held for a short 61 Amdahl (1967), “Validity of the single

processor approach to achieving large scale

computing capabilities”
time, it becomes a source of memory contention, ping-ponging between the

caches of cores trying to access a shared resource.

In many cases, the pessimism of locking is unfounded: it may turn out

that the threads are merely trying to read some shared data,62 or are trying to 62 Reader/writer locking only helps when

critical sections are lengthy. For short-lived

lock acquisitions, both readers and writers

still introduce coherence tra�c, since they

must still write to the lock itself.

perform writes that can safely proceed concurrently. Optimistic concurrency
is an alternative approach, in which threads do not inform each other of their

presence up front, but instead attempt to work independently for as long

as possible, only checking at the very last moment that their work was not

invalidated by another thread. When the optimism is well-founded, i.e., no
thread meaningfully interfered, the cost of coordination is thereby avoided.

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

the rudiments of scalable concurrency: performance 33

For a concrete example, we return once again to counters:

casCnt = let r = new 0

inc = λ(). let n = get r
in if cas(r, n, n + 1) then () else inc()

read = λ(). get r
in (inc, read)

While very simple, this code illustrates the essence of the optimistic approach

to dealing with timing: the retry loop. In particular, the inc method reads

the current value of the counter without any explicit coordination with other

threads, which means that it gains no lasting knowledge about the counter’s
state.�e very instant a�er reading, for example, another thread could con-

currently increment the counter. Nevertheless, inc carries on, optimistically

computing the new value of the counter based on the earlier snapshot—

and at the very last moment, atomically performs the update while checking

whether its optimism was misplaced. If in fact another thread interfered, inc

simply throws away its work and tries again.63 63We are assuming here that the language

properly implements tail recursion, so that

inc will be compiled to a simple loop.
�e readmethod stands to bene�t the most from optimistic concurrency:

because the data structure is so simple, it can be read in its entirety with-

out any coordination or validation. If the workload of the counter is read-

dominated, then most of the time its contents can be present in the caches of

multiple cores in the “shared” state, recovering cache locality.
As it turns out, casCnt scales better than lockCnt even for workloads con-

sisting solely of writes! Consider the following simple-minded benchmark:
each threads executes a loop where for 98% of the iterations it increments a

private counter, but in 2% of the iterations it increments a shared counter. We
ran the benchmark on a machine64 with two physical processors, each with 64 In more detail: the machine is a 3.46Ghz

Intel Xeon X5677 (Westmere) with 32GB

RAM and 12MB of shared L3 cache. It has

two physical processors with four hyper-

threaded cores each, for a total of 16 hard-

ware threads. L1 and L2 caches are per-core.

four cores, and got the following results:

Threads

T
hr

ou
gh

pu
t

1 8

Predicted

CAS

Locking

Results for 98% parallelism

Saturday, November 10, 12�e “predicted” series is based on a simple application of Amdahl’s law.65 65 Amdahl (1967), “Validity of the single

processor approach to achieving large scale

computing capabilities”
Neither counter implementation matches the prediction, but this is easy to

explain: the cost of incrementing the shared counter rises with contention,

while our simple prediction assumes a �xed cost (i.e., a 2% sequential bottle-
neck).

It is di�cult to saywith certaintywhy the cas-based counter scales somuch

better in this case, but the likely cause is the fact that it requires a thread to gain

exclusive access to only one cache line, one time, per successful increment.

�e spinlock (which included backo�; see §2.4.4), on the other hand, lives

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

34 concurrency meets parallelism

in a di�erent cacheline than the counter’s data,66 which means two lines are 66Most lock representations are padded to

avoid false sharing, but in this case sharing

a cache line with the data would have been

helpful.

needed in exclusive mode. Another explanation is that the cacheline holding

the lock ping-pongs under high contention between lock acquisitions: the
thread acquiring the lock obtains exclusive access and writes the lock; other

threads immediately read the lock, so exclusivity is lost; then the original

thread releases the lock, which requires it to again obtain exclusive access.
In contrast, the cas-based algorithm does all of its work in one acquisition
of exclusive cacheline access. In any case, coherence misses become a real

problem once they must go across sockets, hence the rightward-turn of the

lock-based scalability a�er four threads.

While this particular benchmark should not be taken too seriously, it lends

credence to our earlier claim: scalable concurrency demands attention to

architectural details.

2.4.3 Linked data structures

Unlike counters, most data structures do not �t in a single machine word. So

in general, a single cas operation cannot validate the contents of an entire data

structure while performing an update; cas must be used in a more localized

way. A signi�cant amount of the work that goes into creating a scalable

concurrent algorithm is arranging the representation of its data so that a

single-word cas is meaningful.

Probably the most common representation strategy in practice is to use

linked structures, where updates replace one node with another and cas

compares nodes for identity.67�e classic example is Treiber’s lock-free stack 67 In particular, cas enables pointer compari-
son on the structures of the language, expos-

ing the allocation and representation strat-

egy of the compiler. We return to this point

in Chapter 3.

implementation:68

68 Treiber (1986), “Systems programming:

Coping with parallelism”

Treiber = let h = new (null)
push = λx . let t = new (null)

let n = cons(x , t)
let loop = λ(). let c = get h

in t ∶= c;
if cas(h, c, n)
then () else loop()

in loop()
tryPop = λ(). let c = get h

in case c
of null ⇒ none

∣ cons(x , t) ⇒ if cas(h, c, get(t))
then some(x) else tryPop()

in (push, tryPop)

Here the stack is represented by a linked list which is internally immutable;
only the pointer h to the current head changes.�e push method begins by

allocating a new node, and then entering a retry loop.�e loop works by (1)

taking a snapshot c of the identity of the current head node, (2) linking the

the rudiments of scalable concurrency: performance 35

new node’s tail to c, and (3) updating the head assuming its identity has not
changed in the meantime. �e implementation of tryPop follows a similar

optimistic strategy.

Treiber’s stack illustrates that optimistic algorithms need not validate their

snapshot against an entire data structure. For the case of push, this fact is quite

easy to see: the new head node has a tail pointer that is directly validated

against the current head pointer, and since that step takes place atomically

(thanks to cas) the rest of the data structure is irrelevant. For tryPop, however,

things are a bit more subtle. In particular, while tryPop does con�rm that

the current head pointer is the same as the preceding snapshot c, it does not
con�rm that the tail of that node is the same as the preceding snapshot t. Yet
its correctness clearly depends on that fact.

�e fact that a node’s tail pointer never changes follows from two other

facts:

● First, the stack employs abstraction to hide its internal state; its nodes never
escape as values that the context could manipulate. Consequently, we can

see by inspection that a�er a node is successfully added to the stack via

push, its tail pointer is never changed. A tail snapshot lasts forever.

● Second, and much more subtly, the snapshot node c cannot be garbage-
collected prior to the cas. �is fact is relevant because cas exposes the

identity of nodes (as pointers), so even if a node is not mutated explicitly, it
can be mutated e�ectively by being reallocated with new contents. Luckily
such a situation is never observable, because as long as a pointer to the

node is maintained in order to perform such a comparison, the node will

not be garbage-collected.69 69We assume garbage collection through-

out. Adding explicit memory management

to scalable concurrent algorithms is di�cult,

but there are now several established tech-

niques for doing so (Michael 2004; McKen-

ney and Slingwine 1998).

In general, algorithms that depend on the identity of nodes to validate

snapshots are susceptible to the so-called “ABAproblem,” inwhich a snapshot

A is taken, a�er which the data structure is changed to state B and then back

to A—which allows some cas to succeed even though some aspect of the data

structure vitally changed in the interim. If, for example, the tail pointers of

nodes in the stack could be mutated—say, to allow elements to occasionally

be removed from the middle of the stack—then the tryPop method would

su�er from an ABA problem by failing to validate its snapshot of the tail.

Treiber’s stack is much more scalable than a stack protected by a global

lock, even if the latter uses a more e�cient sequential representation. It is

nevertheless a quite simple example because, like the counter, there is a single

mutable reference through which all concurrent activity takes place. More

complex linked data structures permit mutation at a dynamically-growing

set locations, and o�en require traversing the data structure even as the links
between nodes are mutated. We will study such examples in Chapter 4.

36 concurrency meets parallelism

2.4.4 Backo�

Optimism is bene�cial when it avoids unnecessary worry, but sometimes

worry is warranted. For example, if several threads are attempting to quickly

push large numbers of elements onto a Treiber stack, most of them will

lose the race to cas most of the time. �e result is a cascade of memory

coherence tra�c due to incessant retrying—where, again, most races will be

lost, creating further retries, and so on. At some point, it would be better

to give up on optimistic concurrency, and simply sequentialize access to the

stack.

Fortunately, it is easy for a thread to determine when it should start worry-

ing: every lost cas race is a sign of contention over the data structure. A simple

strategy for avoiding cascading coherence tra�c is exponential backo�, where
a thread busywaits for (on average) exponentially longer periods of time a�er

each lost cas.70 Randomized backo� tends to evenly spread out access by a 70 Agarwal and Cherian (1989), “Adaptive

backo� synchronization techniques”set of threads, e�ectively sequentializing access without introducing lock-like

coordination. It is a pragmatic, heuristic way of improving the management

of timing in a parallel system, but it has no semantic e�ect; correctness still

depends on how the underlying algorithm uses cas.

Backo� can go beyond busywaiting. Sometimes there is useful work that

can be done before reattempting a cas. For example, in some concurrent data

structures items are removed in two phases, a “logical” phase in which the

items are marked as deleted, and a “physical” phase in which they are actually

removed.71 During backo�, a thread might traverse the data structure and 71 Heller et al. (2006), “A lazy concurrent
list-based set algorithm”remove nodes awaiting physical deletion.72 Another example is elimination,
72�e java.util.concurrent skiplist does this.

which we discuss below.

2.4.5 Helping and elimination

Wehave argued that a key bene�t of optimistic concurrency is that threads do

not have to announce their intent to interact with a data structure, a bene�t

that is especially important for (morally) read-only operations. For updates,

however, scalability can sometimes be improved by advertising intent in a

cooperative, rather than competitive, fashion:

● In the competitive approach, a thread obtains exclusive access by

acquiring a lock, which forces all other threads to wait until the end of

its critical section.

● In the cooperative approach, a thread advertiseswhat it is trying to do,
which allows other threads to proceed by �rst helping it �nish its work.

Helping is not so sel�ess: in reality, one thread is merely “helping” another

thread get out of its way, so that access to some resource is no longer

obstructed. In theory, helping provides a stronger guarantee of system

progress—one that does not depend on fairness—and we explore this point

http://dx.doi.org/10.1145/74925.74970
http://dx.doi.org/10.1145/74925.74970
http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1007/11795490_3

the rudiments of scalable concurrency: performance 37

in §2.5.2. In practice, the progress guarantees must be weighed against the

potential for extra memory coherence tra�c. Sometimes it is better to wait.

One particular form of helping that works very nicely in practice is

elimination. �e idea is that certain operations on a data structure cancel
each other out, and so if threads can somehow discover that they are trying

to perform such operations concurrently, they can eliminate their work. For

example, if one thread is trying to push a value onto a stack and another is

trying to pop from the stack, the stack does not need to change at all! A�er all,

if the operations are concurrent, they can be sequenced in either order, and

a push followed by a pop is a no-op.�is observation leads to “elimination

backo� stacks,” which consist of a Treiber stack together with a “side channel”

array73 that pushers and poppers use to �nd each other.74 Operations are �rst 73�e side channel is an array so that multi-

ple eliminations can proceed in parallel.�e

indices at which o�ers are made or looked

for follows the same exponential growth pat-

tern as the backo� timing.

74 Hendler et al. (2004), “A scalable lock-
free stack algorithm”

attempted on the stack itself, but if the necessary cas fails, the thread �ips a

coin and either advertises its operation on the side channel, or else looks for

an advertised operation that it can eliminate. In either case, the amount of

time spent trying to �nd an elimination partner increases exponentially with

each failed cas, just as in busywait-based backo�. Once the time is up, the

thread cancels any advertised o�ers and retries the operation on the stack.

Elimination backo� is e�ective because it spreads out contention: instead

of many cores trying to gain exclusive access to a single cache block contain-

ing the stack head, cores compete for access to a set of blocks (including

each element of the side channel array). Just as randomized exponential

busywaiting tends to spread concurrent accesses out uniformly in time,
randomized elimination tends to spread out contention uniformly in space
(over the side channel array).�e result is that each individual cache block

is contended for by fewer threads on average, which greatly reduces the cost

of coherence. Remarkably, the potential for parallelism increases as a result of
highly-concurrent access, because of the increasing likelihood that parallel

sets of pushers and poppers will discover each other.

2.4.6 Synchronization and dual data structures

With scalable concurrency, even the speed of waiting matters.

Consider implementing a lock intended to protect a “popular” resource with

short-lived critical sections. On a parallel75 machine, a good strategy is to 75Without parallelism, busywaiting of any
kind is useless: no concurrent thread could

possibly change conditions while another

“actively” waits.

use a spinlock, in which threads waiting to acquire the lock busywait (“spin”)
instead of actually blocking. Spinlocks make sense when the average critical

section is much shorter than the average cost of a context switch.76 We saw 76 A context switch occurs when a core stops

executing one thread and begins executing

another, in this case because the execution

of the �rst thread was “blocked,” waiting for

some condition to change.

a very simple spinlock implementation in §2.3.2, in which the lock is just a

boolean reference and acquisition works by repeated cas attempts:

acq(lock) = if cas(lock, false, true) then () else acq(lock)

While the implementation is semantically sound, it su�ers from unfortunate

interactions with cache coherence. To see why, imagine a situation in which

http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/1007912.1007944

38 concurrency meets parallelism

many threads are concurrently attempting to acquire the lock. As these

waiting threads spin around the acquisition loop, they generate a massive

amount of coherence tra�c: each cas attempt requires gaining exclusive

access to the cache block containing the lock, so the block continuously

ping-pongs between the waiting cores.�e tra�c deluge eats into memory

bandwidth that could otherwise be used by the lock-holding thread to get

actual work done. By waiting so aggressively, threads delay the very thing
they are waiting for.

�e situation can be mildly improved by guarding the cas with a snapshot

of the lock, adopting an approach more in the spirit of optimistic concur-

rency:

acq(lock) = if get(lock) then acq(lock) // lock is not free; retry

else if cas(lock, false, true) then () // lock appears free; race to claim it

else acq(lock) // lost race to claim; retry

It is enlightening to think carefully through the cache implications of this new

strategy. A�er the lock is acquired by a thread, its valuewill remain trueuntil it

is released. Consequently, the cache block holding it can be held concurrently

by all the waiting threads in “shared” mode. When these threads spinwait on
the lock, theywill do so by accessing their own local cache—the ping-ponging

has disappeared.

But what happens when the lock is released? First, the lock-holder must

gain exclusive access to the lock’s cache block. A�erwards, all of the waiting
threads will read that block, requiring coherence tra�c proportional to the

number of waiters. All of the waiters will observe that the lock is now free,

and so they will all attempt to cas it at once. Only one cas will win, of course,

but nevertheless all of the waiting threads will get the cache block in exclusive

mode for their cas attempt.�us, while the revised locking strategy eliminates

coherence tra�c during the critical section, there is still a cascade of tra�c

once the lock is released. For popular resources and short critical sections,

this tra�c spells disaster.

�e most important strategy for cutting down this tra�c was introduced

by Mellor-Crummey and Scott (1991), who suggested that waiting threads

should place themselves in a (lock-free) queue. Instead of spinwaiting on the

lock itself, each thread spinwaits on a distinct memory location associated
with its entry in the queue. A thread releasing the lock can therefore signal

a single waiting thread that the lock is available; there is no cascade of cas

attempts (most of which will fail).

▸ Waiting also plays a role in optimistic concurrency. Take Treiber’s

stack. Both push and tryPop are total operations: they can in principle succeed
no matter what state the stack is in, and fail (and retry) only due to active

interference from concurrent threads. A true pop operation, on the other

hand, is partial: it is unde�ned when the stack is empty. O�en this is
taken to mean that the operation should wait until another thread changes

the rudiments of scalable concurrency: correctness 39

conditions such that the operation is de�ned, e.g., by pushing an item onto
the stack. Partial operations introduce considerable complexity, because all of
the operations on the data structure must potentially signal waiting threads,

depending on the changes being performed.

William N. Scherer, III and Scott (2004) introduced the concept of dual
data structures, which contain both traditional data as well as its “dual,”
reservations for consuming a bit of data once it has arrived. �e beauty of
the approach is that both data and reservations can be added to a data

structure following the usual methods of optimistic concurrency, which

makes it possible to build scalable concurrent abstractions with both total

and partial operations. In fact, as we will see in Chapter 8, even the scalable

locks of Mellor-Crummey and Scott (1991) can be viewed as a kind of dual

data structure in which acq is a partial operation.

2.5 the rudiments of scalable concurrency: correctness

When reasoning about “reactive systems” which participate in ongoing inter-

action with their environment, it is helpful to distinguish between two basic

kinds of correctness properties:

● Safety properties, which say that “nothing bad happens.” Semi-formally,
a pure safety property is one for which any violation can be witnessed by

a �nite amount of interaction, no continuation of which will satisfy the
property. A failure of safety requires only �nite observation.

● Liveness properties, which say that “something good keeps happening.”
Semi-formally, a pure liveness property is one for which every �nite
amount of interaction has some continuation that will satisfy the property.
A failure of liveness requires in�nite observation.

Each step of internal computation a thread takes is considered to be an

(uninformative) interaction. So, for example, the fact that a thread will send

some message is a liveness property: if all we have observed so far is that
the thread has computed internally for some �nite number of clock ticks, we

cannot say yet whether the thread will eventually return a result. We can only

observe divergence by waiting for a message for an “in�nite amount of time.”

On the other hand, if the thread sends the wrong value, it will do so a�er
some �nite amount of interaction, and no subsequent amount of interaction

will erase that mistake.

In common temporal logics, every property can be expressed as a con-

junction of a pure safety property with a pure liveness property.77 Such a 77 Alpern and Schneider (1985); Manolios

and Tre�er (2003)decomposition is useful because the two kinds of properties are best tackled

with di�erent tools (invariance and well-founded measures, respectively),

and the proof of a liveness property o�en builds on already-proved safety

properties.

Although we will be exclusively concerned with proving safety properties,

it is helpful to understand both the safety and the liveness properties that are

40 concurrency meets parallelism

commonly sought for scalable concurrent algorithms, since both in�uence

algorithm design. We brie�y discuss them next.

2.5.1 Safety: linearizability

From the outset, the safety of scalable concurrent algorithms has been char-

acterized by a property called linearizability.78 �e property is intended to 78 Herlihy and Wing (1990),

“Linearizability: a correctness condition for

concurrent objects”
formalize the “atomic speci�cation” of abstractions we discussed informally

in §2.2.4.�e idea is to view the behavior of a data structure abstractly, as a

sequence of calls by and responses to some number of concurrent clients. In

such a “history” of interaction, clients cannot issue a new request until the

last request has returned, but multiple clients may have outstanding requests,

which abstractly models the unpredictable timing of concurrent interaction.

�e goal of linearizability is to formalize the following principle:

Each method call should appear to take e�ect instantaneously at some moment
between its invocation and response.

—Herlihy and Shavit (2008, chapter 3)

An implementation is “linearizable” if, for every history it generates, it is

possible to produce a “matching atomic history” that obeys its speci�cation. A

matching history is a sequence of the same calls and responses in a possibly-

di�erent order, subject to a simple constraint: if a given response occurred

prior to a given call in the original history, it must do so in the matching

history as well. A history is atomic if every call is immediately followed by its

response—meaning that the interactions were purely sequential. An atomic

history can easily be validated against a traditional, sequential speci�cation

for an abstraction.

To illustrate these ideas concretely, consider a concurrent stack. Here are

two very similar histories, only one of which linearizable:

Linearizable

call0(push, 3)
call1(push, 7)
call2(tryPop, ())
resp0(push, ())
call3(tryPop, ())
resp1(push, ())
resp2(tryPop, none)
resp3(tryPop, some(3))

Not linearizable

call0(push, 3)
call1(push, 7)
resp0(push, ())
call2(tryPop, ())
call3(tryPop, ())
resp1(push, ())
resp2(tryPop, none)
resp3(tryPop, some(3))

�e atomic history matching the �rst history is as follows:

Atomic history

call2(tryPop, ()); resp2(tryPop, none)
call0(push, 3); resp0(push, ())
call3(tryPop, ()); resp3(tryPop, some(3))
call1(push, 7); resp1(push, ())

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972

the rudiments of scalable concurrency: correctness 41

�e second history, on the other hand, is not linearizable because the push by

thread 0 is completed prior to the attempt to pop by thread 2—and so, given

the circumstances, the latter call cannot lead to a response of none.

�e intent of linearizability is to reduce concurrent speci�cations to se-

quential ones, and therefore to reduce concurrent reasoning to sequential

reasoning. It has long served as the “gold standard” safety speci�cation for

concurrent data structures with method-atomic speci�cations. Nevertheless,

we will argue in §3.3 and §3.4 that contextual re�nement is the semantic
property that clients want, rather than linearizability. Contextual re�nement

directly formalizes the idea that a client can link their programwith a scalable

concurrent algorithm for performance, but reason about it as if they were

using a much simpler, coarse-grained algorithm.

2.5.2 Liveness: nonblocking progress properties

One downside of locking is that a delay of the thread holding a lock results in

a further delay of all threads waiting for the lock. For example, a very unlucky

threadmight encounter a page fault within its critical section, with disastrous

performance rami�cations. Whether or not such a situation is likely to arise

in practice, it is a problem that many scalable concurrent algorithms simply

do not have: they are formally non-blocking.79 79 Herlihy and Shavit (2008), “�e Art of

Multiprocessor Programming”Non-blocking liveness properties are applied to scalable concurrent ab-

stractions that provide some set of methods. �ey characterize progress

guarantees for completing in-progress, concurrent method invocations.

�e weakest property is obstruction-freedom, which says that at any time,
if a single thread executing a method is allowed to proceed in isolation, it will

eventually complete the method execution.With an obstruction-free abstrac-

tion, method invocations can only fail to make progress if another thread

is actively interferes. In contrast, with a lock-based abstraction, an isolated
thread executing a method may fail to make progress for the simple reason

that it does not hold the lock, and will be unable to acquire the lock until

some other threadmakes progress.�e idea behind obstruction-freedom is to
model an unbounded delay of one thread as a permanent failure; obstruction-
freedom then asks that other threads can continue making progress in such

a case. It thereby precludes the use of locks.

A yet-stronger condition is the (confusingly named) lock-freedom prop-
erty, which says that if some method is being executed, some method will
complete execution—but not necessarily the same one! In other words, a

method invocation can only fail to make progress if some other invocation

is succeeding.80 Lock-freedom neither assumes fairness81 from the sched- 80 Consider the cases in which cas can fail in
Treiber’s stack, for example.

81 e.g., that a thread that is continuously
ready to execute will eventually be executed.

uler, nor guarantees fair method execution. It implies obstruction-freedom

because if only one method is executing, that must be the method making
progress.

42 concurrency meets parallelism

Finally, wait-freedom simply guarantees that every method invocation
will eventually �nish in a �nite number of steps, even if concurrent method
invocations arrive continuously.
Altogether, we have:

wait-free ⇒ lock-free ⇒ obstruction-free = nonblocking

Most scalable concurrent data structures are designed to be lock-free, and

many rely on helping (§2.4.5) to achieve this goal.Wait-freedom is considered

prohibitively expensive.Obstruction-freedomwas introduced to characterize

progress for some so�ware transactional memory implementations.82 Just as 82 Herlihy, Luchangco, and Moir (2003),

“Obstruction-free synchronization: double-

ended queues as an example”
complexity analysis does not tell the whole story of real-world performance

for sequential algorithms, non-blocking liveness properties are only part of

the story for scalable concurrency—they can sometimes pro�tably be traded

in exchange for better cache behavior.83 83 Hendler et al. (2010), “Flat combining
and the synchronization-parallelism

tradeo�”

http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

Part II

UNDERSTANDING SCALABLE CONCURRENCY

3
A calculus for scalable concurrency

“Language is the armory of the human mind,
and at once contains the trophies of its past
and the weapons of its future conquests.”

—Samuel Taylor Coleridge

▸ Synopsis �is chapter formalizes a calculus, F µ
cas, which is a variant of

the polymorphic lambda calculus extended with mutable references, cas and

fork—the essential features needed to model scalable concurrent algorithms

written in a high-level language.�e chapter de�nes and discusses a memory

consistencymodel (§3.2), re�nement (§3.3), and atomicity (§3.4), in particular

contrasting linearizability and re�nement (§3.4.2). Some auxiliary technical

details appear in Appendix A.

3.1 the calculus

Any formal study of concurrent algorithms must begin by formalizing a

language in which to write them. In the past, scalable algorithms have

been formalized in low-level, C-like settings, usually untyped and without

abstraction mechanisms or a way to de�ne procedures. But in practice, even

algorithms written in low-level languages use hiding to enforce local proto-

cols on their data. Libraries like JUC and TBB are written in typed, object-

oriented languages and use polymorphism to provide generic data structures.

JUC in particular provides support for futures and fork/join computations

that is intrinsically higher-order, relying on the ability to pass objects with

unknown methods as arguments and on inheritance, respectively.�ere are

also generic constructions for producing concurrent data structures from se-

quential ones—e.g., Herlihy’s universal construction1 and the more practical 1 Herlihy (1991), “Wait-free

synchronization”“�at combining” construction2—which are best-expressed as higher-order
2 Hendler et al. (2010), “Flat combining and
the synchronization-parallelism tradeo�”

functions (or even as SML-style functors).

We therefore study scalable concurrency within a calculus we call F µ
cas,

which is a variant of the polymorphic lambda calculus (System F), extended

with tagged sums, general mutable references (higher-order state), equi-

recursive types, cas, and fork.�e result is a very compact calculus with that

can faithfully model JUC-style algorithms, including those that use polymor-

phic, recursively-linked data structures, hiding, and higher-order features.

As we will see in Chapters 4 and 5, these features also su�ce to formalize

the interaction between linguistic hiding mechanisms and concurrent data

structures, or, more succinctly, to study concurrent data abstraction.

45

http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

46 a calculus for scalable concurrency

Comparable types σ ∶∶= unit Unit (i.e., nullary tuple)
∣ bool Boolean

∣ nat Natural number

∣ τ + τ Tagged union

∣ ref(τ) Mutable tuple reference

∣ ref?(τ) Optional reference

∣ µα.σ Recursive comparable type

Types τ ∶∶= σ Comparable type

∣ α Type variable

∣ τ × τ Immutable pair type

∣ µα.τ Recursive type

∣ ∀α.τ Polymorphic type

∣ τ → τ Function type

Values v ∶∶= () Unit value

∣ true Boolean value

∣ false Boolean value

∣ n Number value

∣ (v , v) Pair value

∣ rec f (x).e Recursive function

∣ Λ.e Type abstraction

∣ ℓ Heap location

∣ null Null optional reference

∣ x Variable

Expressions e ∶∶= v Value

∣ if e then e else e Conditional

∣ e + e Addition

∣ (e , e) Pair introduction

∣ let (x , y) = e ine Pair elimination

∣ e e Function application

∣ e _ Type application

∣ case(e , null⇒ e , x ⇒ e) Optional reference elimination

∣ inji e Tagged union injection

∣ case(e , inj1 x ⇒ e , inj2 y⇒ e) Tagged union elimination

∣ new e Mutable tuple allocation

∣ get(e[i]) Mutable tuple dereference

∣ e[i] ∶= e Mutable tuple assignment

∣ cas(e[i], e , e) Mutable tuple atomic update

∣ fork e Process forking

Figure 3.1: F µ
cas syntax

the calculus 47

3.1.1 Syntax

Figure 3.1 gives the syntax of F µ
cas.�e language is essentially standard, but

there are subtleties related to cas, and a few unusual aspects that help keep

our treatment of algorithms concise. We discuss both below.

▸ modeling compare-and-set As we discussed in §2.3.2, cas is a

hardware-level operation: it operates on a memory cell containing a single

word-sized value, comparing that value for physical equality and updating it

as appropriate. In practice, this word value is usually a pointer to some other

object.3 In a low-level language, none of this is surprising or problematic. In 3 See §2.4.3.

a high-level language, however, pointer comparison is not always appropriate

to expose, since it reveals the allocation strategy of the compiler (and other-

wise may break programmer abstractions). On the other hand, languages like

Java (and, of course, C++) already expose pointer comparisons, and these are

the languages used to build JUC and TBB.

In order to faithfully model JUC-style algorithms without strongly com-

mitting the linguistic model to pointer comparison, we introduce a distinct

category of comparable types σ , as opposed to general types τ.4 �e cas 4�e distinction could also be phrased in

terms of a kinding system: one would have a
single syntactic category of types, but assign

types distinct kinds of either comparable

C or general ⋆, with a subkinding relation
C ⪯ ⋆. We have opted for the lighter-weight
syntactic distinction, andmodel subkinding

by embedding comparable types into the

syntax of general types.

operator can only be applied at comparable type, so the distinction allows

a language designer to choose which physical representations to reveal. For

simplicity, F µ
cas treats only base types (i.e., unit values, natural numbers, and

booleans), locations (i.e., reference types) and tagged unions (i.e., sum types)
as comparable.�e inclusion of tagged unions is justi�ed by the fact that the

operational semantics explicitly heap-allocates them; see §3.1.3.5 Comparable
5 An alternative design would be to intro-

duce an explicit type constructor of im-

mutable “boxes,” which simply wrap a value

of an arbitrary type with an explicitly-

comparable identity. Boxed values would

then be the only comparable type. A smart

compiler would be able to treat the box as a

no-op most of the time.

types also include recursive type de�nitions over other comparable types,

which is a bit subtle: the type variable introduced by the recursion can only

appear within a general type τ, which in turn is protected by a layer of
indirection through the heap (either in a tagged union or reference). �e

idea is just that there needs to be some physical source of identity to actually

compare, and in the end we use erased equi-recursive types, which have no
physical, run-time existence.

▸ keeping things concise Wemake several concessions in the calculus

that will pay dividends later on, when formally reasoning about algorithms:

● Following Ahmed (2006), terms are not annotated with types, but poly-
morphism is nevertheless introduced and eliminated by explicit type

abstraction (Λ.e) and application (e _).

● References are to mutable tuples ref(τ) (as opposed to immutable pairs
τ1 × τ2), useful for constructing objects with many mutable �elds.6 �e 6�e overbar notation represents a vector.

term get(e[i]) reads and projects the i-th component from a reference e,
while e[i] ∶= e′ assigns a new value to that component. When e is a single-
cell reference, we will usually write get(e) instead of get(e[1]) and e ∶= e′

instead of e[1] ∶= e′.

48 a calculus for scalable concurrency

● �e type ref?(τ) of “option references” provides an untagged union of
null values and reference types.7 Because reading and writing operations 7 Contrast this with a tagged option type,

which would require an extra indirection

through the heap.
work on references, and not option references (which must be separately

eliminated by cases), there are no null-pointer errors.

�e net e�ect is �atter, less verbose type constructions with fewer layers of

indirection.

▸ derived forms We will freely use standard derived forms, e.g.,

λx .e ≜ rec z(x).e z fresh
let x = e in e′ ≜ (λz.e′) e z fresh

e; e′ ≜ let z = e in e′ z fresh

as well as nested pattern matching and recursive function de�nitions in let-

bindings.

3.1.2 Typing

�e type system for F µ
cas is quite straightforward to formalize. First, there are

typing contexts:

Type variable contexts ∆ ∶∶= ⋅ ∣ ∆, α
Term variable contexts Γ ∶∶= ⋅ ∣ Γ, x ∶ τ
Combined contexts Ω ∶∶= ∆; Γ

�e typing judgment in Figure 3.2 uses combined typing contexts Ω to

reduce clutter; comma-adjoined type or term variables are simply joined to

the appropriate context within. �e calculus additionally requires that all

recursive types µα.τ be productive, meaning that all free occurrences of α
in τ must appear under a non-µ type constructor.

3.1.3 Operational semantics

�e operational semantics of F µ
cas is formulated in evaluation-context style.

To de�ne the primitive reductions, we �rst formalize heaps:

Heap-stored values u ∈ HeapVal ∶∶= (v) ∣ inji v
Heaps h ∈ Heap ≜ Loc⇀ HeapVal

Here we clearly see that tagged sums and mutable tuples are heap-allocated:

their canonical forms are heap-stored values u rather than values v. Heaps
are just partial functions from locations ℓ to heap-stored values. Primitive
reductions work over pairs of heaps and expressions, and their de�nition

(Figure 3.3) is entirely straightforward.

the calculus 49

▸ Well-typed terms ∆; Γ ⊢ e ∶ τ

Ω ⊢ () ∶ unit Ω ⊢ true ∶ bool Ω ⊢ false ∶ bool Ω ⊢ n ∶ nat Ω, x ∶ τ ⊢ x ∶ τ

Ω ⊢ e ∶ bool Ω ⊢ e i ∶ τ
Ω ⊢ if e then e1 else e2 ∶ τ

Ω ⊢ e1 ∶ τ1 Ω ⊢ e2 ∶ τ2
Ω ⊢ (e1 , e2) ∶ τ1 × τ2

Ω ⊢ e ∶ τ1 × τ2 Ω, x ∶ τ1 , y ∶ τ2 ⊢ e′ ∶ τ
Ω ⊢ let (x , y) = e in e′ ∶ τ

Ω, f ∶ τ′ → τ, x ∶ τ′ ⊢ e ∶ τ
Ω ⊢ rec f (x).e ∶ τ′ → τ

Ω ⊢ e ∶ τ′ → τ Ω ⊢ e′ ∶ τ′

Ω ⊢ e e′ ∶ τ
Ω ⊢ null ∶ ref?(τ)

Ω ⊢ e ∶ ref(τ)
Ω ⊢ e ∶ ref?(τ)

Ω ⊢ e ∶ ref?(τ) Ω ⊢ e1 ∶ τ Ω, x ∶ ref(τ) ⊢ e2 ∶ τ
Ω ⊢ case(e , null⇒ e1 , x ⇒ e2) ∶ τ

Ω ⊢ e ∶ τ i
Ω ⊢ inji e ∶ τ1 + τ2

Ω ⊢ e ∶ τ1 + τ2 Ω, x ∶ τ i ⊢ e i ∶ τ
Ω ⊢ case(e , inj1 x ⇒ e1 , inj2 x ⇒ e2) ∶ τ

Ω, α ⊢ e ∶ τ
Ω ⊢ Λ.e ∶ ∀α.τ

Ω ⊢ e ∶ ∀α.τ
Ω ⊢ e _ ∶ τ[τ′/α]

Ω ⊢ e i ∶ τ i
Ω ⊢ new (e) ∶ ref(τ)

Ω ⊢ e ∶ ref(τ)
Ω ⊢ get(e[i]) ∶ τ i

Ω ⊢ e ∶ ref(τ) Ω ⊢ e′ ∶ τ i
Ω ⊢ e[i] ∶= e′ ∶ unit

Ω ⊢ e ∶ ref(τ) τ i = σ Ω ⊢ eo ∶ σ Ω ⊢ en ∶ σ
Ω ⊢ cas(e[i], eo , en) ∶ bool

Ω ⊢ e ∶ unit

Ω ⊢ fork e ∶ unit

Ω ⊢ e ∶ µα.τ
Ω ⊢ e ∶ τ[µα.τ/α]

Ω ⊢ e ∶ τ[µα.τ/α]
Ω ⊢ e ∶ µα.τ

Figure 3.2: F µ
cas typing

▸ Primitive reductions h; e ↪ h′; e′

h; n +m ↪ h; k when k = n +m
h;get(ℓ[i]) ↪ h; v i when h(ℓ) = (v)
h; ℓ[i] ∶= v ↪ h[ℓ[i] = v]; () when ℓ ∈ dom(h)

h; cas(ℓ[i], vo , vn) ↪ h[ℓ[i] = vn]; true when h(ℓ)[i] = vo
h; cas(ℓ[i], vo , vn) ↪ h; false when h(ℓ)[i] ≠ vo

h; case(ℓ, inj1 x ⇒ e1 , inj2 x ⇒ e2) ↪ h; e i[v/x] when h(ℓ) = inji v

h; if true then e1 else e2 ↪ h; e1
h; if false then e1 else e2 ↪ h; e1

h; case(null, null⇒ e1 , x ⇒ e2) ↪ h; e1
h; case(ℓ, null⇒ e1 , x ⇒ e2) ↪ h; e2[ℓ/x]

h; let (x , y) = (v1 , v2) in e ↪ h; e[v1/x , v2/y]
h; (rec f (x).e) v ↪ h; e[rec f (x).e/ f , v/x]

h; inji v ↪ h ⊎ [ℓ ↦ inji v]; ℓ
h; (Λ.e) _ ↪ h; e
h;new (v) ↪ h ⊎ [ℓ ↦ (v)]; ℓ

Figure 3.3: F µ
cas primitive reductions

50 a calculus for scalable concurrency

To formalize general reduction, we �rst de�ne the evaluation contexts K,
which specify a le�-to-right, call-by-value evaluation strategy:

K ∶∶= [] ∣ if K then e else e ∣ K + e ∣ v + K ∣ (K , e) ∣ (v ,K)
∣ let (x , y) = K in e ∣ K e ∣ v K ∣ inji K ∣ K _
∣ case(K , inj1 x ⇒ e , inj2 x ⇒ e) ∣ case(K , null⇒ e , x ⇒ e)
∣ new (v ,K , e) ∣ get(K[i]) ∣ K[i] ∶= e ∣ v[i] ∶= K
∣ cas(K[i], e , e) ∣ cas(v[i],K , e) ∣ cas(v[i], v ,K)

A program con�guration (or just “con�guration”) ς is a pair of a heap and
a thread pool T :

T ∈ �readPool ≜ N fin⇀ Expression
ς ∶∶= h;T

�e thread pool assigns each thread a unique identi�er in N. For simplicity,
the language does not allow a thread to observe its identi�er; while adding

this feature (along with the ability to wait for termination of a given thread)

to the language is easy, doing so would complicate the model in Chapter 5

and is not necessary for the algorithms we study.

Finally, reduction on con�gurations simply allows a given thread to exe-

cute a step (possibly within an evaluation context) and de�nes the semantics

of fork:

▸ General reduction h;T → h′;T ′

h; e ↪ h′; e′

h;T ⊎ [i ↦ K[e]]→ h′;T ⊎ [i ↦ K[e′]]

h;T ⊎ [i ↦ K[fork e]]→ h;T ⊎ [i ↦ K[()]] ⊎ [j ↦ e]

3.2 the memory consistency model

�e semantics we have just de�ned provides a model of shared-memory

concurrency that, until recently, was uncontroversial: the heap h in F µ
cas

provides a global, sequentially consistent view of memory to all threads.

�at is, the semantics interleaves thread execution, and each step a thread

takes operates on that single, global heap. Each update a thread performs is

immediately visible to all other threads through the global heap.

Unfortunately, such an account of shared memory is wildly unrealistic in

general, for reasons that span the entire tower of abstractions that make up

modern computer systems:

● Optimizing compilers liberally reorder instructions in ways that are un-
observable for sequential code, but very much observable for concurrent

code.

the memory consistency model 51

● Writes performed by a CPU are not sent directly to main memory, which
would be extremely expensive; instead, they update the most local cache.8 8 See §2.3.

Even with cache-coherent architectures, it is possible for activity on di�er-

ent memory locations to appear to happen in di�erent orders to di�erent

CPUs.

● CPUs also reorder instructions, for the same reasons and with the same
caveats as compilers.

�ese problems all stem from the implementation of “memory” as an abstrac-

tion for sequential code—an abstraction that begins leaking its implementa-

tion details in the concurrent case.

Because sequential performance is paramount, the solution is to weaken

the abstraction rather than to change the implementation.�e result is the

(ongoing) study and formulation of memory consistency models at both the
hardware and language levels.

Here we are concerned only with language-level memory models, and the

key question is: how does the sequentially-consistent model of F µ
cas limit the

applicability of our results in practice? More concretely, if we prove the cor-

rectness of an algorithm in F µ
cas, what does that tell us about a transliteration

of the algorithm into, say, Java or Scala?

While no modern memory model guarantees sequential consistency in

general, the primary goal of most memory models is to delineate a class

of “well-synchronized” programs9 for which memory is guaranteed to be 9 Proper synchronization is o�en called

“data race freedom”.sequentially-consistent (while still leaving plenty of room for optimization).

�e idea is that certain language primitives are considered to be “synchro-

nized,”10 meaning amongst other things that they act as explicit barriers to 10 For simplicity, this discussion glosses over

the various distinctions that some memory

models make between di�erent �avors of

synchronization or barrier operations.

instruction reordering and force cache �ushes. In other words, synchronized

operations e�ectively “turn o�” the problematic optimizations to thememory

hierarchy, and provide walls over which the optimizations cannot cross.

Lock acquisition/release and cas are examples of such operations. Moreover,

many languages provide a way to mark a particular reference as sequentially-

consistent,11 meaning that every read and write to the reference acts as a 11 In Java, this is provided by the volatile
keyword.synchronized operation.

We have glossed over many details, but the upshot is clear enough: the

memory model of F µ
cas is realistic if we consider all references as being

implicitly marked as sequentially-consistent. In particular, if a transliteration

of an algorithm into a real language explicitly marks its references as volatile,

the algorithm will behave as it would in F µ
cas. �is strategy is reasonable

for a majority of scalable concurrent algorithms, which in practice use such

marked references anyway. But it does mean that F µ
cas cannot be used to

study more subtle algorithms, such as RCU in Linux,12 that use references 12McKenney and Slingwine (1998), “Read-

copy update: Using execution history to

solve concurrency problems”
with weaker consistency. It also means that F µ

cas cannot specify the “happens-

before”13 implications of concurrency abstractions that make up part of 13�e “happens-before” relation is a key as-

pect of many memory models.the API for libraries like JUC. Finally, it means that F µ
cas is inappropriate

for studying reference-heavy sequential code, which would run incredibly

http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

52 a calculus for scalable concurrency

slowly—though it should be noted that in a functional language such code

is relatively uncommon.

3.3 contextual refinement “Type structure is a syntactic discipline for
maintaining levels of abstraction.”

—John C. Reynolds, “Types, abstraction

and parametric polymorphism”

�e essence of abstraction is hiding: abstraction is only possible when some

details are not meaningful and need not be visible. Or, put di�erently, an

abstraction barrier delineates which details are visible at which “level of

abstraction.” When we speak of speci�cation and implementation, we usually
think of these as characterizing, respectively, what a client can observe from
outside an abstraction barrier and how those observations are generated by
code within the barrier. Clients thus only reason about what an abstraction

does (its “spec”), not how (its implementation).

Speci�cations come in many forms, some of which are tied to a particular

logical formalism. But one particularly simple, logic-independent method

of speci�cation is a so-called reference implementation, which avoids saying “Don’t ask what it means, but rather how it is
used.”

—Ludwig Wittgenstein

“what” an abstraction should do by instead saying “how” to implement a very

simple version of the abstraction that exhibits all the permissible observable

behavior.�is form of speci�cation has many downsides—it is o�en more

concrete than necessary, and it is very easy to overspecify—but it is well-
suited for libraries where it is di�cult to formulate a su�ciently general

“principal speci�cation,” and where there is a large gap in complexity between

the real and the reference implementations. Clients are then free to introduce

further abstraction, e.g., by showing that the reference implementation in
turn satis�es some other, more abstract speci�cation, and then reasoning on

the basis of that speci�cation.
�is section de�nes the standard notion of contextual re�nement (here-

a�er: re�nement), which we use to formalize speci�cation via reference

implementation. We discuss our particular use of reference implementations

in §3.4.

▸ Refinement captures observable behavior via client interaction.

Suppose ei is a library, and es is a reference implementation for it. If no client
can tell that it is linked against ei rather than es—that is, if every “observable
behavior” of ei can be reproduced by es—then indeed ei meets its spec es, i.e.,
ei re�nes es. Conversely, if ei behaves in a way that is meaningfully di�erent
from its spec, it should be possible to �nd a client that can tell the di�erence.14 14�is is, in fact, a tautology: a di�erence is

“meaningful” precisely when it is observable

by a client.
We formalize the notion of an unknown (but well-typed!) client as a

context15 C. Contexts are classi�ed by a standard typing judgment 15 A context is an expression with a “hole”

into which another expression can be

placed.C ∶ (Ω, τ)↝ (Ω′ , τ′)

such that whenever Ω ⊢ e ∶ τ, we have Ω′ ⊢ C[e] ∶ τ′.�e notation C[e]
indicates plugging the expression e into the hole of context C, yielding a new
expression.

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

observable atomicity 53

�en, if Ω ⊢ ei ∶ τ and Ω ⊢ es ∶ τ, we say ei contextually re�nes es, written
Ω ⊧ ei ⪯ es ∶ τ, if:

for every i , j and C ∶ (Ω, τ)↝ (∅, nat) we have
∀n.∀Ti . ∅; [i ↦ C[ei]] →∗ hi; [i ↦ n] ⊎ Ti
Ô⇒ ∃Ts . ∅; [j ↦ C[es]]→∗ hs; [j ↦ n] ⊎ Ts

�us an “observable di�erence” between two terms is any distinction that

some client can transform into a di�erence in the natural number its main
thread returns. Re�nement is asymmetric, since the spec es sets an upper
bound on the behaviors16 of the implementation ei. It is also a congruence, 16�e plural here is intended: F µ

cas has sev-

eral sources of nondeterminism, including

memory and thread allocation and thread

interleaving. �e spec should exhibit the

maximum observable nondeterminism.

since any composition of implementations re�nes the corresponding compo-

sition of specs.

Re�nement hinges on the power of the context C: what can it observe, and
with what can it interfere?�e more powerful the context, the less freedom

we have in implementing a speci�cation:

● Concurrency changes the when, but not the what, of observation. For
example, in a �rst-order language, a sequential context can only interact

with the state before or a�er running the program fragment in its hole. A

concurrent context might do so at any time. But the allowed interactions

are the same in either case.

● Abstractionmechanisms, on the other hand, determinewhat but notwhen
observations are allowed. For example, a context can only observe a func-

tion by applying it, concurrently or sequentially.�e context cannot tell

directly whether the function is in fact a closure containing some internal
mutable reference; it can only observe which outputs are generated from

which inputs over time.�e same goes for abstract data types, which deny

the context access to their representation.

�e scalable concurrent algorithms we will study in the next several chapters

rely on abstraction to limit the power of their (possibly concurrent) clients:

essentially all of the interesting action is hidden away in their internal state.

3.4 observable atomicity

Most of the scalable algorithms we will study within F µ
cas are data structures

whose operations are intended to “take e�ect atomically,” even though their

implementation is in fact highly concurrent.17 We are now in a position 17 See §2.2.4 and §2.4.

to formalize this intent: a data structure is observably atomic if it re�nes a
canonical atomic spec, i.e., a spec of the form

let x = e in mkAtomic(e1 , . . . , en)

54 a calculus for scalable concurrency

where the overbar notation represents a (possibly empty) list, and where

acq ≜ rec f (x). if cas(x , false, true) then () else f (x)
rel ≜ λx . x ∶= false

withLock(lock, e) ≜ λx . acq(lock); let r = e(x) in rel(lock); r
mkAtomic(e1 , . . . , en) ≜ let lock = new (false) in

(withLock(lock, e1), . . . , withLock(lock, en))

�e idea is that a “canonical atomic spec” is just a data structure protected

by a global lock, for which mutual exclusion between method executions

(and hence their atomicity) is trivially assured. Since global locking is the

simplest way to achieve atomicity,18 such specs are reasonable “reference 18 See the discussion at the beginning of §2.4.

implementations.” More �exible de�nitions are certainly possible, but this

simple one su�ces for our purposes.

To see how this de�nition plays out concretely, we turn back to concurrent

counters. Recall the simple (but surprisingly scalable) optimistic counter

from §2.4.2:

casCnt = let r = new 0

inc = λ(). let n = get r
in if cas(r, n, n + 1) then () else inc()

read = λ(). get r
in (inc, read)

A canonical atomic spec for the counter is as follows:

atomCnt = let r = new 0 in mkAtomic(λ(). r ∶= get r + 1, λ(). get r)

And indeed, we will show as a warmup example (§6.2) that

⋅ ⊧ casCnt ⪯ atomCnt ∶ (unit→ unit) × (unit→ nat)

which means that a client can safely link against casCnt while reasoning as

if it were linked against atomCnt. Admittedly, the “simpli�cation” is rather

underwhelming in this case, but for even slightly more sophisticated algo-

rithms, the canonical atomic spec is much easier to reason about than the

implementation.

Although the de�nition of the locks used for mkAtomic internally use cas,

in practice we reason about itmore abstractly, e.g., by using very simpleHoare
triples that summarize their e�ect.19 19�is is, in fact, an example of the “further

abstraction” that a client of a reference im-

plementation can employ (§3.3).

3.4.1 �e problem with atomic blocks

Despite the fact that we ultimately reason about global locks in an abstract

way, it is still a bit unsatisfying that canonical atomic specs need to talk

about locks at all. Why not instead add an atomic keyword (to be used by

speci�cations only) with a single-step operational semantics, e.g.,

h; e ↪∗ h′; v
h;K[atomic e]↪ h′;K[v]

observable atomicity 55

Although canonical atomic specs would still be written in essentially the same

way (trading atomic for mkAtomic), their interpretation would be more triv-

ially atomic. In fact, such “atomic blocks” provide strong atomicity, meaning
that they appear atomic even if they access memory that is also access outside

of any atomic block. �e mkAtomic sugar, by contrast, supports only weak
atomicity: the methods within it only execute atomically with respect to each
other, not with respect to arbitrary other code.20 20 See Blundell et al. (2006) for a more de-

tailed discussion of weak and strong atomic-

ity.
Unfortunately, the semantic strength of such an atomic keyword is also

its downfall: it empowers contexts to make unrealistic observations, and in

particular to observe the use of cooperation in scalable concurrent algorithms.

To see why, consider an elimination stack (§2.4.5)21 that provides push and 21 In particular, we consider a slight variant

of the elimination stack thatmay try elimina-

tion before trying its operation on the actual
stack.

tryPopmethods, together with the obvious canonical atomic spec for a stack.

In F µ
cas, the elimination stack re�nes its spec, as one would expect. But if we

added an atomic keyword, we could write a client like the following:

fork push(0); fork push(1);
atomic { push(2); tryPop() }

When linked with the stack speci�cation, this client’s main thread always
returns some(2), because its de�nition of tryPop always pops o� the top item

of the stack, if one is available. But when linked with the elimination stack

implementation, this client could return some(0), some(1), or some(2)! A�er
all, the elimination-based tryPop does not always look at the top of the stack—
it can instead be eliminated against concurrent push operations. Since the

forked push operations are concurrent with the embedded tryPop operation,

they may therefore be eliminated against it.

In short, atomic is too powerful to be allowed as a program context.22 22�is observation should serve as a warn-

ing for attempts to integrate STM (which

can provide a strong atomic facility) with

scalable concurrent data structures.

While it is possible to integrate atomic in a more restricted (and hence less

problematic) way, doing so is tricky in a higher-order language like F µ
cas. We

have investigated the use of a type-and-e�ect system like the one studied by

Moore and Grossman (2008): types with a “not safe for atomic” e�ect classify

terms that may use atomic but not be placed within other atomic blocks. In

the end, though, the added complexity of a type-and-e�ect system together

with (surmountable) step-indexing problems23 convinced us to stick with the 23 See Birkedal et al. (2012) for a step-
indexed treatment of atomic.simpler lock-based treatment of atomicity.

3.4.2 Re�nement versus linearizability

We have proposed that the correctness24 of a scalable data structure should 24 In terms of safety §2.5.

be expressed by re�nement of a canonical atomic spec, but nearly all of

the existing literature instead takes linearizability (§2.5.1) as the key safety

property. We close out the chapter by arguing in favor of the re�nement

methodology.

At �rst blush, re�nement and linearizability look rather di�erent:

● While re�nement has a fairly standard de�nition across languages, the
meaning of the de�nition is quite language-dependent. �e previous

56 a calculus for scalable concurrency

section gives a perfect example: by adding atomic to the language, we

would drastically change the re�nement relationships, invalidating some

re�nements that held in the absence of atomic.

● Linearizability, on the other hand, is de�ned in terms of quite abstract
“histories,” seemingly without reference to any particular language.

But to actually prove linearizability for speci�c examples, or to bene�t for-

mally from it as a client, some connection is needed to a language. In partic-
ular, there must be some (language-dependent) way to extract the possible

histories of a given concurrent data structure—giving a kind of “history

semantics” for the language. Once a means of obtaining histories is de�ned,

it becomes possible to formally compare linearizability with re�nement.

Filipović et al. (2010) study the relationship for a particular pair of �rst-
order concurrent languages. In both cases, linearizability turns out to be

sound for re�nement, and in one case it is also complete.25 But such a study 25�e di�erence hinges on whether clients

can communicate through a side-channel;

linearizability is complete in the case that

they can.

has not been carried out for a higher-order polymorphic language like F µ
cas,

and it is not immediately clear how to generate or compare histories for such

a language. In particular, the arguments and return values of functions may

include other functions (themselves subject to the question of linearizability),

or abstract types, for which a direct syntactic comparison is probably too

strong.

�e key message of Filipović et al. (2010) is that re�nement is the property
that clients of a data structure desire:

Programmers expect that the behavior of their program does not change whether
they use experts’ data structures or less-optimized but obviously-correct data
structures.

—Ivana Filipović et al., “Abstraction for Concurrent Objects”

and that, consequently, linearizability is only of interest to clients insofar as it

implies re�nement.

▸ If linearizability is a proof technique for refinement, its soundness

is a kind of “context lemma”26 saying the observable behavior of a data 26 Robin Milner (1977), “Fully abstract

models of the lambda calculus”structure with hidden state can be understood entirely in terms of (concur-

rent) invocations of its operations; the particular contents of the heap can

be ignored.�e problem is that the behavior of its operations—from which

its histories are generated—is dependent on the heap. Any proof method that
uses linearizability as a componentmust reason, at some level, about the heap.

Moreover, linearizability is de�ned by quantifying over all histories, a quanti�-
cation that cannot be straightforwardly tackled through induction. Practical

ways of proving linearizability require additional technical machinery, the

validity of which must be separately proved.

http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953

observable atomicity 57

A similar progression of techniques has been developed for reasoning

directly about re�nement (or equivalence), mainly based on (bi)simulations27 27 Abramsky (1990); Sumii and Pierce

(2005); Sangiorgi et al. (2007); Koutavas
and Wand (2006)

or (Kripke) logical relations.28�ese methods directly account for the role of

28 Pitts and Stark (1998); Ahmed (2006);

Ahmed et al. (2009); Dreyer, Neis, and
Birkedal (2010)

hidden state in the evolving behavior of a data structure, and they also scale to

higher-order languages with abstract and recursive types. Recent logical rela-

tions have, in particular, given rise to an abstract and visual characterization

of protocols governing hidden state, based on state-transition systems.29 29 Dreyer, Neis, and Birkedal (2010), “�e

impact of higher-order state and control

e�ects on local relational reasoning”
�e next two chapters show how to extend logical relations to deal with

sophisticated concurrent algorithms—connecting the correctness of these

algorithms to the theory of data abstraction while avoiding linearizability

altogether.

http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566

4
Local protocols

“A programmer should be able to prove that
his programs have various properties and do
not malfunction, solely on the basis of what
he can see from his private bailiwick.”

—James H Morris Jr., “Protection in

programming languages”

▸ Synopsis �is chapter introduces local protocols and develops, through

examples, the key ideas we use to handle scalable algorithms: role playing

via tokens (§4.3), spatial locality via local life stories (§4.2), thread locality via

speci�cation resources (§4.4), and temporal locality via speculation (§4.5).

4.1 overview

�emotivation for proving a re�nement ei ⪯ es is to enable a client of a library
ei to reason about it in terms of some more abstract speci�cation es. But to
actually prove re�nement, it is vital to view the client more abstractly:

● Definitionally, re�nement requires consideration of every well-typed
context C into which a library ei can be placed. In the execution of the
resulting programC[ei], the clientCmay invoke the library eimany times
and in many ways—perhaps even forking threads that use it concurrently.

In between these interactions with the library, the client may perform its

own local computations.

● Intuitively, re�nement should not depend on the execution of any par-
ticular clients, since the library must be well-behaved for all (well-typed)
clients. Moreover, libraries that hide their state within an abstraction

barrier greatly limit the scope of interaction: a client context can neither

observe nor alter the hidden state directly, so all interactions are mediated

by the library’s methods. From the perspective of a library, then, the

behavior of a client can be reduced to a collection of possibly-concurrent

method invocations.

To bring de�nition and intuition into alignment, we need a way of modeling

arbitrary client behavior without enumerating particular clients.

Protocols are the answer.�ey characterize hidden state: what it is, and “Protocol is everything.”

—Francois Giuliani
how it can change. �e only way a client can interact with hidden state

is through the library, so protocols need only explain the behavior of the

library implementation1 with respect to its hidden state. A particular client 1Morris Jr. (1973)’s “private bailiwick.”

is abstractly modeled by the moves in the protocol it makes through calls to

the library. An arbitrary client can then modeled by considering arbitrary
protocol moves. Protocols enable us to reason about method invocations

in isolation. Instead of considering an arbitrary sequence of prior method

invocations, we simply start from an arbitrary protocol state. And instead of

59

http://dx.doi.org/10.1145/361932.361937
http://dx.doi.org/10.1145/361932.361937

60 local protocols

considering arbitrary concurrent invocations, we simply force our reasoning

to withstand arbitrary “rely” (environment) moves in the protocol.

4.1.1 �e state transition system approach

To make our discussion more concrete (and give some useful background),

we brie�y review Dreyer, Neis, and Birkedal (2010)’s state transition system

(STS) approach to reasoning about hidden state in sequential languages.

Suppose we want to prove that oddCnt ⪯ cnt (§2.2.2), i.e., that:

let r = new 37

inc = λ(). r ∶= get r + 2
read = λ(). get r − 37

2

test = λ(). isOdd(get r)
in (inc, read, test)

⪯

let r = new 0

inc = λ(). r ∶= get r + 1
read = λ(). get r
test = λ(). true

in (inc, read, test)
�e hidden state of the oddCnt “library” is just the hidden reference r, which is
embedded in the exported closures (inc, read, test) but is not itself exported
directly. Consequently, the values it can take on are entirely determined by

(1) its initial value and (2) the modi�cations made possible by the library

methods. Since inc is the only method than can update the reference, we

describe r with the following STS:

37 39 41 43 . . .

Although we have labeled the nodes suggestively, in Dreyer et al.’s approach
the states of such transition systems are abstract: each state is interpreted as
an assertion on heaps. In Chapter 5 we will introduce a syntax and semantics

for assertions, but in the meantime we will describe them as needed.

For the above STS, the interpretation for a node n is

I(n) ≜ ri ↦i n ∗ rs ↦s (
n − 37
2

)

�e interpretation I reveals a fundamental fact: re�nement is proved via
“relational” reasoning, meaning in particular that we relate the state of the

implementation heap (using separation logic-style2 heap assertions x ↦i y) 2 In separation logic, the assertion x ↦ y
is satis�ed by a heap with a single location,

x, that contains the value y (Reynolds 2002),
and ∗ is a version of conjunction for which
the two conjuncts must be satis�ed by dis-

joint portions of the heap.

to the state of the speci�cation heap (using heap assertions x ↦s y).3 A�er

3 To distinguish the uses of the bound vari-

able r in oddCnt and cnt, we α-rename it to
ri and rs respectively.

all, like oddCnt, the speci�cation cnt has hidden state that a�ects its behavior.

Any execution of the implementation must be mimicked by its speci�cation,

in the style of a simulation. In particular, there are dual obligations for the

implementation and speci�cation of a method:4

4�us the interpretation I plays the role of
a “linking invariant” (or “re�nement map”;

Hoare 1972; Abadi and Lamport 1991)—as

one would expect to �nd in any re�nement

proof—but one whosemeaning is relative to

the current STS state.

1. For every step an implementation method makes, any changes to the

implementation heap must be permitted by the STS, possibly by moving

to a new STS state. (Impl. step⇒ STS step)

2. For any move made in the STS, it must be possible to take zero or

more steps in the speci�cation method yielding a new speci�cation heap

satisfying the new STS state. (STS step⇒ Spec. step)

overview 61

To prove that oddCnt re�nes cnt, wemust in particular show re�nement for

eachmethod. Supposewe execute inc in oddCnt starting froman arbitrary STS

state n, and hence a heap where ri has value n. In its second step of execution,
inc will update ri to n + 2, which requires moving to the next STS state—and
hence, showing that cnt’s version of inc can be executed to take rs from n − 37

2

to
(n+2) − 37

2
, which indeed it can.5 �e proof of re�nement for read is even 5Weknow, at the outset, that n = 2m+37 for

some m, due to our choice of node labels.more pleasantly trivial.6 Finally, re�nement for test is also easy, since the STS
6 As if the interpretation I was designed
speci�cally to support it. . .is constrained enough to imply that ri is always odd.

As an aside, we could have instead labeled the states by their “abstract”

value, andmake the interpretation do the work of picking out the correspond-

ing concrete value:

0 1 2 3 . . .

with interpretation

I(n) ≜ ri ↦i (2n + 37) ∗ rs ↦s n

�is “alternative” STS/interpretation is semantically identical to the original

one.

It turns out that, however, that the original STS is overkill: the fact that

oddCnt re�nes its spec does not in any way depend on the monotonically-

increasing nature of r. All that is really needed is an invariant. Simple
invariants can be expressed by one-state systems, e.g.,

DummyState

with the interpretation giving the invariant:

I(DummyState) ≜ ∃n. ri ↦i (2n + 37) ∗ rs ↦s n

Even though there are no “moves” in the STS, a change to the implementation

heap requires a corresponding change to the speci�cation heap in order for

the dummy state’s interpretation to be satis�ed—so the proof obligations for

re�nement using this STS are essentially the same as for the original one.

▸ As is well known, invariants are not always enough, especially when

reasoning about concurrency.7 We close the discussion of Dreyer, Neis, 7 Jones (1983), “Tentative steps toward

a development method for interfering

programs”
and Birkedal (2010) with a classic, so-called “awkward” example,8 where

8�e example is due to Pitts and Stark

(1998), who dubbed it “awkward” because

their invariant-based method could not

cope with it.

invariants fail even in the sequential setting:

let x = new (0) in λ f . x ∶= 1; f (); get(x) ⪯ λ f . f (); 1

�e example captures, in the most trivial way possible, hidden state that is

lazily initialized. It is contrived, but illustrative and subtle.�e subtlety arises

from the dynamics of control. �e implementation9 �rst allocates x with 9�e term on the le�.

value 0, and then yields control to the client, returning a closure. When the

client later invokes the closure, the internal state is updated to 1, but then

http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925

62 local protocols

control is again returned to the client (by invoking the callback, f). How do
we know, upon return, that x has the value 1?10 10�is is the problem of sharing (§2.2.2) in

action, mitigated by abstraction (§2.2.4).Intuitively, x must have the value 1 because the only code that can change
x is the very function under consideration—which sets it to 1.11 Formally, we 11 Notice that this function could very well

be invoked from the client’s callback.Higher-

order programming leads to reentrancy.
can capture the irreversible state change of x via a simple STS:

0 1

with the interpretation I(n) = x ↦i n.12 According to this STS, a�er the 12With this example, the implementation’s

internal state has no observable e�ect on

its behavior, and so the speci�cation has no

hidden state at all.

expression x ∶= 1 is executed, the protocol is in its �nal state—and, no matter
what the callback does, there’s no going back.

4.1.2 Scaling to scalable concurrency

Our “local protocols” build onDreyer, Neis, and Birkedal (2010)’s state transi-

tion systems,13 generalizing them along several dimensions in order to handle 13 Including its use of a step-indexed Kripke

logical relation as a foundation for proving

re�nement, as we will see in Chapter 5.�e

“Kripke” frame is essentially the protocol

itself.

scalable concurrent algorithms. We next brie�y outline these extensions, and

then devote the rest of the chapter to explaining them through examples.

Chapter 5 then formalizes protocols and a model built around them.

▸ spatial locality As we stressed in §1.2.1, we seek to understand �ne-

grained concurrency at a �ne grain, e.g., by characterizing concurrent in-
teraction at the level of individual nodes. Compared to Dreyer, Neis, and

Birkedal (2010)’s work, then, we deploy our protocols at a much �ner gran-

ularity and use them to tell local life stories about individual nodes of a data
structure (§4.2). Of course, there are also “global” constraints connecting up

the life stories of the individual nodes, but to a large extent we are able to

reason at the level of local life stories and their local interactions with one

another.

▸ role-playing Many concurrent algorithms require the protocols gov-

erning their hidden state to support role-playing—that is, a mechanism by
which di�erent threads participating in the protocol can dynamically acquire

certain “roles”.�ese roles may enable them to make certain transitions that

other threads cannot. Consider for example a locking protocol, under which

the thread that acquires the lock adopts the unique role of “lock-holder” and

thus knows that no other thread has the ability to release the lock. To account

for role-playing, we enrich our protocols with a notion of tokens (§4.3), which
abstractly represent roles.�e idea is that, while the transition system de�nes

the basic ways hidden state can change, some transitions “reward” a thread

by giving it ownership of a token, whereas other transitions require threads

to give up a token as a “toll” for traversal.14 14�is idea is highly reminiscent of re-

cent work on “concurrent abstract predi-

cates” (Dinsdale-Young et al. 2010), but we
believe our approach is simpler and more

direct. See Chapter 7 for further discussion.

▸ thread- and temporal locality In proving re�nement for an oper-

ation on a concurrent data structure, a key step is identifying the point during

overview 63

its execution at which the operation can be considered to have “committed”,

i.e., the point at which its canonical atomic spec can be viewed as having exe-
cuted.15With scalable algorithms, these commit points can be hard to identify 15�is is o�en called the “linearization

point” of the algorithm when proving lin-

earizability (§2.5.1).
in a thread-local and temporally-local way. For example, in an elimination

stack (§2.4.5) a thread attempting to pop an element might eliminate its

operation against a concurrent push—thereby committing a push operation

that, semantically, belongs to another thread. In other algorithms likeCCAS16 16 Fraser and Tim Harris (2007),

“Concurrent programming without locks”(which we discuss in Chapter 6), the nondeterminism induced by shared-

state concurrency makes it impossible to determine when the commit has
occurred until a�er the �ne-grained operation has completed its execution.

On the other hand, the protocol method bakes in thread- and temporal
locality. At each point in time, the protocol is in a de�nite state, and changes

to that state are driven by single steps of implementation code without regard
to past or future steps. External threads are treated entirely abstractly—they

merely “cast a shadow” on the protocol by updating its state in between the

steps of the thread of interest. So the question is: how can the inherent locality

of protocols be reconciled with the apparent nonlocality of sophisticated

algorithms?

�e whole point of protocols (or, more generally, Kripke logical relations)

is to provide a way of describing local knowledge about hidden resources, but

in prior work those “hidden resources” have been synonymous with “local

variables” or “a private piece of the heap”. To support thread- and temporally-

local reasoning about scalable algorithms, we make two orthogonal general-

izations to the notion of resources:

● We extend resources to include speci�cation code (§4.4). �is extension
makes it possible for “the right to commit an operation” (e.g., push, in the
example above) to be treated as an abstract, shareable resource, which one

thread may pass to other “helper” threads to run on its behalf.

● We extend resources to include sets of speci�cation states (§4.5). �is
extensionmakes it possible to speculate about all the possible speci�cation
states that an implementation could be viewed as re�ning, so that we can

wait until the implementation has �nished executing to decide which one

we want to choose.

4.1.3 A note on drawing transition systems

In our examples, we use a compact notation to draw structured branches:

A B2

B1

⋱

C2

C1

= A B i C i

i

http://dx.doi.org/10.1145/1233307.1233309

64 local protocols

4.2 spatial locality via local life stories

4.2.1 A closer look at linking: Michael and Scott’s queue

�e granularity of a concurrent data structure is a measure of the locality of

synchronization between threads accessing it. Coarse-grained data structures

provide exclusive, global access for the duration of a critical section: a thread

holding the lock can access as much of the data structure as needed, secure in

the knowledge that it will encounter a consistent, frozen representation. By

contrast, �ne-grained data structures localize or eliminate synchronization,

forcing threads to do their work on the basis of limited knowledge about its

state—sometimes as little as what the contents of a single word are at a single

moment.

While we saw some simple examples of scalable, �ne-grained data struc-

tures in §2.4, we now examine a more complex example—a variant of

Michael and Scott’s lock-free queue17—that in particular performs a lock-free 17Michael and Scott (1998), “Nonblocking

Algorithms and Preemption-Safe Locking

on Multiprogrammed Shared Memory

Multiprocessors”

traversal of concurrently-changing data. �e queue, given in Figure 4.1, is

represented by a nonempty linked list; the �rst node of the list is considered
a “sentinel” whose data does not contribute to the queue. Here the list type is

mutable,

list(τ) ≜ µα.ref?((ref?(τ), α)

in addition to the mutable head reference.

MSQ: ∀α. (unit→ ref?(α)) × (α → unit)
MSQ ≜ Λ.

let head = new (new (null, null)) (∗ initial sentinel ∗)

deq = λ(). let n = get head

in case get(n[2])
of n′ ⇒ if cas(head, n, n′)

then get(n′[1]) else deq()
∣ null ⇒ null, (∗ queue is empty ∗)

enq = λx . let n = new (new x , null) (∗ node to link in ∗)
let try = λc. case get(c[2])

of c′ ⇒ try(c′) (∗ c is not the tail ∗)
∣ null ⇒ if cas(c[2], null, n)

then () else try(c)
in try(get head) (∗ start search from head ∗)

in (deq, enq)

Figure 4.1: A simpli�ed variant of
Michael and Scott (1998)’s lock-free

queue

Nodes are dequeued from the front of the list, so we examine the deq code

�rst. If the queue is logically nonempty, it contains at least two nodes: the
sentinel (physical head), and its successor (logical head). Intuitively, the deq

operation should atomically update the head reference from the sentinel to

http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446

spatial locality via local life stories 65

its successor; a�er doing so, the old logical head becomes the new sentinel,

and the next node, if any, becomes the new logical head. Because there is no

lock protecting head, however, a concurrent operation could update it at any

time.�us, deq employs optimistic concurrency (§2.4.2): a�er gaining access

to the sentinel by dereferencing head, it does some additional work—�nding

the logical head—while optimistically assuming that head has not changed

behind its back. In the end, optimism meets reality through cas, which

performs an atomic update only when head is unchanged. If its optimismwas

misplaced, deq must start from scratch. A�er all, the queue’s state may have

entirely changed in the interim.

�e key thing to notice is just how little knowledge deq has as it executes.

Immediately a�er reading head, the most that can be said is that the resulting

nodewas once the physical head of the queue.�e power of cas is that it mixes

instantaneous knowledge—the head is now n—with instantaneous action—
the head becomes n′.�e weakness of cas is that this potent mixture applies

only to a single word of memory. For deq, this weakness is manifested in the

lack of knowledge cas has about the new value n′, which should still be the
successor to the physical head n at the instant of the cas. Because cas cannot

check this fact, itmust be established pessimistically, i.e., guaranteed to be true
on the basis of the queue’s internal protocol. We will see in a moment how to

formulate the protocol, but �rst, we examine the more subtle enq.

In a singly-linked queue implementation, one would expect to have both

head and tail pointers, and indeed the full Michael-Scott queue includes a

“tail” pointer. However, because cas operates on only one word at a time, it is

impossible to use a single cas operation to both link in a new node and update

a tail pointer.�e classic algorithm allows the tail pointer to lag behind the

true tail by at most one node, while the implementation in java.util.concurrent

allows multi-node lagging.�ese choices a�ect performance, of course, but

from a correctness standpoint one needs to make essentially the same argu-

ment whether one has a lagging tail, or simply traverses from head as we do.

In all of these cases, it is necessary to �nd the actual tail of the list (whose
successor is null) by doing some amount of traversal. Clearly, this requires at

least that the actual tail be reachable from the starting point of the traversal;

the loop invariant of the traversal is then that the tail is reachable from the

current node. But in our highly-concurrent environment, we must account

for the fact that the data structure is changing under foot, even as we traverse

it.�e node that was the tail of the list when we began the traversal might not
even be in the data structure by the time we �nish.

4.2.2 �e story of a node

We want to prove that MSQ re�nes its coarse-grained speci�cation CGQ,

shown in Figure 4.2. Ideally, the proof would proceed in the same way one’s

intuitive reasoning does, i.e., by considering the execution of a single function
by a single thread one line at a time, reasoning about what is known at

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java?view=markup

66 local protocols

CGQ ≜ Λ.let head = new (null)
deq = case get head

of n ⇒ head ∶= get(n[2]); new (get(n[1]))
∣ null ⇒ null, (∗ queue is empty ∗)

enq = λx . let enq′ = λc. case get(c[2])
of c′ ⇒ enq′(c′) (∗ c is not the tail ∗)
∣ null ⇒ c[2] ∶= new (x , null)

in case get(head) of n ⇒ enq′(n)
∣ null ⇒ head ∶= new (x , null)

in mkAtomic(deq, enq)

Figure 4.2: A coarse-grained queue

each program point. To achieve this goal, we must solve two closely-related

problems: we must characterize the possible interference from concurrent

threads, and we must characterize the knowledge that our thread can gain.

We solve both of these problems by introducing a notion of protocol, based
on the abstract STSs of Dreyer, Neis, and Birkedal, but with an important

twist: we apply these transition systems at the level of individual nodes, rather
than as a description of the entire data structure. �e transition systems

describe what we call the local life stories of each piece of a data structure.�e “�ere’s always the chance you could die right
in the middle of your life story.”

—Chuck Palahniuk

diagram in Figure 6.6 is just such a story. Every heap location can be seen

as a potential node in the queue, but all but �nitely many are “unborn” (state
�). A�er birth, nodes go through a progression of life changes. Some changes
are manifested physically.�e transition from Live(v , null) to Live(v , ℓ), for
example, occurs when the successor �eld of the node is updated to link in a

new node. Other changes re�ect evolving relationships.�e transition from

Live to Sentinel, for example, does not represent an internal change to the node,

but rather a change in the node’s position in the data structure. Finally, a node

“dies” when it becomes unreachable.

� Live(v , null)v Live(v , ℓ)
ℓ

Sentinel(v , ℓ)

Sentinel(v , null)

ℓ

Dead(v , ℓ)

Reachable

Logically in queue

Figure 4.3: A protocol for each node
of the Michael-Scott queue—one per

possible memory location.

�e bene�t of these life stories is that they account for knowledge and

interference together, in a local and abstract way. Knowledge is expressed

by asserting that a given node is at least at a certain point in its life story.
�is kind of knowledge is inherently stable under interference, because all
code must conform to the protocol, and is therefore constrained to a forward

spatial locality via local life stories 67

march through the STS.�e life story gathers together in one place all the

knowledge and interference that is relevant to a given node, even knowledge

about an ostensibly global property like “reachability”.�is allows us to draw

global conclusions from local information, which is precisely what is needed

when reasoning about scalable concurrency. For example, notice that no node

can die with a null successor �eld. A successful cas on the successor �eld from

null to some location—like the one performed in enq—entails that the succes-

sor �eld was instantaneously null (local information), which by the protocol

means the node was instantaneously reachable (global information), which

entails that the casmakes a new node reachable. Similarly, the protocolmakes

it immediately clear that the queue is free from any ABA problems (§2.4.3),

because nodes cannot be reincarnated and their �elds, once non-null, never

change.

▸ To formalize this reasoning, we must connect the abstract account of

knowledge and interference provided by the protocol to concrete constraints

on the queue’s representation, ensuring that “Dead” and “Live” mean what we

think they do. For the queue, we have the following set of states for each node’s

local STS:

S0 ≜ {�}
∪ {Live(v , v′) ∣ v , v′ ∈ Val}
∪ {Sentinel(v , v′) ∣ v , v′ ∈ Val}
∪ {Dead(v , ℓ) ∣ v ∈ Val, ℓ ∈ Loc}

along with the transition relation ↝0 as given in the diagram (Figure 6.6).18 18 Recall that the annotated edges denote

branches for choosing particular concrete v
and ℓ values (§4.1.3).

�ese local life stories are then systematically li�ed into a global protocol:
the data structure as a whole is governed by a product STS with states
S ≜ Loc fin⇀ S0, where

fin⇀ indicates that all but �nitely many locations are
in the � (unborn) state in their local STS.19�e transition relation↝ for the 19�at is, we pun the � state in the local STS

with the partiality of a product state s as a
function: the domain of s is just those loca-
tions that have been “born” into the queue.

product STS li�s the one for each node’s STS, pointwise:

s ↝ s′ i� ∀ℓ. s(ℓ)↝0 s′(ℓ) ∨ s(ℓ) = s′(ℓ)

�us, at the abstract level, the product STS is simply a collection of indepen-

dent, local STSs.

At the concrete level of the interpretation I, however, we record the
constraints that tie one node’s life story to another’s; see Figure 4.4. As the

example at the top of the �gure shows, the linked list managed by the protocol

does not begin at head. Instead it begins with a pre�x of the Dead nodes—

nodes that are no longer reachable from head, but that may still be referenced

locally by a snapshot in some thread.�e node pointed to be head is the sole

Sentinel, while the remaining su�x of the list constitute the Live nodes.�e

interpretation guarantees such a con�guration of nodes by �rst breaking the

product state s into three disjoint pieces:

s = sD ⊎ [ℓ ↦ Sentinel(v0 , vi)] ⊎ sL

68 local protocols

. . . 12 99 37 21 13 . . .

head�read-local reference

Dead Sentinel Live

I(s) ≜ DeadSeg(sD ,−, ℓ) ∗ (headi ↦i ℓ ∗ ℓ ↦i (v0 , vi) ∗
heads ↦s vs ∗ locks ↦s false

) ∗ LiveSeg(sL , vi , vs , null, null)

for any ℓ, v0, vi, vs, sD , sL
with s = sD ⊎ [ℓ ↦ Sentinel(v0 , vi)] ⊎ sL , where:

DeadSeg(∅, ℓ, ℓ′′) ≜ emp ∧ ℓ = ℓ′′
DeadSeg(sD ⊎ [ℓ ↦ Dead(v , ℓ′)], ℓ, ℓ′′) ≜ ℓ ↦i (v , ℓ′) ∗ DeadSeg(sD , ℓ′ , ℓ′′)

LiveSeg(∅, vi , v′′i , vs , v′′s) ≜ emp ∧ vi = v′′i ∧ vs = v′′s
LiveSeg(sL ⊎ [vi ↦ Live(v0 , v′i)], vi , v′′i , vs , v′′s) ≜ ∃xi , xs , v′s . xi ⪯V xs ∶ α ∗ v0 ↦i xi

∗ vi ↦i (v0 , v′i) ∗ vs ↦s (xs , v′s)
∗ LiveSeg(sL , v′i , v′′i , v′s , v′′s)

Figure 4.4: Interpreting the li�ed,
global protocolDue to the other constraints of I, the sD part of the state must contain exactly

the Dead nodes, while sL contains exactly the Live ones—and there must,

therefore, be exactly one sentinel:

● �eDeadSegpredicate is essentially the same as the recursive “list segment”
predicate from separation logic:20 DeadSeg(sD , ℓ, ℓ′′) is satis�ed i� sD rep- 20 Reynolds (2002), “Separation logic: a

logic for shared mutable data structures”resents a linked list segment of Dead nodes, starting at ℓ and terminating
at ℓ′′, and each such node actually exists on the implementation heap.21 21We could also pick out the corresponding

“garbage” nodes on the spec side, but there is

no reason to do so.● In contrast, the more complicated LiveSeg predicate is a relational version
of the list segment predicate: LiveSeg(sL , vi , v′′i , vs , v′′s) holds i� sL repre-
sents a linked list segment of Live nodes starting at vi and ending at v′′i on
the implementation heap, with a corresponding list segment starting at vs
and ending at v′′s on the spec heap.�e predicate is indexed by general
values, rather than just locations, because the Live segment can terminate

with null (which is not a location). Since the queue is parametric over the

type α of its data, the data stored in each Live implementation node must

re�ne the data stored in the spec node at type α, written xi ⪯V xs ∶ α; see
Chapter 5.

�e interpretation also accounts for two representation di�erences be-

tween MSQ and CGQ. First, the node data in the implementation is stored

in a ref?(α), while the speci�cation stores the data directly. Second, the
speci�cation has a lock. �e invariant requires that the lock is always free

(false) because, as we show thatMSQ re�nes CGQ, we always run entire critical

sections of CGQ at once, going from unlocked state to unlocked state.�ese

“big steps” of the CGQ correspond to the linearization points of the MSQ.

role-playing via tokens 69

▸ A vital consequence of the interpretation is that Dead nodes must

have non-null successor pointers whose locations are in a non-� state (i.e.,
they are at least Live).�is property is the key for giving a simple, local loop
invariant for enq, namely, that the current node c is at least in a Live state. It

follows that if the successor pointer of c is not null, it must be another node at

least in the Live state. If, on the other hand, the successor node of c is null, we

know that c cannot be Dead, but is at least Live, which means that c must be
(at that instant) reachable from the implementation’s head pointer.�us we

gain global reachability information on the basis of purely local knowledge

about the protocol state.

More generally, while the interpretation I is clearly global, it is designed to
support compositional, spatially-local reasoning. Every part of its de�nition

is based on decomposing the product state s into disjoint pieces, with only
neighbor-to-neighbor interactions.�us when reasoning about updating a

node, for example, it is possible to break s into a piece sN corresponding to
the node (and perhaps its immediate neighbor) and a “frame” sF for the rest of
the data structure.�e interpretation can then be shown to hold on the basis

of some updated s′N with the same frame sF—meaning that the rest of the data
structure need never be examined in verifying the local update.�e detailed

proof outline for MSQ (as well as the other examples in this chapter) is given

in Chapter 6, and it includes a more detailed treatment of the mechanics of

spatial locality.

4.3 role-playing via tokens “�e essence of a role-playing game is that it
is a group, cooperative experience.”

—Gary Gygax
Although Michael and Scott’s queue is already tricky to verify, there is a

speci�c sense in which its protocol in Figure 4.1 is simple: it treats all threads

equally. All threads see a level playing �eld with a single notion of “legal”

transition, and any thread is free to make any legal transition according to

the protocol. Many concurrent algorithms, however, require more re�ned

protocols in which di�erent threads can play di�erent roles—granting them
the rights to make di�erent sets of transitions—and in which threads can

acquire and release these roles dynamically as they execute.

In fact, one need not look to scalable concurrency for instances of this

dynamic role-playing—the simple lock used in the coarse-grained “spec” of

the Michael-Scott queue is a perfect and canonical example. In a protocol

governing a single lock (e.g., lock, in CGQ), there are two states: Unlocked and

Locked. Starting from the Unlocked state, all threads should be able to acquire

the lock and transition to the Locked state. But not vice versa: once a thread

has acquired the lock and moved to the Locked state, it has adopted the role

of “lock-holder” and should know that it is the only thread with the right to
release the lock and return to Unlocked.

To support this kind of role-playing, our protocols enrich STSs with a

notion of tokens, which are used to grant authority over certain types of
actions in a protocol. Each STS may employ its own appropriately chosen

70 local protocols

set of tokens, and each thread may privately own some subset of these tokens.
�e idea, then, is that certain transitions are only legal for the thread that

privately owns certain tokens. Formally this is achieved by associating with

each state in the STS a set of tokens that are currently free, i.e., not owned by
any thread.22We then stipulate the law of conservation of tokens: for a thread 22 Another perspective is that the free tokens

are owned by the STS itself, as opposed

to the threads participating in the protocol;

cf. concurrent separation logic (O’Hearn
2007).

to legally transition from state s to state s′, the (disjoint) union of its private
tokens and the free tokens must be the same in s and in s′.
For instance, in the locking protocol, there is just a single token—call it

TheLock. In the Unlocked state, the STS asserts that TheLockmust belong to the

free tokens and thus that no thread owns it privately, whereas in the Locked

state, the STS asserts that TheLock does not belong to the free tokens and thus
that some thread owns it privately. Pictorially, ● denotes that TheLock is in the

free tokens, and ○ denotes that it is not:

Unlocked; ● Locked; ○

When a thread acquires the physical lock and transitions to the Locked state,

it must add TheLock to its private tokens in order to satisfy conservation of

tokens—and it therefore takes on the abstract role of “lock holder”.�erea�er,

no other thread may transition back to Unlocked because doing so requires

putting TheLock back into the free tokens of the STS, which is something

only the private owner of TheLock can do. For a typical coarse-grained data

structure, the interpretation for the Unlocked state would assert ownership of

all of the hidden state for the data structure, while the Locked state would own

nothing.�us, a thread taking the lock also acquires the resources it protects,

but must return these resources on lock release (in the style of concurrent

separation logic23). 23 O’Hearn (2007), “Resources,

concurrency, and local reasoning”As this simple example suggests, tokens induce very natural thread-relative
notions of rely and guarantee relations on states of an STS. For any thread i,
the total tokens Aof an STSmust equal the disjoint union of i’s private tokens
A i , the free tokens Afree in the current state s, and the “frame” tokens Aframe

(i.e., the combined private tokens of all other threads but i).�e guarantee
relation says which future states thread i may transition to, namely those that
are accessible by a series of transitions that i can “pay for” using its private
tokens A i . Dually, the rely relation says which future states other threads may
transition to, namely those that are accessible by a series of transitions that

can be paid for without using i’s private tokens A i (i.e., only using the tokens
in Aframe).�ese two relations play a central role in our model (Chapter 5).

4.4 thread locality via specifications-as-resources

As explained in §2.4.5, some algorithms use side channels, separate from

the main data structure, to enable threads executing di�erent operations to

cooperate. To illustrate this, we use a toy example—inspired speci�cally by

http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1016/j.tcs.2006.12.035

thread locality via specifications-as-resources 71

elimination stacks24—that isolates the essential challenge of reasoning about 24 Hendler et al. (2004), “A scalable lock-
free stack algorithm”cooperation, minus the full-blown messiness of a real data structure.

▸ The flag implementations.

redFlag ≜ ⪯ blueFlag ≜
let �ag = new true,

chan = new 0,

�ip = λ(). if cas(chan, 1, 2) then () else

if cas(�ag, true, false) then () else

if cas(�ag, false, true) then () else

if cas(chan, 0, 1) then

if cas(chan, 1, 0) then �ip() else chan ∶= 0
else �ip(),

read = λ(). get �ag

in (�ip, read)

let �ag = new true,

�ip = λ(). �ag ∶= not (get �ag),
read = λ(). get �ag

in mkAtomic(�ip, read)

▸ The protocol.

Empty; ●

O�ered(j,K); ○

Accepted(j,K); ○

j,K

▸ The protocol state interpretation.

I(Empty) ≜ Q ∗ chan↦i 0

I(O�ered(j,K)) ≜ Q ∗ chan↦i 1 ∗ j ↣s K[�ips()]
I(Accepted(j,K)) ≜ Q ∗ chan↦i 2 ∗ j ↣s K[()]

Q ≜ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ lock↦s false

Figure 4.5: Red �ags versus blue �ags
Figure 4.5 shows the example, in which redFlag is a lock-free imple-

mentation of blueFlag.25 �e latter is a very simple data structure, which 25�is example was proposed by Jacob

�amsborg, who named the two data struc-

tures according to the colors associated with

le�- and right-wing political stances in Eu-

rope respectively. Readers in the U.S. should,

therefore, swap the colors.

maintains a hidden boolean �ag, and provides operations to �ip it and read

it. One obvious lock-free implementation of �ip would be to keep running

cas(�ag, true, false) and cas(�ag, false, true) repeatedly until one of them suc-
ceeds. However, to demonstrate cooperation, redFlag does something more

“clever”: in addition to maintaining �ag, it also maintains a side channel chan,

which it uses to enable two �ip operations to cancel each other out without

ever modifying �ag at all!

More speci�cally, chan adheres to the following protocol, which is visual-

ized in Figure 4.5 (ignore the K’s for now). If chan ↦i 0, it means the side

channel is not currently being used (it is in the Empty state). If chan ↦i 1, it

means that some thread j has o�ered to perform a �ip using the side channel

and moved it into the O�ered(j,−) state. If chan ↦i 2, it means that another

thread has accepted thread j’s o�er and transitioned to Accepted(j,−)—thus
silently performing both �ip’s at once (since they cancel out)—but that thread

j has not yet acknowledged that its o�er was accepted.
Like the locking example, this protocol uses a single token—call it O�er—

which is free in state Empty but which thread j moves into its private tokens

http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/1007912.1007944

72 local protocols

when it transitions to the O�ered(j,−) state. A�er that transition, due to its
ownership of O�er, thread j is the only thread that has the right to revoke that
o�er by setting chan back to 0 and returning to Empty. On the other hand,

any thread may transition from O�ered(j,−) to Accepted(j,−), since the two
states have identical free tokens, namely, none. Once in the Accepted(j,−)
state, though, thread j is again the only thread able to Empty the channel.

�e implementation of �ip in redFlag then works as follows. First, we use

cas to check if another thread has o�ered to �ip (i.e., if chan ↦i 1), and if so,

we accept the o�er by setting chan to 2. We then immediately return, having

implicitly committed both �ips right then and there, without ever accessing

�ag. If that fails, we give up temporarily on the side-channel shenanigans

and instead try to perform a bona �de �ip by doing cas(�ag, true, false) and
cas(�ag, false, true) as suggested above. If that fails as well, then we attempt to
make an o�er on the side channel by changing chan from 0 to 1. If our attempt

succeeds, then we (rather stupidly26) try to immediately revoke the o�er and 26 At this point in a real implementation, it

would make sense to wait a while for other

threads to accept our o�er, but we elide

that detail since it is irrelevant for reasoning

about correctness.

loop back to the beginning. If perchance another thread has preempted us at

this point and accepted our o�er—i.e., if cas(chan, 1, 0) fails, implying that
another thread has updated chan to 2—then that other thread must have

already committed our �ip on our behalf. So we simply set chan back to 0,

freeing up the side channel for other threads, and return. Finally, if all else

fails, we loop again.

As far as the re�nement proof is concerned, there are two key points here.

The first concerns the cas(chan, 1, 0) step. As we observed already, the
failure of this cas implies that chan must be 2, a conclusion we can draw

because of the way our protocol uses tokens. A�er the previous cas(chan, 0, 1)
succeeded, we knew that we had successfully transitioned to the O�ered(j,−)
state, and thus that our thread j now controls theO�er token. Local ownership

of O�ermeans that other threads can only transition to a limited set of states

via the rely ordering (i.e.,without owningO�er): they can either leave the state

where it is, or they can transition to Accepted(j,−).�us, when we observe
that chan is not 1, we know itmust be 2.

The second, more interesting point concerns the semantics of cooperation.
If we make an o�er on chan, which is accepted by another thread, it should

imply that the other thread performed our �ip for us, so we don’t have to. At

least that’s the intuition, but how is that intuition enforced by the protocol?

�at is, when we observe that our o�er has been accepted, we do so merely

by inspecting the current value of chan. But how do we know that the other

thread that updated chan from 1 to 2 actually “performed our �ip” for us?

For example, as perverse as this sounds, what is to prevent redFlag from

performing chan ∶= 2 as part of its implementation of read?

▸ Ourtechnique forenforcingthe semanticsof cooperation is to treat

speci�cation code as a kind of resource. We introduce a new assertion, j ↣s e,

temporal locality via speculation 73

which describes the knowledge that thread j (on the spec side) is poised to
run the term e. Ordinarily, this knowledge is kept private to thread j itself,
but in a cooperative protocol, the whole idea is that j should be able to pass
control over its spec code e to other threads, so that they may execute some
steps of e on its behalf.
Speci�cally, this assertion is used to give semantic meaning to the

O�ered(j,K) and Accepted(j,K) states in our protocol (see the interpretation
I in Figure 4.5). In the former state, we know that j ↣s K[�ips()], which
tells us that thread j has o�ered its spec code K[�ips()] to be run by another
thread, whereas in the latter state, we know that j ↣s K[()], which tells
us that j’s �ip has been executed. (�e K is present here only because we
do not want to place any restrictions on the evaluation context of the �ip

operation.)�ese interpretations demand that whatever thread accepts the

o�er by transitioning from O�ered(j,K) to Accepted(j,K) must take the
responsibility not only of updating chan to 2 but also of executing �ips()—
and only �ips()—on j’s behalf. When j subsequently moves back to the Empty

state, it regains private control over its speci�cation code, so that other threads

may no longer execute it.

4.5 temporal locality via speculation “If the world were good for nothing else, it is a
�ne subject for speculation.”

—William Hazlitt
Another tricky aspect of reasoning about concurrent algorithms (like the

“conditional CAS” example we consider in §6.6) is dealing with nondeter-

minism.�e problem is that when proving that an algorithm re�nes some

coarse-grained spec, we want to reason in a temporally-local fashion—i.e.,
using something akin to a simulation argument, by which the behavior of

each step of implementation code is matched against zero or more steps of

spec code—but nondeterminism, it would seem, foils this plan.

To see why, consider the following example, which does not maintain

any hidden state (hence no protocol), but nevertheless illustrates the core

di�culty with nondeterminism:

rand ≜ λ(). let y = new false in (fork y ∶= true);get y
lateChoice ≜ λx . x ∶= 0; rand()

earlyChoice ≜ λx . let r = rand() in x ∶= 0; r

Wewant to show that lateChoice re�nes earlyChoice. Both functions �ip a coin

(i.e., use rand() to nondeterministically choose a boolean value) and set a
given variable x to 0, but they do so in opposite orders. Intuitively, though,
the order shouldn’t matter: there is no way to observe the coin �ip until the

functions return. However, if we try to reason about the re�nement using a

simulation argument, we run into a problem.�e �rst step of lateChoice is

the setting of x to 0. To simulate this step in earlyChoice, we need to match

the assignment of x to 0 as well, since the update is an externally observable
e�ect. But to do that we must �rst �ip earlyChoice’s coin. While we have the

freedom to choose the outcome of the �ip,27 the trouble is that we don’t know 27 For every implementation execution, we
must construct some spec execution.

74 local protocols

what the outcome should be: lateChoice’s coin �ip has yet to be executed.

�e solution is simple: speculate!�at is, if you don’t know which spec

states to step to in order to match an implementation step, then keep your

options open and maintain a speculative set of speci�cation states that are
reachable from the initial spec state and consistent with any observable e�ects

of the implementation step. In the case of lateChoice/earlyChoice, this means

that we can simulate the �rst step of lateChoice (the setting of x to 0) by
executing the entire earlyChoice function twice. In both speculative states x
is set to 0, but in one the coin �ip returns true, and in the other it returns

false.

�is reasoning is captured in the following Hoare-style proof outline:

{xi ⪯V xs ∶ ref(nat) ∧ j ↣s K[earlyChoice(xs)]}
xi ∶= 0

{xi ⪯V xs ∶ ref(nat) ∧ (j ↣s K[true]⊕ j ↣s K[false])}
rand()

{ret. (ret = true ∨ ret = false) ∧ (j ↣s K[true]⊕ j ↣s K[false])}
{ret. j ↣s K[ret])}

�e precondition j ↣s K[earlyChoice(xs)]—an instance of the assertions on
speci�cation code introduced in the previous section—denotes that initially

the spec side is poised to execute earlyChoice. A�er we execute x ∶= 0 in
lateChoice, we speculate that the coin �ip on the spec side could result in

earlyChoice either returning true or returning false. �is is represented by

the speculative assertion (j ↣s K[true] ⊕ j ↣s K[false]) appearing in the
postcondition of this �rst step, in which the⊕ operator provides a speculative
choice between two subassertions characterizing possible spec states. In the
subsequent step, lateChoice �ips its coin, yielding a return value ret of either

true or false. We can then re�ne the speculative set of speci�cation states to

whichever one (either j ↣s K[true] or j ↣s K[false]) matches ret, and simply

drop the other state from consideration. In the end, what matters is that we

are le� with at least one spec state that has been produced by a sequence of

steps matching the observable behavior of the implementation’s steps.

While the lateChoice/earlyChoice example is clearly contrived, it draws at-

tention to an important point: client contexts are insensitive to the “branching

structure” of nondeterminism. �ere is no way for a client to tell when a
nondeterministic choice was actuallymade.28 In practice, scalable algorithms 28�is point is actually rather subtle: its va-

lidity rests on our de�nition of re�nement,

which simply observes the �nal answer a

client context returns. See Chapter 7 for an

in-depth discussion.

sometimes employ deliberate nondeterminism, e.g., during backo� (§2.4.4)
or for complex helping schemes (§2.4.5), but their speci�cations generally do

not—and so it is crucial that clients cannot tell the di�erence. Moreover, even

when a given method does not toss coins directly, the thread scheduler does,

and in some cases the appropriate moment to execute spec code depends on

future scheduling decisions (§6.6). Speculation handles all of these cases with

ease, but its validity rests on the weak observational power of clients.

�e idea of speculation is not new: it is implicit in Lynch and Vaandrager’s
notion of forward-backward simulation,29 and a form of it was even proposed 29 Lynch and Vaandrager (1995), “Forward

and Backward Simulations: Part I: Untimed

Systems”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf

temporal locality via speculation 75

in Herlihy and Wing’s original paper on linearizability30 (although the pro- 30 Herlihy and Wing (1990),

“Linearizability: a correctness condition for

concurrent objects”
posal has not been used in subsequent formal logics for linearizability).What

is new here is our particular treatment of speculation, which is designed for

composability:31 31 Unfortunately, “composability” has sev-

eral di�erent meanings in this setting. Here

we mean composability of re�nements for

parts of a program into re�nements for their

composition, as opposed to transitive com-
posability of re�nement, which previous ac-

counts of speculation certainly supported.

● Previous simulation-based accounts of speculation apply it only at a global
level, working monolithically over the entire speci�cation state. Our treat-

ment, by contrast, builds on our idea of speci�cations-as-resources (§4.4)

which allows the speci�cation state to be broken up into pieces that can be

owned locally by threads or shared within a protocol. Speculation enriches

these resources into sets of pieces of the speci�cation.�e combination of
two sets of spec resources is then just the set of combined resources.

● Previous assertional accounts of speculation (e.g., prophecy32) generally 32 Abadi and Lamport (1991), “�e

existence of re�nement mappings”use “ghost” variables (also known as “auxiliary state”) to linearize the

branching structure of nondeterminism by recording, in advance, the

outcome of future nondeterministic choices.33 It is not clear how to 33Manolios (2003), “A compositional

theory of re�nement for branching time”generalize this approach to thread-local reasoning about a part of a pro-

gram running in some unknown context.34 Our treatment, by contrast, 34 Ley-Wild and Nanevski (2013),

“Subjective Auxiliary State for Coarse-

Grained Concurrency”
does not collapse the branching structure of the program being executed,
but instead simply records the set of feasible spec executions that could

coincide with it. Speci�cation resources are crucial for enabling thread-

local speculation, because they make it possible for a re�nement proof for

an implementation thread to consider only the corresponding spec thread

to later be composed with re�nement proofs for additional threads.

We give a more detailed comparison to related work in Chapter 7.

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134

5
A logic for local protocols

“Logic takes care of itself; all we have to do is
to look and see how it does it.”

—Ludwig Wittgenstein

▸ Synopsis �is chapter de�nes the syntax (§5.2) and semantics (§5.3 and §5.4)

of a logic for re�nement based on local protocols. �e logic ties together

a Kripke logical relation (traditionally used for showing re�nement of one

program by another) with Hoare triples (traditionally used for reasoning

about a single program). �e chapter sketches some proof theory for the

logic (§5.5) and outlines a proof of soundness for re�nement (§5.6). �e

full logic is summarized in Appendix B, and detailed proofs are given in

Appendix C.

5.1 overview

All the work we did in the last chapter rests on essentially two formal

structures: transition systems and assertions. In this chapter, we deepen our

understanding of these structures by:

1. Formalizing our transition systems and the syntax and semantics of

assertions—and thereby formalizing local protocols, which are just transi-

tion systems with assertional interpretations.�e result is a logic for local

protocols.

2. Demonstrating that when assertions about re�nement hold according

to our semantics (which involves local protocols), the corresponding

contextual re�nement really does hold—i.e., showing the soundness of the
logic for its intended domain.

3. Sketching enough proof theory to illustrate the core reasoning principles

for the logic.

In program logics for �rst-order languages, there is usually a strict separation

between assertions about data (e.g., heap assertions) and assertions about
code (e.g.,Hoare triples). But the distinctionmakes less sense for higher-order
languages, where code is data and hence claims about data must include
claims about code. Our logic is therefore built around a single notion of

assertion, P (shown in Figure 5.1), that plays several disparate roles. �is
uniformity places claims about resources, re�nement, and Hoare triples on

equal footing, which makes it easy to express a central idea of the logic: that

re�nement reasoning can be carried out using the combination of Hoare

triples and speci�cation resources.

We begin, in §5.2, with an informal tour of assertions.

77

78 a logic for local protocols

Assertions P ∶∶= v = v Equality of values

∣ emp Empty resource

(ℓ ∶∶= ℓ ∣ x) ∣ ℓ ↦i u Singleton implementation heap

∣ ℓ ↦s u Singleton speci�cation heap

(i ∶∶= i ∣ x) ∣ i ↣s e Singleton speci�cation thread

∣ i ↦ ι Island assertion

∣ P ∗ P Separating conjunction

∣ P⇒ P Implication

∣ P ∧ P Conjunction

∣ P ∨ P Disjunction

∣ ∃x .P Existential quanti�cation

∣ ∀x .P Universal quanti�cation

∣ P ⊕ P Speculative disjunction

∣ φ Pure code assertion

∣ ▷P Later modality

∣ T@m {x . P} �readpool simulation

Pure code assertions φ ∶∶= {P} e {x . Q} Hoare triple

∣ v ⪯V v ∶ τ Value re�nement

∣ Ω ⊢ e ⪯E e ∶ τ Expression re�nement

Island descriptions ι ∶∶= (θ , I, s,A)
where I ∈ θ .S → Assert, State interpretation

s ∈ θ .S , Current state (rely-lower-bound)

A ⊆ θ .A, Owned tokens

A#θ .F(s) (which must not be free)

State transition systems θ ∶∶= (S ,A,↝, F)
where S a set, States

A a set, Tokens

↝ ⊆ S × S , Transition relation

F ∈ S → ℘(A) Free tokens

Main thread indicators m ∶∶= i ID of main thread

∣ none No main thread

Figure 5.1: Syntax of assertions

assertions 79

5.2 assertions

Assertions are best understood one role at a time.

5.2.1 Characterizing the implementation heap

�e �rst role our assertions play is similar to that of heap assertions in sepa-

ration logic: they capture knowledge about a part of the (implementation’s)

heap, e.g., x ↦i 0, and support the composition of such knowledge, e.g.,
x ↦i 0 ∗ y ↦i 1. In this capacity, assertions make claims contingent on the

current state, which may be invalidated in a later state.

5.2.2 Characterizing implementation code

On the other hand, some assertions are pure, meaning that if they hold in a
given state, theywill hold in any possible future state.�e syntactic subclass of

(pure) code assertions φ all have this property, and they include Hoare triples
{P} e {x . Q}.�e Hoare triple says: for any future state satisfying P, if the
(implementation) expression e is executed until it terminates with a result,
the �nal state will satisfy Q (where x is the value e returned). So, for example,
{emp} new 0 {x . x ↦i 0} is a valid assertion, i.e., it holds in any state. More
generally, the usual rules of separation logic apply, including the frame rule,

the rule of consequence—and sequencing.�e sequencing rule works, even

in our concurrent setting, because heap assertions describe a portion of heap

that is privately owned by the expression in the Hoare triple. In particular,
that portion of the heap is guaranteed to be neither observed nor altered by

threads concurrent with the expression.

5.2.3 Characterizing (protocols on) shared resources

�e next role assertions play is expressing knowledge about shared resources.
All shared resources are governed by a protocol. For hidden state, the protocol
can be chosen freely, modulo proving that exported methods actually follow

it. For visible state, however, e.g., a reference that is returned directly to the
context, the protocol is forced to be a trivial one—roughly, one that allows the

state to take on any well-typed value at any time, accounting for the arbitrary

interference an unknown context could cause (see Section 5.4).

Claims about shared resources are made through island assertions i ↦ ι
(inspired by LADR1). We call each shared collection of resources an island, 1 Dreyer, Neis, Rossberg, et al. (2010), “A

relational modal logic for higher-order

stateful ADTs”
because each collection is disjoint from all the others and is governed by

an independent protocol. Each island has an identi�er—a natural number—

and in the island assertion i ↦ ι the number i identi�es a particular island
described by ι.2 �e island description ι gives the protocol governing its 2We will o�en leave o� the identi�er as

shorthand for an existential quanti�cation,

i.e.,when we treat ι as an assertion we mean
∃x . x ↦ ι.

resources, together with knowledge about the protocol’s current state:

http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323

80 a logic for local protocols

● �e component θ = (S ,A,↝, F) formalizes the STS for the protocol,
where S is its set of states, A is its set of possible tokens,↝ is its transition
relation, and F is a function telling which tokens are free at each state.3 3We will use dot notation like θ .S to project

named components from compound ob-

jects.
�e dynamics of STSs, e.g., conservation of tokens, is formalized in the
next section (§5.3).

● �e component I tells how each state of the STS is interpreted as an
assertion characterizing the concrete resources that are actually owned by

the island in that state.4 4�e assertion interpreting a state is as-

sumed to not make claims about token own-

ership at any island, although it can make
claims about the protocol or state of any

island.�e reason for this restriction is ex-

plained in §5.3.2.

● �e components s and A express knowledge about the state of the protocol
(which is at least s) from the perspective of a thread owning tokens A
at that state.�is knowledge is only a lower bound on the actual state of
the protocol, which may in fact by in any “rely-future” state, i.e., any state
that can be reached from s by the thread’s environment without using the
thread’s privately-owned tokens A.

5.2.4 Characterizing re�nement and spec resources

Finally, assertions play two re�nement-related roles.

�e �rst is to express re�nement itself, either between two closed values

(vi ⪯V vs ∶ τ) or between open expressions (Ω ⊢ ei ⪯E es ∶ τ)—a syntactic
claim of semantic re�nement (Ω ⊧ ei ⪯ es ∶ τ in §3.3).
Until this point, we have avoided saying anything about spec terms, but in

order to prove re�nement we need to show that the observable behavior of

an implementation can bemimicked by its spec.�is brings us to an essential

idea:

The slogan

By treating spec code as a resource, we can reduce
re�nement reasoning to Hoare-style reasoning.

The math

ei ⪯E es ∶ τ ≈ (roughly!)

∀ j. { j ↣s es} ei {xi . ∃xs . xi ⪯V xs ∶ τ ∧ j ↣s xs}

�us, the �nal role assertions play is to express knowledge about—and

ownership of—spec resources, which include portions both of the heap (e.g.,
x ↦s 0) and of the threadpool (e.g., j ↣s es).�ese resources can be shared
and hence governed by protocols, just as implementation-side resources can.

When proving re�nement for a data structure, we will prove something

like the aboveHoare triple for an arbitrary application of each of itsmethods—

usually in the scope of an island assertion giving the protocol for its shared,

hidden state. For each method invocation, we start from an arbitrary state

of that protocol, and are given ownership of the spec code corresponding
to the invocation, which we may choose to transfer to the protocol to

support cooperation (as explained in Section 4.4). But in the end, when the

semantic structures 81

implementation’s invocation has �nished and returned a value xi, we must
have regained exclusive control over its spec, which must have mimicked it

by producing a value xs that xi re�nes.

5.2.5 �e remaining miscellany

�e remaining forms of assertions include standard logical connectives, and

two more technical forms of assertions—▷P and T@m {x . P}—which we
explain in the Section 5.4.

5.3 semantic structures

�e semantics of assertions is given using two judgments, one for general as-

sertions (W , η ⊧ρ P) and the other for code assertions (U ⊧ρ φ), where P and
φ contain no free term variables but may contain free type variables bound
by ρ. To explain these judgments, we begin with the semantic structures of
worlds W , resources η and environments ρ, together with operations on them
needed to interpret assertions.

5.3.1 Resources

�e resources η = (h, Σ) that assertions claim knowledge about and owner-
ship of include both implementation heaps h, and speculative sets Σ of spec
con�gurations,5 as shown in Figure 5.2. 5 Recall that a con�guration ς = h;T consists

of a heap and a threadpool.

▸ Domains

StateSet ≜ { Σ ⊆ Heap ×�readPool ∣ Σ �nite, nonempty }
Resource ≜ { η ∈ Heap × StateSet }

▸ Composition (�ese operations are partial)

State sets Σ1 ⊗ Σ2 ≜ { h1 ⊎ h2;T1 ⊎ T2 ∣ h i ;Ti ∈ Σ i }
(if all compositions are de�ned)

Resources (h1 , Σ1) ⊗ (h2 , Σ2) ≜ (h1 ⊎ h2 , Σ1 ⊗ Σ2)

Figure 5.2: Resources and their
composition

Resources can be combined at every level, which is necessary for interpret-

ing the ∗ operator on assertions:

● For heaps and threadpools, composition is done via ⊎, the usual disjoint
union.

● �e composition of state sets is just the set of state compositions—but it is

only de�ned when all such state compositions are de�ned, so that specula-
tive sets Σ have a single “footprint” consisting of all the locations/threads

82 a logic for local protocols

existing in any speculative state.6 To ensure that this footprint is �nite, we 6�is is a rather technical point, but it is an

important one.�e point is that the specu-

lative combination ⊕ should insist that all
of its constituent assertions are satis�able

in combination with the rest of the current

state.

require that speculation is itself �nite.

● Composition of general resources is the composition of their parts.

5.3.2 Islands and possible worlds

All assertions are interpreted in the context of some possible world W , which
contains a collection ω of islands. Both are de�ned in Figure 5.3.

▸ Domains

Islandn ≜
⎧⎪⎪⎨⎪⎪⎩

ι = (θ , J , s,A)
RRRRRRRRRRRR

θ ∈ STS, s ∈ θ .S , J ∈ θ .S → UWorldn
mon→ ℘(Resource),

A ⊆ θ .A, A#θ .F(s), J(s) ≠ ∅

⎫⎪⎪⎬⎪⎪⎭
Worldn ≜ { W = (k,ω) ∣ k < n, ω ∈ N fin⇀ Islandk }

UWorldn ≜ { U ∈Worldn ∣ U = ∣U ∣ }

▸ Stripping tokens and decrementing step-indices

∣(θ , J , s,A)∣ ≜ (θ , J , s,∅)
∣(k,ω)∣ ≜ (k, λi .∣ω(i)∣)

⌊(θ , J , s0 ,A)⌋k ≜ (θ , λs.J(s) ↾ UWorldk , s0 ,A)
▷(k + 1,ω) ≜ (k, λi .⌊ω(i)⌋k)

▸ Composition

Islands (θ , J , s,A) ⊗ (θ′ , J′ , s′ ,A′) ≜ (θ , J , s,A⊎ A′) when θ = θ′ , s = s′ , J = J′

Worlds (k,ω) ⊗ (k′ ,ω′) ≜ (k, λi .ω(i)⊗ ω′(i)) when k = k′ , dom(ω) = dom(ω′)

Figure 5.3: Islands and worlds
Semantic islands look verymuch like syntactic island assertions—somuch

so that we use the same metavariable ι for both.7 �e only di�erence is 7When the intended use matters, it will al-

ways be clear from context.that semantic islands interpret STS states semantically via J, rather than
syntactically via I. Unfortunately, this creates a circularity: J is meant to
interpret its syntactic counterpart I, and since assertions are interpreted in
the contexts of worlds, the interpretation must be relative to the “current”

world—but we are in the middle of de�ning worlds!�e “step index” k in
worlds is used to stratify away circularities in the de�nition of worlds and

the logical relation; it and its attendant operators ▷ and ⌊−⌋k are completely
standard, but we brie�y review the basic idea.8 8We direct the interested reader to ear-

lier work for a more in-depth explanation

(Ahmed 2004; Dreyer, Neis, and Birkedal

2010; Dreyer, Neis, Rossberg, et al. 2010).
�e less interested reader should simply ig-

nore step indices from here on.

�e technique of step indexing was introduced by Appel and McAllester

(2001)9 and greatly expanded by Ahmed (2004). Boiled down, the idea is as

9 Similar techniques had already appeared

for dealingwith circularity in rely-guarantee

(also called assume-guarantee) reasoning,

e.g., Abadi and Lamport (1995); Abadi and
Lamport (1993).

follows. Programs exhibit or observe circularity one step of execution at a

time.�erefore, for safety properties—which are inherently about �nite exe-

cution (§2.5)—circularities can be broken by de�ning the properties relative

to the number of execution steps remaining, i.e., a “step index.” Properties
de�ned in this way are generally vacuous at step-index 0 (as, intuitively,

there is no time le� to make any observations), and serve as increasingly

good approximations of the originally-intended property as the step index is

increased. Following this strategy, we de�ne worlds as a step-indexed family

semantic structures 83

of predicates. Each recursion through the world drives down the step index,

the idea being: for the program to observe the actual heap described by the

world, it must take at least one step. Put di�erently, we check conformance to

protocols not in absolute terms, but rather for n steps of execution. Ultimately,
if a program conforms for every choice of n, that is good enough for us.
With those ideas in mind, the de�nitions of ▷ and ⌊−⌋k are straightfor-

ward.�e “later” operator▷ decrements the step-index of a world (assuming

it was non-zero), i.e., it constructs a version of the world as it will appear
“one step later.” Its de�nition relies on the auxiliary restriction operator ⌊−⌋k ,
which just throws away all data in the world at index larger than k (and
thereby ensures that the resulting world is a member of Worldk).

�ere is an additional subtlety with the de�nition of worlds: it is crucial

that all participants in a protocol agree on the protocol’s interpretation of

a state, which must therefore be insensitive to which tokens a particular

participant owns. We guarantee this by giving the interpretation J access
to only the unprivileged part of a participant’s world, ∣W ∣, which has been
stripped of any tokens; see the constraint on the type of J.�e monotonicity
requirement

mon→ is explained in §5.3.4.

Finally, to determine themeaning of assertions like x ↦ ι∗x ↦ ι′, wemust
allow islands to be composed. Semantic island composition⊗ is de�ned only
when the islands agree on all aspects of the protocol, including its state; their

owned tokens are then (disjointly) combined. Note, however, that because

island assertions are rely-closed, an assertion like x ↦ ι ∗ x ↦ ι′ does not
require ι and ι′ to assert the same state. It merely requires that there is some
common state that is in both of their rely-futures. Worlds are composable

only when they de�ne the same islands and those islands are composable.

5.3.3 Environments

�e terms that appear within assertions may include free type variables,

which are interpreted by an environment ρ mapping them to relations

V ∈ VReln ≜ { V ∈ UWorldn
mon→ ℘(Val ×Val) }

�is interpretation of types is standard for logical relations, and in particular

supports relational parametricity,10 in which the interpretation of an abstract 10 Reynolds (1983), “Types, abstraction and

parametric polymorphism”type may relate values of potentially di�erent types on the implementation

and speci�cation sides.

We explain the monotonicity requirement
mon→ below.

5.3.4 Protocol conformance

�e judgment θ ⊢ (s,A)↝ (s′ ,A′) given in Figure 5.4 codi�es the law of
conservation of tokens (§4.3) for a single step.11 We use this judgment in 11Weuse themore readable notation s ↝θ s′

in place of θ .↝ (s, s′).de�ning two relations governing changes to an island’s state:

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

84 a logic for local protocols

▸ Island and world framing

frame(θ , J , s,A) ≜ (θ , J , s, θ .A− θ .F(s) − A) frame(k,ω) ≜ (k, λi .frame(ω(i)))

▸ Protocol conformance

Protocol step θ ⊢ (s,A) ↝ (s′ ,A′) ≜ s ↝θ s′ , θ .F(s) ⊎ A = θ .F(s′) ⊎ A′

Island guarantee move (θ , J , s,A)
guar

⊑ (θ′ , J′ , s′ ,A′) ≜ θ = θ′ , J = J′ , θ ⊢ (s,A)↝∗ (s′ ,A′)

Island rely move ι
rely

⊑ ι′ ≜ frame(ι)
guar

⊑ frame(ι′)

World guarantee move (k,ω)
guar

⊑ (k′ ,ω′) ≜ k ≥ k′ , ∀i ∈ dom(ω). ⌊ω(i)⌋k′
guar

⊑ ω′(i)

World rely move W
rely

⊑ W ′ ≜ frame(W)
guar

⊑ frame(W ′)

Figure 5.4: Protocol conformance

● �e guarantee relation
guar

⊑ , which characterizes the changes an expression
can make to an island given the tokens it owns. A guarantee “move” may

include changes to both the state of the STS and the privately-owned

tokens, as the expression gains or loses tokens in making the move.

● An expression can likewise rely on its environment to only change an
island ι according to the tokens that the environment owns, i.e., the tokens

in frame(ι).�e rely relation
rely

⊑ only allows the STS state to change.�e
tokens stay �xed because a rely move is performed by the environment of
an expression, which gains or loses its own tokens but cannot a�ect the

tokens owned by an expression.

It is crucial that the basic stepping judgment

θ ⊢ (s,A)↝ (s′ ,A′)

is de�ned over single steps in the transition system (s ↝θ s′), and only
a�erwards transitively-closed (in

guar

⊑). In other words, the transition relation
itself is not required or considered to be transitively-closed. Consider, for

example, the following STS:

A; ● B; ○ C; ● D; ○

�e set of tokens here is just {●}. Suppose the island is in state B and that we

own the token, i.e.,
ι = (θ , J , B, {●})

where θ is the STS above and J is some interpretation. �e expectation is
that the environment is “stuck” with respect to the protocol: it would need to

own the token to make progress, but we own the token. In other words, the
protocol should guarantee that

if ι = (θ , J , B, {●}) then ι
rely

⊑ ι′ ⇐⇒ ι = ι′

semantic structures 85

If, however, the stepping relation was transitively closed internally, it would
include an edge directly from B to D, thereby allowing the environment to

make such a move without owning any tokens!

On the other hand, the fact that the rely and guarantee relations apply

transitive closure externally allows threads to take multiple steps through
the protocols as long as each individual step is permitted based on the
conservation of tokens. So here, for example, our thread can move from B

to D because it has enough tokens to �rst move to C.

�ere is thus an important case in which the basic transition system is
e�ectively transitively closed: for any party that owns all of the non-free
tokens. In such cases, the conservation law has no e�ect and the protocol

degenerates to a simple STS in the style of Dreyer, Neis, and Birkedal (2010).

In practice, the situation usually arises not because some thread owns all of

the non-free tokens, but rather because it owns none of them—and so its
environment (the frame) owns them all. In particular, for any unprivileged
world U , the rely relation coincides with the (re�exive, transitive closure of)
the raw transition relation.

▸ The rely and guarantee views of a protocol give rise to two notions
of future worlds. In both cases, the world may grow to include new islands,

but any existing islands are constrained by their rely and guarantee relations,

respectively. While the rely relation on worlds is de�ned using framing and

the guarantee relation on worlds, it could have equivalently used the rely

relation on islands instead:

(k,ω)
rely

⊑ (k′ ,ω′) = k ≥ k′ , ∀i ∈ dom(ω). ⌊ω(i)⌋k′
rely

⊑ ω′(i)

Island interpretations J are required to be monotone with respect to the
rely relation on worlds (written

mon→). Since the interpretations are applied to
unprivileged worlds, the monotonicity requirement ensures that making any
move in one island cannot possibly invalidate the interpretation of another.

5.3.5 World satisfaction

Worlds describe shared state abstractly, in terms of protocol states. Expres-

sions, on the other hand, are executed against some concrete resources.�e
world satisfaction relation η ∶ W , η′ de�nes when a given collection of
concrete resources η “satis�es” a world,

η ∶ (W , η′) ≜ W .k > 0 Ô⇒
η = η′ ⊗ η i , ∀i ∈ dom(W .ω). η i ∈ interp(W .ω(i))(▷∣W ∣)

meaning that η breaks into a disjoint portion for each island, with each
portion satisfying its island’s current interpretation.�e parameter η′ repre-
sents additional resources that are private, and therefore disjoint from those
governed by the world—a notational convenience for de�ning the semantics

of assertions below.

86 a logic for local protocols

5.4 semantics

�e semantics of assertions satis�es a fundamental closure property: if

W , η ⊧ρ P and W
rely

⊑ W ′ then W ′ , η ⊧ρ P. All assertions are therefore
“stable” under arbitrary interference from other threads.�is should not be a

surprise: assertions are either statements about private resources (for which

interference is impossible) or about shared islands (for which interference is

assumed, e.g., we are careful to only assert lower bounds on the state of an
island).�e only subtlety is in the semantics of implication, which must be

explicitly rely-closed to ensure stability.12 12�is kind of closure is standard in logical

relations, as well as Kripke-style interpreta-

tions of intuitionistic implication.
In general, the semantics of assertions is de�ned inductively using a

lexicographic order: by step index (a component of the world), then by

the syntactic structure of assertions. For interpreting re�nement assertions,

however, things are more complicated, as we explain in §5.4.2.

5.4.1 Resources, protocols, and connectives

�e semantics of the basic assertions about private resources are straightfor-

ward, as are those for the basic logical connectives; see Figure 5.5.

R W , η ⊧ρ R i�

φ ∣W ∣ ⊧ρ φ

v1 = v2 v1 = v2
emp W = ∣W ∣, η = (∅, {∅;∅})

P ∧ Q W , η ⊧ρ P andW , η ⊧ρ Q

P ∨ Q W , η ⊧ρ P orW , η ⊧ρ Q

∀x .P ∀v .W , η ⊧ρ P[v/x]

∃x .P ∃v .W , η ⊧ρ P[v/x]

▷P W .k > 0 Ô⇒ ▷W , η ⊧ρ P

R W , η ⊧ρ R i�

P⇒ Q ∀W ′
rely

⊒ W .W ′ , η ⊧ρ P Ô⇒ W ′ , η ⊧ρ Q

ℓ ↦i u η = ([ℓ ↦ u], {∅;∅})

ℓ ↦s u η = (∅, {[ℓ ↦ u];∅})

i ↣s e η = (∅, {∅; [i ↦ e]})

i ↦ (θ , I, s,A) W .ω(i)
rely

⊒ (θ , JIK, s,A)

where JIK ≜ λs.λU .{η ∣ U , η ⊧ρ I(s)}

P1 ∗ P2 W =W1 ⊗W2 , η = η1 ⊗ η2 , Wi , η i ⊧ρ Pi
P1 ⊕ P2 η.Σ = Σ1 ∪ Σ2 , W , (η.h, Σ i) ⊧ρ Pi

Figure 5.5:�e semantics of resource
and protocol assertions, and the

connectives

�ere are just a few interesting points to take note of:

● �e meaning island assertions is just as informally described: the protocol

in the world di�ers only in giving a semantic state interpretation I, rather
than a syntactic one J,13 and the assertion’s state s and tokens A together 13�ere is a rather subtle point here: we

assume that the denotation function JIK con-
structs a semantic IslandW .k , i.e., that the
argumentU is drawn fromUWorldW .k .�is
ensures the well-foundedness of assertion

semantics.

give only a rely-lower-bound on the true state of the island.

● While in general properties may be interesting even when the world’s
index is 0 (i.e., W .k = 0), the later modality▷P is de�ned to be vacuously
true in such cases.14 14�is aspect of step-indexing makes it

highly reminiscent of coinduction.See Hur

et al. (2012) for a recent investigation of the
connections.

● In a speculative choice P ⊕Q, the two choices P and Q are understood in
the same world and under the same implementation resources, but they

semantics 87

must each be satis�ed by a (nonempty, possibly nondisjoint) subset of the

set of spec states Σ.�e lack of disjointness makes speculative choice quite

di�erent from separating conjunction; in particular, it is idempotent, i.e.,
P ⊕ P is equivalent to P.

5.4.2 Re�nement

�e value re�nement assertion vi ⪯V vs ∶ τ requires that any observations a
context can make of vi at type τ can also be made of vs, as evidenced by its
semantics in Figure 5.6.

τ0 vi vs U ⊧ρ vi ⪯V vs ∶ τ0 i�

τb v v ⊢ v ∶ τb for τb ∈ {unit, bool, nat}

α vi vs (vi , vs) ∈ ρ(α)(U)

τ1 × τ2 (vi1 , vi2) (vs1 , vs2) U ⊧ρ
▷(vi1 ⪯V vs1 ∶ τ1 ∧ vi2 ⪯V vs2 ∶ τ2)

τ → τ′ rec f x .ei rec f x .es U ⊧ρ
▷(x ∶ τ ⊢ ei[vi/ f] ⪯E es[vs/ f] ∶ τ′)

∀α.τ Λ.ei Λ.es U ⊧ρ
▷(α ⊢ ei ⪯E es ∶ τ)

µα.τ vi vs U ⊧ρ vi ⪯V vs ∶ τ[µα.τ/α]

ref?(τ) null null always

ℓi ℓs U ⊧ρ
▷ℓi ⪯V ℓs ∶ ref(τ)

ref(τ) ℓi ℓs U ⊧ρ inv(∃x , y. (⋀ x ⪯V y ∶ τ) ∧ ℓi ↦i (x) ∗ ℓs ↦s (y))

τ1 + τ2 ℓi ℓs ∃i . U ⊧ρ ∃x , y. ▷x ⪯V y ∶ τ i ∧ inv(vi ↦i inji x ∗ vs ↦s inji y)

where inv(P) ≜ (({dummy},∅,∅, λ_.∅), λ_.P, dummy,∅)

Figure 5.6:�e semantics of value
re�nement

�ose readers familiar with Kripke logical relations will recognize the seman-

tics of value re�nement as essentially the standard de�nition of logical ap-

proximation between values. Base type values must be identical. For function

types, we check that the bodies of the functions are related when given related

arguments,15 which, due to the semantics of implication, might happen in a 15�e quanti�cation over related arguments

is performed within expression re�nement,

Figure 5.7
rely-future world. For recursive types, we check that the values are related at

the unfolded type (we explain why this is well-founded below). Values that

are exposed to the context at heap-allocated type—ref and sum types—are

forced to be governed by a trivial island16 allowing all type-safe updates (in 16�e “invariant island” inv(P) for an as-
sertion P that we use to constrain exposed
heap data is just a formalization of the

“DummyState” protocol discussed in the
Overview of Chapter 4.

the case of ref’s) and no updates (in the case of sums). Hidden state, on the
other hand, is by de�nition state that does not escape directly to the context,

and so we need say nothing about it for value re�nement.

To see why the de�nition of value re�nement is not circular, we must

take note of several facts. First, almost every mention of value re�nement

on the right-hand side of the de�nition is within either a ▷ or an inv, with

the sole exception of recursive types. Both ▷ and inv have the e�ect of

88 a logic for local protocols

strictly decreasing the step indexwhen interpreting the assertionwithin them

(recall that semantic island interpretations are given at strictly smaller step

indexes, to avoid circularity); decreasing step indexes provide a well-founded

measure. For recursive types the argument is a bit more subtle: it relies on

the F µ
cas requirement that all recursive types be productive, meaning that a

recursive type variable can only appear under a non-µ type constructor.�at
means, in particular, that a recursive type must always consist of some �nite

outer nest of µ-bindings, followed immediately by a non-µ, non-variable type
constructor. Aswe just argued, the interpretation of all such type constructors

drives the step index down.

�e fact that re�nement is a “pure” assertion, i.e., insensitive to the state
of private resources or the ownership of private tokens, is essential for

soundness.�e reason is simple: once a value has reached the context, it can

be copied and used concurrently.We therefore cannot claim that any one copy
of the value privately owns some resources. If P is impure, we say

U ⊧ρ P ≜ ∀η,W#U .W , η ⊧ρ P

where # as usual means that the compositionW ⊗U is de�ned.17 17 For anyW#U we haveW ⊗U = W .

Ω U ⊧ρ Ω ⊢ ei ⪯E es ∶ τ i�

⋅ ∀K , j. U ⊧ρ { j ↣s K[es]} ei {x . ∃y. x ⪯V y ∶ τ ∧ j ↣s K[y]}
x ∶τ′ , Ω′ ∀vi , vs . U ⊧ρ vi ⪯V vs ∶ τ′ ⇒ Ω′ ⊢ ei[vi/x] ⪯E es[vs/x] ∶ τ

α, Ω′ ∀V . U ⊧ρ[α↦V] Ω′ ⊢ ei ⪯E es ∶ τ

Figure 5.7:�e semantics of
expression re�nement

For expression re�nement Ω ⊢ ei ⪯E es ∶ τ, shown in Figure 5.7, we �rst
close o� any termor type variables bound byΩwith the appropriate universal

quanti�cation. Closed expression re�nement is then de�ned in terms of

a Hoare triple, following our sketch in §5.2.4. �e main di�erence in the

actual de�nition is thatwe additionally quantify over the unknown evaluation

context K in which a speci�cation is running; this annoyance appears to be
necessary for proving that re�nement is a precongruence. Important note: this
is not the same kind of quanti�ed contextual property that we started with
(i.e., in the de�nition of contextual re�nement). In particular, it is not even
possible to examine the context we are given. Rather, it is a way of forcing
re�nement proofs to use exactly the part of the spec expression involved in

the re�nement, leaving any surrounding evaluation context intact.

5.4.3 Hoare triples and threadpool simulation

Hoare triples are de�ned via the threadpool simulation assertionT@m {x . Q},
which is the engine that powers our model:

U ⊧ρ {P} e {x . Q} ≜ ∀i . U ⊧ρ P⇒ [i ↦ e]@i {x . Q}

basic reasoning principles 89

�readpool simulation (Figure 5.8) accounts for the fact that an expression

can fork threads as it executes, but that we care about the return value only

from some “main” thread m, which is the initial thread i here.

W0 , η ⊧ρ T@m {x . Q} ≜ ∀W
rely

⊒ W0 , ηF#η. ifW .k > 0 and h, Σ ∶W , η ⊗ ηF then:

h;T → h′;T ′ Ô⇒ ∃Σ′ , η′ ,W ′
guar

⊒1 W . Σ ⇉ Σ′ , h′ , Σ′ ∶W ′ , η′ ⊗ ηF , W ′ , η′ ⊧ρ T ′@m {x . Q}

T = T0 ⊎ [m ↦ v] Ô⇒ ∃Σ′ , η′ ,W ′
guar

⊒0 W . Σ ⇉ Σ′ , h, Σ′ ∶W ′ , η′ ⊗ ηF , W ′ , η′ ⊧ρ Q[v/x] ∗ T0@none {x . tt}

where W ′
guar

⊒n W ≜ W ′
guar

⊒ W ∧ W .k =W ′ .k + n
Σ ⇉ Σ′ ≜ ∀ς′ ∈ Σ′ . ∃ς ∈ Σ. ς →∗ ς′

Figure 5.8:�readpool simulation
To satisfy T@m {x . Q} at someW and η, the threads in T must �rst of all
continuously obey the protocols ofW , assuming they share private ownership
of η.�at is, every atomic step taken by a thread in T must:

● transform its shared resources in a way that corresponds to a guarantee
move in the protocol (W ′

guar

⊒ W), and

● preserve as a frame any private resources ηF of its environment;

● but it may change private resources η in any way it likes.

In between each such atomic step, the context might get a chance to run,

which we model by quantifying over an arbitrary rely-future world.18 If at 18 Recall the discussion in the Overview of

Chapter 4: this is howwemodel the behavior

of an arbitrary client while making a single
pass through the implementation code.

any point the main thread m terminates, it must do so in a state satisfying
the postcondition Q, where x is bound to the value the main thread returned.
A�erwards, any lingering threads are still required to obey the protocol using

the remaining resources, but the main thread identi�er is replaced by none.

�at threadpool simulation is, in fact, a simulation is due to its use of

the speculative stepping relation Σ ⇉ Σ′, which requires any changes to

the spec state to represent feasible execution steps: every new state must be

reachable from some old state, butwe are free to introducemultiple new states

originating in the same old state, and we are free to drop irrelevant old states

on the �oor. As a result of how simulation is de�ned, such changes to the spec

state can only be made to those parts that are under the threadpool’s control,

either as part of its private resources (allowing arbitrary feasible updates) or

its shared ones (allowing only protocol-permitted updates).

5.5 basic reasoning principles “A formal manipulator in mathematics o�en
experiences the discomforting feeling that his
pencil surpasses him in intelligence.”

—Howard Eves

Although we will not pursue an in-depth study of proof theory for the logic

of local protocols,19 in this section we sketch some of the basic reasoning

19We leave this to future work, and expect

that some choices in the design of assertions

will need to change to accommodate a clean

proof theory; see Chapter 13.

principles supported by the logic.

90 a logic for local protocols

5.5.1 Hypothetical reasoning and basic logical rules

Most of the inference rules will be presented in hypothetical style, e.g.,

P ⊢ P P ⊢ Q
P ⊢ P ∧ Q

�e metavariable P ranges over hypotheses,20 20 Despite the presence of separating con-

junction, we keep things simple here and do

not introduce bunched contexts (O’Hearn

and Pym 1999), instead including a set of

axioms for separating conjunction. �is is

one of the reasons the proof theory we are

presenting is just a sketch.

P ∶∶= ⋅ ∣ P , P

giving rise to the following semantic interpretations,

W , η ⊧ρ P ≜ ∀P ∈ P .W , η ⊧ρ P
P ⊧ Q ≜ ∀W , η, ρ, γ.W , η ⊧ρ γP Ô⇒ W , η ⊧ρ γQ

where γ ranges over variable-to-value substitutions and ρ and γ are con-
strained to close both P and Q.�us the soundness of the rule above means
that the following implication holds:

P ⊧ P P ⊧ Q
P ⊧ P ∧ Q

i.e., P ⊧ P and P ⊧ Q implies P ⊧ P ∧ Q

With those preliminaries in place, we give in Figure 5.9 the basic laws for

intuitionistic �rst-order logic and for separating conjunction.21�ese laws are 21 O’Hearn and Pym (1999), “�e logic of

bunched implications”easy to prove, either directly or through appeal to standard model-theoretic

arguments. Since they are standard, we do not discuss them further here.

In addition, we include the fundamental laws governing the “later” modal-

ity▷P.�e �rst is a monotonicity law saying that anything true at the current
step index will remain true at a smaller index; a�er all, decreasing step

indices represent decreasing observational power on the part of programs.

Step indexing also gives rise to proofs with a coinductive �avor via the Löb

rule,22 which makes it possible to prove P while assuming that it holds one 22 Appel et al. (2007), “A very modal model
of a modern, major, general type system”step later. We will see in §5.5.7 how the Löb rule supports reasoning about

recursion.

5.5.2 Reasoning about programs: an overview

Program reasoning works in three layers:

● The top layer is re�nement, which o�en serves as the end-goal of a proof.
�e proof rules for introducing re�nements are just reformulations of the

semantics of re�nement.23 In particular, expression re�nement requires 23�is should not be surprising: as it is, re-

�nement is a thin veneer over the rest of

the logic, and could be treated entirely as a

derived form if we moved to a second order

(relational) logic (like Plotkin and Abadi

(1993), Dreyer et al. (2009), or Dreyer, Neis,
Rossberg, et al. (2010).

proving a Hoare triple, which we do using lower-level concurrent Hoare

logic.

● The middle layer is “concurrent Hoare logic,” in which we prove Hoare
triples {P} e {x .Q}. �e “concurrent” nature of this logical layer is

http://www.jstor.org/stable/10.2307/421090
http://www.jstor.org/stable/10.2307/421090
http://dx.doi.org/10.1145/1190216.1190235
http://dx.doi.org/10.1145/1190216.1190235

basic reasoning principles 91

▸ Laws of intuitionistic first-order logic.

P ∈ P
P ⊢ P

P ⊢ P[v/x] P ⊢ v = v′

P ⊢ P[v′/x]
P ⊢ P P ⊢ Q

P ⊢ P ∧ Q
P ⊢ P ∧ Q
P ⊢ P

P ⊢ P ∧ Q
P ⊢ Q

P ⊢ P ∨ Q P , P ⊢ R P ,Q ⊢ R
P ⊢ R

P ⊢ P
P ⊢ P ∨ Q

P ⊢ Q
P ⊢ P ∨ Q

P , P ⊢ Q
P ⊢ P⇒ Q

P ⊢ P⇒ Q P ⊢ P
P ⊢ Q

P ⊢ P[y/x] y fresh
P ⊢ ∀x .P

P ⊢ ∀x .P
P ⊢ P[v/x]

P ⊢ ∃x .P P , P[y/x] ⊢ Q y fresh
P ⊢ Q

P ⊢ P[v/x]
P ⊢ ∃x .P

▸ Axioms from the logic of bunched implications.

P ∗ Q ⇐⇒ Q ∗ P
(P ∗ Q) ∗ R ⇐⇒ P ∗ (Q ∗ R)

P ∗ emp ⇐⇒ P

(P ∨ Q) ∗ R ⇐⇒ (P ∗ R) ∨ (Q ∗ R)
(P ∧ Q) ∗ R Ô⇒ (P ∗ R) ∧ (Q ∗ R)
(∃x . P) ∗ Q ⇐⇒ ∃x . (P ∗ Q)
(∀x . P) ∗ Q Ô⇒ ∀x . (P ∗ Q)

P , P1 ⊢ Q1 P , P2 ⊢ Q2
P , P1 ∗ P2 ⊢ Q1 ∗ Q2

▸ Laws for the “later” modality.

Mono

P ⊢ P
P ⊢ ▷P

Löb

P ,▷P ⊢ P
P ⊢ P

▷(P ∧ Q) ⇐⇒ ▷P ∧▷Q
▷(P ∨ Q) ⇐⇒ ▷P ∨▷Q

▷∀x .P ⇐⇒ ∀x .▷P
▷∃x .P ⇐⇒ ∃x .▷P

▷(P ∗ Q) ⇐⇒ ▷P ∗▷Q

Figure 5.9:�e basic logical laws
re�ected in the fact that all of the heap assertions in pre- and post-

conditions are understood to characterize thread-private state, while all

claims about shared state are made through island assertions.�at means

that all assertions are automatically “stable” under concurrent interference.
Concurrent Hoare logic is used primarily to glue together the results of

reasoning in the lower-level atomic Hoare logic.

● The bottom layer is “atomic Hoare logic,” which is used to reason

about atomic steps of execution without regard to concurrent threads.
Atomic Hoare logic uses an alternative, “atomic” Hoare triple LPM a Lx .QM
in which pre- and post-conditions may characterize private and shared
state alike, in terms of concrete heap/code resources rather than through
island assertions. Atomic triples are restricted to the following atomic

expressions, whose execution is guaranteed to take exactly one step:

a ∶∶= new v ∣ get(v[i]) ∣ v[i] ∶= v ∣ cas(v[i], v , v) ∣ inji v

Since the pre- and post-conditions of atomic triples are not stable under

concurrent interference, atomic Hoare logic does not provide rules for

sequencing. Instead, atomic triples must be li�ed to concurrent triples,

which requires showing that any changes made to a shared resource

must be permitted by the protocol governing it. Since protocols govern

92 a logic for local protocols

execution one atomic step at a time, the restriction of atomic triples to

atomic expressions is a vital one.

When we say “Hoare triple” or “Hoare-style reasoning” without quali�cation,

we mean “concurrent Hoare triple” and “concurrent Hoare logic.”

Recall that the semantics of re�nement and Hoare triples is given with

respect to an unprivileged world U and without reference to any private
resources (§5.4). Consequently, the rules for program reasoning uses a re-

stricted formof the hypothetical style: instead of an arbitrary set of hypothesis

P , the rules use a set of “pure” hypothesis Φ. A hypothesis P is pure if its
meaning is insensitive to the ownership of tokens or private resources, i.e., if
for everyW , η and ρ

W , η ⊧ρ P ⇐⇒ ∣W ∣,∅ ⊧ρ P

We next elaborate on each layer of program reasoning, working top-down.

5.5.3 Reasoning about re�nement

Since there are two kinds of re�nement—one between values, one between

expressions—we begin with a rule that relates them:

Φ ⊢ v1 ⪯V v2 ∶ τ
Φ ⊢ v1 ⪯E v2 ∶ τ

�e rule shows that expression re�nement contains value re�nement. As it

turns out, this rule will be derivable from the following one (SpecIntro),

together with the rule Return in §5.5.4:

SpecIntro

∀K , j. Φ ⊢ { j ↦s K[es]} ei {x . ∃y. x ⪯V y ∶ τ ∧ j ↣s K[y]}
Φ ⊢ ei ⪯E es ∶ τ

SpecIntro rule merely restates the de�nition of (closed) expression re�ne-

ment in terms of Hoare triples (§5.2). We omit the other rules recapitulating

the de�nition of (open) expression re�nement.

�e rules in Figure 5.10 for introducing value re�nement are also just

recapitulations of its de�nition; there are also a set of rules in the other

direction for eliminating re�nements, which we omit. We also omit rules for

type variables; see Chapter 13. Since the rules are so closely correlated with

the types of the language, we don’t bother to separately name them.

5.5.4 Concurrent Hoare logic

�e “glue” rules for concurrent Hoare logic, shown in Figure 5.11, are com-

pletely straightforward. Since we are working in an expression-oriented

rather than statement-oriented language, we have a Bind rule for connecting

basic reasoning principles 93

Φ ⊢ () ⪯V () ∶ unit Φ ⊢ true ⪯V true ∶ bool Φ ⊢ false ⪯V false ∶ bool Φ ⊢ n ⪯V n ∶ nat

Φ ⊢ ▷vi1 ⪯V vs1 ∶ τ1 Φ ⊢ ▷vi2 ⪯V vs2 ∶ τ2
Φ ⊢ (vi1 , vi2) ⪯V (vs1 , vs2) ∶ τ1 × τ2

vi = rec f (xi).ei vs = rec f (xs).es
Φ, xi ⪯V xs ∶ τ ⊢ ▷ei[vi/ f] ⪯E es[vs/ f] ∶ τ′

Φ ⊢ vi ⪯V vs ∶ τ → τ′

Φ ⊢ ▷ei ⪯E es ∶ τ
Φ ⊢ Λ.ei ⪯V Λ.es ∶ ∀α.τ

Φ ⊢ vi ⪯V vs ∶ τ[µα.τ/α]
Φ ⊢ vi ⪯V vs ∶ µα.τ

Φ ⊢ null ⪯V null ∶ ref?(τ)
Φ ⊢ ▷vi ⪯V vs ∶ ref(τ)
Φ ⊢ vi ⪯V vs ∶ ref?(τ)

Φ ⊢ inv (∃x , y. ⋀ x ⪯V y ∶ τ ∧ vi ↦i (x) ∗ vs ↦s (y))

Φ ⊢ vi ⪯V vs ∶ ref(τ)
Φ ⊢ ∃x , y. ▷x ⪯V y ∶ τ i ∧ inv(vi ↦i inji x ∗ vs ↦s inji y)

Φ ⊢ vi ⪯V vs ∶ τ1 + τ2

Figure 5.10: Introduction rules for
value re�nementan expression to an evaluation context (rather than a sequencing rule for

statements).24 �e only other unusual feature is that we funnel all use of 24 Of course, statement-style sequencing is a

derived form of let, and likewise the stan-
dard Hoare-style sequencing rule is deriv-

able from Bind.

hypotheses through the rule Hypo, which allows them to be brought into

the precondition of a triple. (A kind of converse rule, HypoOut, allows pure

assertions to be brought out of the purview ofHoare logic and into the general

proof context.)

�e “primitive” rules shown in the bottom of Figure 5.11 are more inter-

esting: as the name suggests, they provide the means of proving triples about

primitive operations. Primitives fall into two categories: pure and imperative.

Pure operations (e.g., addition, conditionals and function application)
neither inspect nor alter the heap. As such, they have only one interaction

withHoare-style reasoning: they decrease the number of steps remaining.�e

rule Pure supports reasoning about pure steps of computation: if e
pure↪ e′

(note the lack of heap),25 and e′ satis�es a particular Hoare triple, then e 25�is auxiliary stepping relation is given in

Appendix A.satis�es the same Hoare triple one step earlier.

Imperative operations—all those in the grammar of atomic expressions

a (§5.5.2)—interact with the heap in some way, which requires us to take
concurrency into account. Consequently, we have two basic rules for reason-

ing about imperative operations, depending on whether they are applied to

private or shared resources:

● Private resources must be mentioned explicitly and concretely in the
pre- and post-conditions of a concurrent Hoare triple. Atomic Hoare

triples LPM a Lx .QM, as we will see shortly, operate on precisely such
concrete assertions.�erefore the Private rule simply li�s atomic Hoare

reasoning.26 Additional, potentially-shared resources can then be framed 26�e use of ▷ is justi�ed by the fact that

an atomic expression always takes one step

to execute.
in using Frame.

94 a logic for local protocols

▸ “Glue” (logical and structural) rules for concurrentHoare logic.

Bind

{P} e {x . Q} ∀x . {Q} K[x] {y. R}
{P} K[e] {y. R}

Return

{emp} v {x . x = v ∧ emp}

Consequence

P ⊢ P′ {P′} e {x . Q′} Q′ ⊢ Q
{P} e {x . Q}

Disjunction

{P1} e {x . Q} {P2} e {x . Q}
{P1 ∨ P2} e {x . Q}

Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hypo

Φ ⊢ P {P ∧ Q} e {x . R}
Φ ⊢ {Q} e {x . R}

HypoOut

P pure Φ, P ⊢ {Q} e {x . R}
Φ ⊢ {P ∧ Q} e {x . R}

Weaken

Φ ⊢ {P} e {x . Q ∗ R}
Φ ⊢ {P} e {x . Q}

▸ Primitive rules for concurrentHoare logic.

Pure

e
pure↪ e′ {P} e′ {Q}

{▷P} e {Q}

Private

LPM a Lx . QM

{▷P} a {x . Q}

Shared

∀ι
rely

⊒ ι0 . ∃ι′
guar

⊒ ι. ∃Q . Lι.I(ι.s) ∗ PM a Lx . ▷ι′ .I(ι′ .s) ∗ QM ∧ (i ↦ ι′ ∗ Q) ⊢ R
{i ↦ ι0 ∗▷P} a {x . R}

NewIsland

{P} e {x . Q ∗▷ι.I(ι.s)}
{P} e {x . Q ∗ ι}

PrivateSumElim

i ∈ {1, 2} {ℓ ↦i inji x ∗ P} e i {ret. Q}
{ℓ ↦i inji x ∗▷P} case(ℓ, inj1 x ⇒ e1 , inj2 x ⇒ e2) {ret. Q}

Figure 5.11: Concurrent Hoare logic
● Shared resources, on the other hand, are characterized indirectly through
island assertions, i.e., controlled by protocols. In reasoning using the
Shared rule, we employ our rely and guarantee preorders to reason about

concurrent interference and the permissible state changes according to a

protocol.�e rule focuses on a particular island with ID i described by

ι0. Of course, the real state of the island is some ι
rely

⊒ ι0. For each such
possible state, the operation a we are performing must move the protocol
to a guarantee-future state ι′

guar

⊒ ι, at the same time establishing some
postcondition Q.27 In checking the operation a against the protocol, we 27�is postcondition could contain, for

example, resources whose ownership just

passed from the island to the local thread.
use an atomic Hoare triple as applied to the interpretations of the protocol
states—exposing the concrete shared resources of the island. Although

each possible protocol state ι might lead to a di�erent concrete new state
ι′ and postcondition Q, all such �nal states must be summarized by a
single, abstract postcondition R. �e use of the ▷ modality around the
island’s interpretation in the postcondition is justi�ed by the fact that

island interpretations are delayed one step; see the de�nition of world

satisfaction (§5.3.5).

basic reasoning principles 95

Of course, shared resources are initially created as private ones and later

exposed to other threads.�e rule NewIsland allows a private resource to

be “downgraded” into a shared one.

Finally, the rule PrivateSumElim accounts for the case construct on sum

types, which interacts with the heap but is not an atomic expression.�e rule

eliminates a sum whose value is known and whose heap representation is

privately-owned. By applying the rule of Disjunction, it can be made to

operate on a sum whose value is not known in advance. We omit the similar

rule that works on sums whose heap representation is managed as part of a

shared island.

5.5.5 Atomic Hoare logic

Finally, we have atomic Hoare triples, whose de�nition is loosely a one-step,

single-thread version of threadpool simulation:

⊧ LPM a Lx . QM ≜ ∀W , η, ηF#η, ρ.
ifW .k > 0 and▷W , η ⊧ρ P and (η ⊗ ηF).h; a ↪ h′; v then ∃η′#ηF .

h′ = (η′ ⊗ ηF).h, (η ⊗ ηF).Σ ⇉ (η′ ⊗ ηF).Σ, ▷W , η′ ⊧ρ Q[v/x]

where P and Q are assumed to be token-pure, i.e., not to include any
island assertions claiming ownership of tokens.28 We also assume that P, 28 Recall that this is the same restriction

placed on the interpretations of islands.Q and a have no free term variables, but in the inference rules below we
implicitly universally-quantify any free variables (just as with hypothetical

reasoning, §5.5.1). Finally, a subtle point regarding step-indexing: we interpret

P as being implicitly wrapped in a ▷ modality, which allows us to avoid
cluttering the rules of atomic Hoare logic with the modality—but note that,

when we li� atomic triples in the Private and Shared rules (§5.5.4), the

modality becomes explicit.

�e most important di�erence from threadpool simulation (and, thus,

from concurrent triples) is that atomic triples do not interpret the islands
of W . All of the resources they interact with must be concretely described
by the precondition P. �ere is therefore no mention of rely or guarantee
relations—protocols play no role here. We ultimately get away with this

because atomic Hoare triples deal only with one-step executions, whose

protocol conformance can be checked when they are li�ed into concurrent

Hoare triples (§5.5.4).

�e rules in Figure 5.12 spell out the atomic Hoare logic.�ey are pleas-

antly straightforward—essentially the standard “small axioms” of sequential

separation logic,29 with the notable absence of a rule for sequencing. As with 29 Reynolds (2002), “Separation logic: a

logic for shared mutable data structures”the PrivateSumElim rule, we axiomatize cas using a pair of rules for its two

possible outcomes, but we can derive a rule that covers both by applying

AConsequence and ADisjunction.

96 a logic for local protocols

▸ Reasoning about atomic expressions.

Inject

LempM inji v Lret. ret↦i inji vM
Alloc

LempM new v Lret. ret↦i (v)M
Deref

Lv ↦i (v)M get(v[i]) Lret. ret = v i ∧ v ↦i (v)M

Assign

Lv ↦i (v1 , . . . , vn)M v[i] ∶= v′i Lret. ret = () ∧ v ↦i (v1 , . . . , v i−1 , v′i , v i+1 , . . . , vn)M

CASTrue

Lv ↦i (v1 , . . . , vn)M cas(v[i], v i , v′i) Lret. ret = true ∧ v ↦i (v1 , . . . , v i−1 , v′i , v i+1 , . . . , vn)M

CASFalse

Lv ↦i (v) ∧ vo ≠ v iM cas(v[i], vo , v′i) Lret. ret = false ∧ v ↦i (v)M

▸ Logical and structural rules.

AConsequence

P ⊢ P′ LP′M a Lx . Q′M Q′ ⊢ Q
LPM a Lx . QM

AFrame

LPM a Lx . QM

LP ∗ RM a Lx . Q ∗ RM

ADisjunction

LP1M a Lx . QM LP2M a Lx . QM

LP1 ∨ P2M a Lx . QM

Figure 5.12: Atomic Hoare logic
5.5.6 Reasoning about speci�cation code

Our treatment of program reasoning thusfar has focused on implementation

code, but speci�cations are programs, too.

Execution of speci�cation code is always tied, simulation-style, to the exe-

cution of implementation code, as can most vividly be seen in the de�nition

of threadpool simulation (§5.4.3).�at de�nition presents two opportunities

for executing spec code: either in response to atomic steps of implementation

code, or when the (main thread of the) implementation produces a value.

We likewise have two proof rules for spec execution, one for atomic triples

and one for concurrent triples.�e rules allow the spec to take steps “in the

postcondition” of a triple:

AExecSpec

LPM a Lx . QM Q ⇉ R
LPM a Lx . RM

ExecSpec

{P} e {x . Q} Q ⇉ R
{P} e {x . R}

�e ExecSpec and AExecSpec rules have something of the �avor of the rule

of consequence, but do not be deceived: P⇒ Q and P ⇉ Q are quite di�erent
claims.�e latter is de�ned as follows:

⊧ P ⇉ Q ≜ ∀W , h, Σ, ΣF#Σ, ρ.
ifW , (h, Σ) ⊧ρ P then ∃Σ′ . (Σ ⊗ ΣF)⇉ (Σ′ ⊗ ΣF) andW , (h, Σ′) ⊧ρ Q

So P ⇉ Q means that the (set of) spec resources in P be can be (specula-
tively) executed to produce new spec resources satisfying Q. Its de�nition is
essentially an excerpt from the de�nition of atomic triples.

We will not give a detailed set of proof rules for spec execution⇉, instead
leaving such claims as proof obligations to be carried out “in the model.”

basic reasoning principles 97

5.5.7 Reasoning about recursion

�e Löb rule provides the essential ingredient for reasoning about recursion,

but itmay not be obvious how to usefully apply it.While there aremany useful

recursion schemes derivable from Löb, the one we will use applies to Hoare

triples on the bodies of recursive functions:

UnfoldRec

Φ ⊢ ∀ f , x . {P ∧ ∀x . {P} f x {ret. Q}} e {ret. Q}
Φ ⊢ ∀x . {P} e[rec f (x).e/ f] {ret. Q}

�eUnfoldRec rule provides a coinductive reasoning principle for recursive

functions, allowing a triple to be proved under the assumption that it holds

whenever the function is applied. It is derivable using Löb, Pure and Hypo

(together with several of the standard logical rules).

We omit the derivation, which is somewhat tedious, but the intuition is

simple. If we instantiate the Löb rule to the conclusion of UnfoldRec, we

have the derived rule

Φ,▷∀x . {P} e[rec f (x).e/ f] {ret. Q} ⊢ ∀x . {P} e[rec f (x).e/ f] {ret. Q}
Φ ⊢ ∀x . {P} e[rec f (x).e/ f] {ret. Q}

But a function application takes a step to actually perform!�e assumption

we gain from the Löb rule characterizes a function application just a�er β-
reduction, and is wrappedwith a use of “later.” By using the Pure rule (§5.5.4),

we can replace it with an assumption characterizing a function application

just before β-reduction—and thereby “eat up” the extra▷modality at just the
right moment.

5.5.8 Derived rules for pure expressions

We close the discussion of proof theory with a few derived rules dealing with

common pure expression forms:

Φ ⊢ {P} e {x . ▷Q} Φ ⊢ ∀x . {Q} e′ {y. R}
Φ ⊢ {P} let x = e in e′ {y. R}

Φ ⊢ {P} e {x . (x = true ∧▷Q1) ∨ (x = false ∧▷Q2)}
Φ ⊢ {Q1} e1 {ret. R} Φ ⊢ {Q2} e2 {ret. R}

Φ ⊢ {P} if e then e1 else e2 {ret. R}

Φ ⊢ {P} e {x . (x = null ∧▷Q1) ∨ (∃ℓ. x = ℓ ∧▷Q2)}
Φ ⊢ {Q1} e1 {ret. R} Φ ⊢ ∀ℓ. {Q2[ℓ/x]} e2 {ret. R}

Φ ⊢ {P} case(e , null⇒ e1 , x ⇒ e2) {ret. R}

�ese rules all follow through use of Pure, Consequence andDisjunction.

98 a logic for local protocols

5.6 metatheory “Anything that thinks logically can be fooled
by something else that thinks at least as logi-
cally as it does.”

—Douglas Adams,�e Hitchhiker’s Guide

Having seen all the layers of our logic, there are now two interesting metathe-

oretic questions to ask about its soundness:

1. Are the proof rules sound for the semantics of assertions?

2. Do re�nement assertions actually imply the corresponding contextual

re�nements?

Most of our proof-theoretic rules follow quite simply from assertion seman-

tics.�e interesting ones—primarily, the “glue” rules for concurrent Hoare

logic (§5.5.4)—are built on precisely the same lemmas we use in showing

soundness for contextual re�nement. So we focus on Question 2.

5.6.1 Soundness for re�nement

�e key theorem is the following:30 30We abbreviate ∀U . U ⊧∅ φ as ⊧ φ.

�eorem 1 (Soundness). If ⊧ Ω ⊢ e1 ⪯E e2 ∶ τ then Ω ⊧ e1 ⪯ e2 ∶ τ.

In proving a contextual re�nement from a re�nement assertion, we cannot

assume anything about the world U in which we work. A�er all, the world
is a representation of the context’s behavior, about which we must assume

nothing.

Soundness relies on the usual decomposition of contextual re�nement into

two properties: adequacy and compatibility.31 31 Any relation that is adequate and compat-

ible is contained in contextual re�nement,

which is the largest such relation.
▸ Adequacy for refinement assertions is easy to show:

�eorem 2 (Adequacy). Suppose ⊧ ⋅ ⊢ e1 ⪯E e2 ∶ nat, and let i , j and n be
arbitrary. If we have

∃h1 , T1 . ∅; [i ↦ e1]→∗ h1; [i ↦ n] ⊎ T1

then we also have

∃h2 , T2 . ∅; [j ↦ e2]→∗ h2; [j ↦ n] ⊎ T2 .

Adequacy just says that when we assert re�nement between closed expres-

sions of nat type, the directly-observable behavior of the implementation e1
(as a program) is reproducible by the speci�cation e2.

▸ Compatibility is much more difficult to show:

�eorem 3 (Compatibility). If ⊧ Ω ⊢ e1 ⪯E e2 ∶ τ and C ∶ (Ω, τ) ↝ (Ω′ , τ′)
then ⊧ Ω′ ⊢ C[e1] ⪯E C[e2] ∶ τ′.

Compatibility captures the idea that, if we claim an implementation re�nes

its spec, layering on additional client-side observations should never enable

us to discover an implementation behavior not reproducible by the spec. We

prove it by induction over the derivation of C ∶ (Ω, τ) ↝ (Ω′ , τ′), treating
each case as a separate “compatibility lemma.”

metatheory 99

LemFrame

W , η ⊧ρ T@m {x . Q} Wf , η f ⊧ρ R W#Wf η#η f

W ⊗Wf , η ⊗ η f ⊧ρ T@m {x . Q ∗ R}

LemPar

W1#W2 η1#η2 T1#T2 m1 ≠ none⇒ m1 ∈ dom(T1)
W1 , η1 ⊧ρ T1@m1 {x . Q1} W2 , η2 ⊧ρ T2@m2 {x . Q2}

W1 ⊗W2 , η1 ⊗ η2 ⊧ρ T1 ⊎ T2@m1 {x . Q1}

LemSeq

W , η ⊧ρ [i ↦ e] ⊎ T@i {x . Q}
∀v ,W ′

, η′ .W ′
, η′ ⊧ Q[v/x] Ô⇒ W ′

, η′ ⊧ρ [i ↦ K[v]]@i {x . R}
W , η ⊧ρ [i ↦ K[e]] ⊎ T@i {x . R}

Figure 5.13: Key, low-level lemmas for
soundness

5.6.2 Lemmas for threadpool simulation

�e key to tractability for the compatibility lemmas is isolating a yet-lower-

level set of lemmas, working at the level of threadpool simulation, that allow

us to glue together computations in various ways.�ese are the same lemmas

wementioned above that likewise support the glue rules of concurrent Hoare

logic.�ey are shown as inference rules in Figure 5.13.32 32�e notation # is used in the standard

way to claim that the relevant composition

is de�ned. For example,W#W′ means that

W ⊗W′ is de�ned.

To prove the lemmas in Figure 5.13, we need another set of lemmas giving

some fundamental properties of the rely and guarantee preorders:

Lemma 1 (Rely-closure of Assertions). W , η ⊧ρ P and W
rely

⊑ W ′ implies

W ′ , η ⊧ρ P.

Lemma 2 (Rely Decomposition). IfW1 ⊗W2

rely

⊑ W ′ then there areW ′

1 and

W ′

2 withW ′ =W ′

1 ⊗W ′

2 ,W1

rely

⊑ W ′

1 andW2

rely

⊑ W ′

2 .

Lemma 3 (Token Framing). IfW
guar

⊑ W ′ andW#Wf then there exists some

W ′

f #W
′ such thatWf

rely

⊑ W ′

f andW ⊗Wf
guar

⊑ W ′ ⊗W ′

f .

�e LemPar lemma provides the basis for compatibility of fork, while

LemSeq is used not only to prove the Bind rule, but also in nearly every
compatibility lemma that involves subexpressions. For example, consider

compatibility of function application:

⊧ Ω ⊢ e1 ⪯E e2 ∶ τ′ → τ ⊧ Ω ⊢ e′1 ⪯E e′2 ∶ τ′

⊧ Ω ⊢ e1 e′1 ⪯E e2 e′2 ∶ τ

�e expression e1 e′1 is evaluated by �rst evaluating e1 and e′1, but these
subexpression evaluations are completely uninteresting: in the proof, wewant

to simply “drop in” the assumptions about e1 and e′1 and jump directly to the

100 a logic for local protocols

interesting part, namely β-reduction.�e LemSeq lemma lets us do exactly
that.33 33�is is a bit like “locally” ⊺⊺-closing (Pitts

and Stark 1998) the logical relation.�e proof of LemSeq is what motivates the inclusion of an unknown

evaluation contextK in the de�nition of expression re�nement (§5.4.2): when
reasoning about the evaluation of a subexpression e in some K[e], we treat
K as part of the unknown context. But when reasoning about the subsequent
execution of the continuation K[v], we think of K as part of the expression.
Detailed proofs of the lemmas in Figure 5.13, the compatibility lemmas,

and other key glue rules of concurrent Hoare logic are given in Appendix C.

6
Example proofs

“None of the programs in this monograph,
needless to say, has been tested on amachine.”

—Edsger W. Dijkstra

“Beware of bugs in the above code; I have only
proved it correct, not tried it.”

—Donald E. Knuth

▸ Synopsis �is chapter exercises the logic of local protocols on a series of

realistic examples employing several sophisticated techniques for scalability:

elimination backo� (§6.4), lock-free traversal (§6.5), and helping (§6.6).

6.1 proof outlines

Before examining examples, we need to set some ground rules for tractable

notation.

We show example proofs as “Hoare proof outlines”, which interleave

code with (colored) annotations making assertions. In reading such a proof
outline, one should imagine each bit of code, along with the assertions

immediately before and a�er it, as comprising a concurrent Hoare triple:

● A sequence like
{P} e; {x . Q} e′ {y. R}

then comprises two triples {P} e {x . Q} and ∀x . {Q} e′ {y. R}
together with a use of the derived rule for sequencing the two expressions.

It is therefore a proof of {P} e; e′ {y. R}. Since semicolon-sequenced
code usually just returns unit values in between, we o�en omit the binder

for x.

● Similarly, a sequence like

{P} let x = e in {Q} e′ {y. R}

comprises two triples {P} e {x . Q} and ∀x . {Q} e′ {y. R} together
with a use of the derived rule for sequencing the two expressions. It is

therefore a proof of {P} let x = e in e′ {y. R}. Note that we implicitly
use the let-binder x in the postcondition Q.

● Uses of the rule of Consequence are given as back-to-back annotations:
{P}{Q}. Similarly, uses of ExecSpec are given as back-to-back annota-
tions with⇉ written in between: {P}⇉ {Q}.

● Conditionals are handled using a joint precondition and annotating each
branch with its own assertion. For example, the outline

{P} if e then {Q1} e1 {ret. R} else {Q2} e2 {ret. R}

101

102 example proofs

comprises the triples

{P} e {x . (x = true ∧▷Q1) ∨ (x = false ∧▷Q2)}
{Q1} e1 {ret. R} {Q2} e2 {ret. R}

and constitutes a proof of

{P} if e then e1 else e2 {ret. R}

● We consistently use the UnfoldRec rule (§5.5.7) to deal with recursion.
Rather than explicitly writing the unfolded recursive assumption nested

within an assertion, we leave it implicit. For example, when reasoning

about rec f (x).e, we will use a proof outline like

{P} e {ret. Q}

with f and x free, in which we implicitly assume that

∀x . {P} f x {ret. Q}

● We implicitly use the Mono rule to strengthen preconditions or weaken

postconditions as necessary, and implicitly apply Weaken to throw away

unneeded assertions in the postcondition.

We use proof outlines to give the high-level structure of a proof in terms

of its step-by-step gluing of concurrent Hoare triples—but of course, the

correctness of the individual Hoare triples will not always be apparent.�us
we o�en supplement proof outlines with detailed explanations of how they

use the Private and Shared rules (§5.5.4) to li� atomic triples, and in some

cases also give details for the atomic triples themselves.

6.2 warmup: concurrent counters

For our �rst example re�nement proof, we return again1 to concurrent 1 And not for the last time! See §10.2.1.

counters—a simple enough example to let us “practice” the basic proof

mechanics without getting bogged down in algorithmic details.

We prove in particular that the following optimistic, cas-based counter,

casCnt ≜ let r = new 0

inc = λ(). let n = get r
in if cas(r, n, n + 1) then () else inc()

read = λ(). get r
in (inc, read)

re�nes the following canonical atomic spec,

atomCnt ≜ let r = new 0 in mkAtomic(λ(). r ∶= get r + 1, λ(). get r)

In other words, we will show

⋅ ⊢ casCnt ⪯E atomCnt ∶ (unit→ unit) × (unit→ nat)

warmup: concurrent counters 103

6.2.1 �e protocol

Before delving into the details of the proof, we need to determine the

protocol governing casCnt’s hidden state: the reference r. Fortunately, the
protocol is extremely simple: the entire internal state of the data structure

is represented by a single value at base type. Consequently, executing a cas on

r is so informative that the inc operation can withstand essentially arbitrary

interference, so long as the spec’s state remains linked. In other words, we can

use the following invariant (i.e., single-state) protocol:2 2 Invariant protocols inv(P) were de�ned
in §5.4.2.

inv(∃n. ri ↦i n ∗ rs ↦s n ∗ locks ↦s false)

As usual, in reasoning about the code we rename variables, adding i and s

subscripts to clearly distinguish between implementation- and speci�cation-

side names. Here the invariant ensures that the implementation and spec

counter values change together, and that every execution of spec code goes

through an entire critical section (leaving the lock from mkAtomic free, i.e.,
false).

6.2.2 �e proof

�e proof of re�nement here, as with most we will consider, works in

essentially two stages:

Construction. First we account for the code making up the “constructor” of
an object. For counters, construction includes includes the allocation of

ri on the implementation side and rs and locks on the spec side. Once

the objects have been constructed, we introduce a new island to link

implementation and speci�cation together.

Method re�nement. We then prove re�nement of themethod tuples returned
by the spec by those of the implementation. �ese re�nement proofs

assume the existence of the island introduced in the �rst stage.

And so we begin.

▸ construction. To prove

casCnt ⪯E atomCnt ∶ τ where τ = (unit→ unit) × (unit→ nat)

it su�ces to show (by SpecIntro, §5.5.3), for all j and K, that

{ j ↣s K[atomCnt]} casCnt {x . ∃y. x ⪯V y ∶ τ ∧ j ↣s K[y]}

Using the derived rule for let expressions (§5.5.8), we can �rst reason about

the allocation of ri:
LempM new 0 Lri . ri ↦i 0M

which, by AFrame (§5.5.5), gives us

L j ↣s K[atomCnt]M new 0 Lri . ri ↦i 0 ∗ j ↣s K[atomCnt]M

104 example proofs

At this point, the implementation’s representation has been constructed, but

the spec’s has not. Recalling the de�nition ofmkAtomic (§3.4), it is easy to see

that

j ↣s K[atomCnt] ⇉ ∃rs . j ↣s K[(incs , reads)] ∗ locks ↦s false ∗ rs ↦s 0

where

incs ≜ withLock(locks , λ(). rs ∶= get rs + 1)
reads ≜ withLock(locks , λ(). get rs)

�us, by ASpecExec (§5.5.6), we have

L j ↣s K[atomCnt]M new 0 Lri . ri ↦i 0 ∗ ∃rs . j ↣s K[(incs , reads)] ∗ locks ↦s false ∗ rs ↦s 0M

At this point in the proof, the representations have been constructed as

privately-owned resources.We therefore li� our atomic triple to a concurrent

one using Private (§5.5.4):

{▷ j ↣s K[atomCnt]} new 0 {ri . ri ↦i 0 ∗ ∃rs . j ↣s K[(incs , reads)] ∗ locks ↦s false ∗ rs ↦s 0}

Although the representations are not exported directly, the exported closures

(e.g., incs) have shared access to them—so to �nish the construction phase,

we need to move them into an island. We do so using NewIsland (and an

application of Consequence, which we elide):3 3 Recall that we use ι as a shorthand for the
assertion ∃x . x ↦ ι.

{▷ j ↣s K[atomCnt]} new 0 {ri . ∃rs . j ↣s K[(incs , reads) ∗ ι}
where ι ≜ inv(∃n. ri ↦i n ∗ rs ↦s n ∗ locks ↦s false)

▸ method refinement. To show re�nement for the pair of methods, we

must show re�nement for each independently:4 4 Here we are implicitly using the rule

for introducing value re�nement at pair

type (§5.5.3), as well as the HypoOut rule

to record the assumption ι.
ι ⊢ inci ⪯V incs ∶ unit→ unit and ι ⊢ readi ⪯V reads ∶ unit→ nat

where inci is the actual (recursive) function de�nition for inc’s implementa-

tion, and likewise for readi.
5 We will examine the proof for inc, from which 5 In the rest of the examples for this section,

we will continue to follow this convention,

using subscripts i and s on method names

to stand for the corresponding anonymous,

recursive function de�nitions.

the proof for read can be easily extrapolated.

Showing re�nement amounts to proving, for all j and K, that

∀xi ⪯V xs ∶ unit. { j ↣s K[incBodys[incs/inc]]} incBodyi[inci/inc] {reti . ∃rets . reti ⪯V rets ∶ unit ∧ j ↣s K[rets]}

where incBodyi is the body of inci (and likewise for the spec versions). Since

inci is a recursive function, we will use UnfoldRec to carry out the proof. As

discussed in §6.1, we give the proof for its body, treating inc as a free variable

which we implicitly assume to behave according to the triple we prove.

�e �rst, somewhat startling observation about the proof outline (Fig-

ure 6.1) is that we do not bother to record any new facts when executing get ri.
But the reason is simple: there are no stable facts to be gained!�e moment
a�er reading ri, all we know is that its value was once n, and our one-state
protocol (recorded in ι) is too simple to record even this fact.

warmup: concurrent counters 105

Let es ≜ K[incBodys[incs/inc]]:

{ j ↣s es ∗ ι}
let n = get ri in

{ j ↣s es ∗ ι}
if cas(ri , n, n + 1)

then { j ↣s K[()] ∗ ι} () {ret. ret = () ∧ j ↣s K[()]}
else { j ↣s es ∗ ι} inc() {ret. ret = () ∧ j ↣s K[()]}

Figure 6.1: A proof outline for incBodyi

Not to worry—it is the cas that will tell use the value of r when we really
need to know it.

Despite gaining nothing semantically6 from taking the snapshot of r, it is 6We could just as well have let n =
random(); the algorithm would still work
from a safety standpoint. Of course, liveness

and performance demand that we make a

more educated guess as to r’s value.

still worthwhile seeing how the triple

{ j ↣s es ∗ ι} get ri {n. j ↣s es ∗ ι}

is actually proved, namely, by li�ing an atomic triple via the Shared rule.�e

rule requires that we consider every rely-future state of ι, moving from each to
some guarantee-future state. We illustrate applications of Shared by giving

tables like the following:

{ j ↣s es ∗ ι} get ri {n. j ↣s es ∗ ι}
j ↣s es ∗ ι.I(dummy) n. j ↣s es ∗ ι.I(dummy)

At the top of the table we give the concurrent triple we are trying to prove,

which must in particular have a pre- and post-condition involving an island

assertion. Underneath, we give a row for each possible rely-future state of

the island in the precondition. Each row replaces the island assertion in its

pre- and post-conditions with its interpretation at the asserted states; the state

in the postcondition must be a guarantee move away from the one in the

precondition (given the tokens owned in the original island assertion). Here

there is only one state, “dummy”, because we used inv to construct the island.

Every row represents an additional proof obligation: the corresponding

atomic Hoare triple must be proved. So we must show

L j ↣s es ∗ ι.I(dummy)M get ri Ln. j ↣s es ∗ ι.I(dummy)M

where, recalling the de�nition of ι, we have

ι.I(dummy) = ∃n. ri ↦i n ∗ rs ↦s n ∗ locks ↦s false

�is is easy to show: we use Deref (§5.5.5) for the read, deriving

Lri ↦i nM get ri Lret. ret = n ∧ ri ↦i nM

and construct the rest of the atomic triple by using AFrame and AConse-

quence.

Next we have the cas in the guard of the if expression (Figure 6.1):

106 example proofs

{ j ↣s es ∗ ι} cas(ri , n, n + 1)
⎧⎪⎪⎨⎪⎪⎩

ret.
⎛
⎝

(ret = false ∧ j ↣s es)
∨ (ret = true ∧ j ↣s K[()])

⎞
⎠
∗ ι

⎫⎪⎪⎬⎪⎪⎭

which we prove again using Shared—but we omit the (again trivial) table,

and instead move directly to the required atomic triple:

L j ↣s es ∗ ι.J(dummy)M cas(ri , n, n + 1) Lret.
⎛
⎝

(ret = false ∧ j ↣s es)
∨ (ret = true ∧ j ↣s K[()])

⎞
⎠
∗ ι.J(dummy)M

To prove this atomic triple, we begin by proving two simpler ones, which we

join with ADisjunction.

▸ First, for the case that the cas succeeds (CASTrue):

Lri ↦i nM cas(ri , n, n + 1) Lret. ret = true ∧ ri ↦i n + 1M

Using the AFrame rule, we have

Lri ↦i n ∗ rs ↦s n ∗ locks ↦s false ∗ j ↣s esM
cas(ri , n, n + 1)

Lret. ret = true ∧ ri ↦i n + 1 ∗ rs ↦s n ∗ locks ↦s false ∗ j ↣s esM

leaving us with a postcondition in which the implementation and speci�ca-

tion states di�er. But:

rs ↦s n ∗ locks ↦s false ∗ j ↣s es ⇉ rs ↦s n + 1 ∗ locks ↦s false ∗ j ↣s K[()]

so, using ASpecExec, we have

Lri ↦i n ∗ rs ↦s n ∗ locks ↦s false ∗ j ↣s esM
cas(ri , n, n + 1)

Lret. ret = true ∧ ri ↦i n + 1 ∗ rs ↦s n + 1 ∗ locks ↦s false ∗ j ↣s K[()]M

▸ Second, for the case that the cas fails (CASFalse):

Lm ≠ n ∧ ri ↦i mM cas(ri , n, n + 1) Lret. ret = false ∧ ri ↦i mM

there is nothing to do but frame in the other resources:

Lm ≠ n ∧ ri ↦i m ∗ rs ↦s m ∗ locks ↦s false ∗ j ↣s esM
cas(ri , n, n + 1)

Lret. ret = false ∧ ri ↦i m ∗ rs ↦s m ∗ locks ↦s false ∗ j ↣s esM

▸ We finish the proof of cas by joining the two atomic triples together,

using ADisjunction and AConsequence. �at just leaves the two arms

of the if expression (Figure 6.1). �e �rst arm is a trivial use of Return

and Frame (§5.5.4).�e second arm follows from our (implicit!) assumption

warmup: late versus early choice 107

about recursive invocations of the function, according to the convention laid

out in §6.1.

And so concludes the proof of a simple concurrent counter. We have, of

course, gone into considerable detail in order to fully illustrate the proof

mechanics.�e next two sections (on late/early choice and red/blue �ags) will

also go into a fair amount of detail, but subsequent examples (the Michael-

Scott queue and conditional CAS) will work mostly at the level of proof

outlines.

6.3 warmup: late versus early choice

To get a bit more experience with the proof theory—and spec execution in

particular—we give a more detailed proof that lateChoice re�nes earlyChoice

at type ref(nat)→ nat:

rand ≜ λ(). let y = new false in (fork y ∶= true);get(y[1])
lateChoice ≜ λx . x ∶= 0; rand()

earlyChoice ≜ λx . let r = rand() in x ∶= 0; r

As we noted in §4.5, these functions do not close over any hidden state and

thus do not require a protocol (or even, in the terminology of this chapter, a

construction phase for the proof).

So we proceed directly to the proof outline, shown in Figure 6.2.

Because lateChoice takes a reference as an argument, we begin with an

assumption xi ⪯V xs ∶ ref(nat) which implies (§5.4.2, §5.5.3) the following
(implicitly existential) island assertion:

inv(∃yi , ys . yi ⪯V ys ∶ nat ∧ xi ↦i yi ∗ xs ↦s ys)
Figure 6.2: Proof outline for
re�nement of earlyChoice by lateChoice

{xi ⪯V xs ∶ ref(nat) ∧ j ↣s K[earlyChoiceBody]}
L(∃yi , ys . yi ⪯V ys ∶ nat ∧ (xi ↦i yi ∗ xs ↦s ys)) ∗ j ↣s K[earlyChoiceBody]M
Lxi ↦i − ∗ xs ↦s − ∗ j ↣s K[earlyChoiceBody]M

xi ∶= 0
Lxi ↦i 0 ∗ xs ↦s − ∗ j ↣s K[earlyChoiceBody]M⇉
Lxi ↦i 0 ∗ xs ↦s 0 ∗ (j ↣s K[true]⊕ j ↣s K[false])M

{xi ⪯V xs ∶ ref(nat) ∧ (j ↣s K[true]⊕ j ↣s K[false])}
{ j ↣s K[true]⊕ j ↣s K[false]}

rand()
{ret. (ret = true ∨ ret = false) ∗ (j ↣s K[true]⊕ j ↣s K[false])}
{ret. (ret = true ∗ (j ↣s K[true]⊕ j ↣s K[false])) ∨ (ret = false ∗ (j ↣s K[true]⊕ j ↣s K[false]))}⇉
{ret. (ret = true ∗ j ↣s K[true]) ∨ (ret = false ∗ j ↣s K[false])}
{ret. ret ⪯V ret ∶ bool ∧ j ↣s K[ret]}

108 example proofs

In the triple for the assignment xs ∶= 0, we use the Shared rule (§5.5.4) to
unpack the concrete resources governed by this simple invariant protocol.

Since the protocol has only the single dummy state, we dispense with the rely-

guarantee table and instead show the derivation of the necessary atomic triple

as a nested proof outline.�e key point in the nested outline is that we use

ASpecExec to speculatively execute two versions of the spec—both writing
to xs, but each tossing its coin in a di�erent way.
�at just leaves the implementation’s use of rand. We assume

{emp} rand() {ret. ret = true ∨ ret = false} ,

a fact that can be readily proved by direct appeal to assertion semantics. A�er

suitably framing this assumption with the assertion j ↣s K[true] ⊕ j ↣s

K[false], all that is le� to do is distribute the ∗ over the disjunction, and
then use SpecExec—not to execute spec code, but rather to throw away those
speculations that are no longer needed.

6.4 elimination: red flags versus blue flags

Now we are ready for examples involving sophisticated techniques from

scalable concurrency (Chapter 2). We begin with elimination (§2.4.5).

▸ The flag implementations.

redFlag ≜ ⪯ blueFlag ≜
let �ag = new true,

chan = new 0,

�ip = λ(). if cas(chan, 1, 2) then () else

if cas(�ag, true, false) then () else

if cas(�ag, false, true) then () else

if cas(chan, 0, 1) then

if cas(chan, 1, 0) then �ip() else chan ∶= 0
else �ip(),

read = λ(). get �ag

in (�ip, read)

let �ag = new true,

�ip = λ(). �ag ∶= not (get �ag),
read = λ(). get �ag

in mkAtomic(�ip, read)

▸ The protocol.

Empty; ●

O�ered(j,K); ○

Accepted(j,K); ○

j,K

▸ The protocol state interpretation.

I(Empty) ≜ Q ∗ chan↦i 0

I(O�ered(j,K)) ≜ Q ∗ chan↦i 1 ∗ j ↣s K[�ips()]
I(Accepted(j,K)) ≜ Q ∗ chan↦i 2 ∗ j ↣s K[()]

Q ≜ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ lock↦s false

Figure 6.3: Red �ags versus blue �ags

elimination: red flags versus blue flags 109

For reference, both the code and the protocol for the red/blue �ags

example are shown in Figure 6.3.7 One interesting aspect of the example will 7We use the shorthand x ∶ bool for x =
true ∨ x = false in de�ning the protocol
interpretation.

emerge as we go along: the order of top-levelCASes in redFlag does notmatter.

In particular, any failing top-level cas leaves us with the same knowledge

going out that we had coming in. We let θ be the transition system shown in
Figure 6.3, with the single token “●” standing for ownership of the elimination
channel.8 8We o�en write ● in place of {●}.

▸ construction Fixing arbitrary j and K, we have:

{ j ↣s K[blueFlagBody]}
let �agi = new true in

{ j ↣s K[blueFlagBody] ∗ �agi ↦i true}
let chan = new 0 in

{ j ↣s K[blueFlagBody] ∗ �agi ↦i true ∗ chan↦i 0}⇉
{ j ↣s K[(�ips , reads)] ∗ �agi ↦i true ∗ chan↦i 0 ∗ �ags ↦s true ∗ lock↦s false}
{ j ↣s K[(�ips , reads)] ∗ I(Empty)}
{ j ↣s K[(�ips , reads)] ∗ (θ , I, Empty,∅)}

�is proof outline follows the same approach we have already seen for the

construction phase (§6.2); the last step, in particular, uses the NewIsland

rule (§5.5.4) to move privately-owned resources into a shared island that can

be closed over by exported functions.

▸ method refinement Now we must show that �ipi re�nes �ips (and

similarly for read, which is trivial) under the assumption (θ , I, Empty,∅).
Since �ipi is a recursive function, we implicitly appeal to UnfoldRec (§6.1).

�e high-level proof outline is given in Figure 6.4. It is, unfortunately, not

terribly enlightening: for all but the last cas, success means that the opera-

tion is complete, while failure means that nothing—not even our asserted

knowledge—has changed.

Let P = (θ , I, Empty,∅) ∗ j ↣s K[�ipBodys]:

{P} if cas(chan, 1, 2) then { j ↣s K[()]} () {ret. ret = () ∧ j ↣s K[()]}
else {P} if cas(�ag, true, false) then { j ↣s K[()]} () {ret. ret = () ∧ j ↣s K[()]}
else {P} if cas(�ag, false, true) then { j ↣s K[()]} () {ret. ret = () ∧ j ↣s K[()]}
else {P} if cas(chan, 0, 1) then {(θ , I,O�ered(j,K), ●)}

if cas(chan, 1, 0)
then {P} �ip() {ret. ret = () ∧ j ↣s K[()]}
else {(θ , I, Accepted(j,K), ●)} chan ∶= 0 {ret. ret = () ∧ ((θ , I, Empty,∅) ∗ j ↣s K[()])}

else {P} �ip() {ret. ret = () ∧ j ↣s K[()]}

Figure 6.4: Proof outline for redFlag

We can gain more insight by examining the varied uses of the Shared rule in

proving each cas.

110 example proofs

For the �rst cas, the protocol may be in any state, but the cas will only

succeed if the state is O�ered:

{P} cas(chan, 1, 2) {ret. (ret = true ∗ j ↣s K[()]) ∨ (ret = false ∗ P)}
j ↣s K[�ipBodys] ∗ I(Empty) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(Empty)
j ↣s K[�ipBodys] ∗ I(O�ered(j′ ,K′)) ret. ret = true ∗ j ↣s K[()] ∗ I(Accepted(j′ ,K′))
j ↣s K[�ipBodys] ∗ I(Accepted(j′ ,K′)) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(Accepted(j′ ,K′))

�is table is di�erent from those we have seen before in two ways. First, it

has multiple rows, giving a case analysis of the possible protocol states given

the knowledge in P, i.e., that it is at least in state Empty, which means it

may be in any state. Second, and relatedly, in the second row the state in the

postcondition di�ers from that of the precondition, which requires checking

that we can move from O�ered to Accepted while holding no tokens.

On the other hand, the protocol’s state is irrelevant to the success of the

next two cas expressions, since they attempt to perform the �ip directly:

{P} cas(�ag, true, false) {ret. (ret = true ∗ j ↣s K[()]) ∨ (ret = false ∗ P)}
j ↣s K[�ipBodys] ∗ I(s) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(s)

{P} cas(�ag, false, true) {ret. (ret = true ∗ j ↣s K[()]) ∨ (ret = false ∗ P)}
j ↣s K[�ipBodys] ∗ I(s) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(s)

�e most interesting case is the �nal top-level cas. It attempts to make an

o�er, which succeeds only when the starting state is Empty, in which case we

transfer control of our spec resource:

{P} cas(chan, 0, 1) {ret. (ret = true ∧ (θ , I,O�ered(j,K), ●)) ∨ (ret = false ∧ P)}
j ↣s K[�ipBodys] ∗ I(Empty) ret. ret = true ∗ I(O�ered(j,K))
j ↣s K[�ipBodys] ∗ I(O�ered(j′ ,K′)) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(O�ered(j′ ,K′))
j ↣s K[�ipBodys] ∗ I(Accepted(j′ ,K′)) ret. ret = false ∗ j ↣s K[�ipBodys] ∗ I(Accepted(j′ ,K′))

Once the o�er is made, we attempt to withdraw it. Withdrawing succeeds

only when the o�er has not been accepted. Due to our ownership of the token,
Empty is not a possible state:

{(θ , I,O�ered(j,K), ●)} cas(chan, 1, 0) {ret. (ret = true ∗ P) ∨ (ret = false ∗ (θ , I, Accepted(j,K), ●))}
I(O�ered(j,K)) ret. (ret = true ∧ j ↣s K[�ipBodys]) ∗ I(Empty)
I(Accepted(j,K)) ret. ret = false ∗ I(Accepted(j′ ,K′))

If we do not succeed in withdrawing the o�er, we can conclude that the state
is at least Accepted. Due to our token ownership, that is the only state we need

to consider when subsequently clearing the o�er �eld:

{(θ , I, Accepted(j,K), ●)} chan ∶= 0 {ret. ret = () ∗ j ↣s K[()])}
I(Accepted(j,K)) ret. ret = () ∗ j ↣s K[()] ∗ I(Empty)

elimination: red flags versus blue flags 111

▸ Finally, we give detailed derivations of the most interesting atomic triples

needed for the instantiations of the Shared rule above. Generally, the inter-

esting cases are thosewhere the cas succeeds, or where nontrivial information

about the protocol state is discovered.

�e �rst top-level cas succeeds in the O�ered state:

LI(O�ered(j′ ,K′)) ∗ j ↣s K[�ipBodys]M
Lchan↦i 1 ∗ Q ∗ j′ ↣s K′[�ipBodys] ∗ j ↣s K[�ipBodys]M

cas(chan, 1, 2)
Lret. (ret = true ∧ chan↦i 2) ∗ Q ∗ j′ ↣s K′[�ipBodys] ∗ j ↣s K[�ipBodys]M
Lret. (ret = true ∧ chan↦i 2) ∗ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ j′ ↣s K′[�ipBodys] ∗ j ↣s K[�ipBodys]M⇉
Lret. (ret = true ∧ chan↦i 2) ∗ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s ¬x ∗ j′ ↣s K′[()] ∗ j ↣s K[�ipBodys]M⇉
Lret. (ret = true ∧ chan↦i 2) ∗ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ j′ ↣s K′[()] ∗ j ↣s K[()]M
Lret. ret = true ∗ chan↦i 2 ∗ ∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ j′ ↣s K′[()] ∗ j ↣s K[()]M
Lret. ret = true ∗ I(Accepted(j′ ,K′)) ∗ j ↣s K[()]M

We prove the second cas for any state s:

LI(s) ∗ j ↣s K[�ipBodys]M
L∃x ∶ bool. �agi ↦i x ∗ �ags ↦s x ∗ I0(s) ∗ j ↣s K[�ipBodys]M

cas(�ag, true, false)
Lret. ((ret = true ∗ �agi ↦i false ∗ �ags ↦s true) ∨ (ret = false ∗ �agi ↦i false ∗ �ags ↦s false))
∗ I0(s) ∗ j ↣s K[�ipBodys]M

Lret. (ret = true ∗ I(s) ∗ j ↣s K[()])
∨ (ret = false ∗ I(s) ∗ j ↣s K[�ipBodys])M

�e proof for cas(�ag, false, true) is symmetric.

�at leaves the �nal top-level cas, in which we make an o�er:

LI(Empty) ∗ j ↣s K[�ipBodys]M
Lchan↦i 0 ∗ Q ∗ j ↣s K[�ipBodys]M

cas(chan, 0, 1)
Lret. (ret = true ∧ chan↦i 1) ∗ Q ∗ j ↣s K[�ipBodys]M
Lret. ret = true ∗ I(O�ered(j,K))M

We are now in a state where we own the token. For the inner cas, we therefore

need to consider only two possible future states—O�ered and Accepted:

LI(O�ered(j,K))M
Lchan↦i 1 ∗ Q ∗ j ↣s K[�ipBodys]M

cas(chan, 1, 0)
Lret. (ret = true ∧ chan↦i 0) ∗ Q ∗ j ↣s K[�ipBodys]M
Lret. ret = true ∗ I(Empty) ∗ j ↣s K[�ipBodys]M

112 example proofs

LI(Accepted(j,K))M
Lchan↦i 2 ∗ Q ∗ j ↣s K[()]M

cas(chan, 1, 0)
Lret. (ret = false ∧ chan↦i 2) ∗ Q ∗ j ↣s K[()]M
Lret. ret = false ∗ I(Accepted(j,K))M

Finally, if the inner cas fails, there is only one rely-future state: Accepted(j,K).
�us, we know exactly what the assignment to the channel will see:

LI(Accepted(j,K))M
LQ ∗ chan↦i 2 ∗ j ↣s K[()]M

chan ∶= 0
LQ ∗ chan↦i 0 ∗ j ↣s K[()]M
LI(Empty) ∗ j ↣s K[()]M

6.5 michael and scott’s queue

�e examples we have worked through so far use simple (single-word) data

representations. To see spatial locality in action, we now examine a linked data
structure: the Michael-Scott queue. For reference, the code and speci�cation

are given in Figure 6.5 and the protocol is given in Figure 6.6.9 9 An explanation of these details is given in

§4.2.

6.5.1 �e protocol

▸ Queue specification.

CSQ: ∀α. (unit→ ref?(α)) × (α → unit)
CGQ ≜ Λ.

let head = new (null)

deq = case get head

of n ⇒ head ∶= get(n[2]);
new (get(n[1]))

∣ null ⇒ null,

enq = λx . let enq′ = λc. case get(c[2])
of c′ ⇒ enq′(c′)
∣ null ⇒ c[2] ∶= new (x , null)

in case get(head)
of n ⇒ enq′(n)
∣ null ⇒ head ∶= new (x , null)

in mkAtomic(deq, enq)

▸ Queue implementation.

MSQ: ∀α. (unit→ ref?(α)) × (α → unit)
MSQ ≜ Λ.

let head = new (new (null, null))

deq = let n = get head

in case get(n[2])
of n′ ⇒ if cas(head, n, n′)

then get(n′[1]) else deq()
∣ null ⇒ null,

enq = λx . let n = new (new x , null)
let try = λc. case get(c[2])

of c′ ⇒ try(c′)
∣ null ⇒ if cas(c[2], null, n)

then () else try(c)
in try(get head)

in (deq, enq)

Figure 6.5:�e queues

michael and scott’s queue 113

▸ Per-node state space

S0 ≜ {�} ∪ {Live(v , v′) ∣ v , v′ ∈ Val} ∪ {Sentinel(v , v′) ∣ v , v′ ∈ Val} ∪ {Dead(v , ℓ) ∣ v ∈ Val, ℓ ∈ Loc}

▸ Per-node protocol

� Live(v , null)v Live(v , ℓ)
ℓ

Sentinel(v , ℓ)

Sentinel(v , null)

ℓ

Dead(v , ℓ)

Reachable

Logically in queue

▸ Global protocol state space and interpretation

S ≜ Loc fin⇀ S0
s ↝ s′ i� ∀ℓ. s(ℓ)↝0 s′(ℓ) ∨ s(ℓ) = s′(ℓ)

I(s) ≜ DeadSeg(sD ,−, ℓ) ∗
⎛
⎝

headi ↦i ℓ ∗ ℓ ↦i (v0 , vi) ∗
heads ↦s vs ∗ locks ↦s false

⎞
⎠

∗ LiveSeg(sL , vi , vs , null, null)

for any ℓ, v0, vi, vs, sD , sL
with s = sD ⊎ [ℓ ↦ Sentinel(v0 , vi)] ⊎ sL , where:

DeadSeg(∅, ℓ, ℓ′′) ≜ emp ∧ ℓ = ℓ′′

DeadSeg(sD ⊎ [ℓ ↦ Dead(v , ℓ′)], ℓ, ℓ′′) ≜ ℓ ↦i (v , ℓ′) ∗ DeadSeg(sD , ℓ′ , ℓ′′)

LiveSeg(∅, vi , v′′i , vs , v′′s) ≜ emp ∧ vi = v′′i ∧ vs = v′′s
LiveSeg(sL ⊎ [vi ↦ Live(v0 , v′i)], vi , v′′i , vs , v′′s) ≜ ∃xi , xs , v′s . xi ⪯V xs ∶ α ∗ v0 ↦i xi

∗ vi ↦i (v0 , v′i) ∗ vs ↦s (xs , v′s)
∗ LiveSeg(sL , v′i , v′′i , v′s , v′′s)

Figure 6.6:�e protocol for MSQ
Recall that the “global” protocol for the queue is given as a product STS of

the local protocol (the “local life story”) governing individual nodes. So a

state s ∈ S in the global STS is a function from heap locations to node states
(drawn from S0). Viewed di�erently,10 s is a partial function de�ned on those 10 Punning the � state in S0 with “unde-

�ned”.locations for which a node has at some point been “born,” i.e., locations at
non-� states.
As discussed in §4.2, while the transition relation of the global protocol

treats each node11 independently, the interpretation of its states does not. In 11 i.e., each heap location.
particular, the interpretation ensures that:

● �ere is exactly one Sentinel node.

114 example proofs

● �ere is exactly one node with a null tail.

● A node is Live i� it is reachable from the Sentinel.

6.5.2 Spatial locality

Despite providing global guarantees, the interpretation in Figure 6.6 is de-

�ned via local (but recursive!) constraints, and is designed to support spatially-
local reasoning.
Any notion of “locality” is intimately tied to a corresponding notion of

“separation”: locality demands thatwe distinguish resources “here” fromother

resources “somewhere else,” a distinction only possible if we can separate

resources into smaller pieces (and later recombine them). Given a notion

of separation, spatial locality means that updates to resources “here” do not

require or a�ect knowledge about resources “somewhere else.”12 12�ese observations are the essence of sepa-

ration logic, and can be formulated in a very

abstract way (Calcagno et al. 2007).
�e MSQ protocol provides an abstract notion of separation ⊎ at the level

of global protocol states that is closely aligned with physical separation in
the interpretation. Using abstract separation, we can focus attention on the

abstract state of some node(s) of interest, while treating the remaining node

states as an opaque “frame.”�e protocol interpretation is de�ned so that this

abstract way of “focusing” on a node corresponds to a physical one aswell. For

example, suppose we know that the node at location ℓ is at state Dead(x , ℓ′),
so that the global STS state is sF ⊎ [ℓ ↦ Dead(x , ℓ′)] for some “frame” sF .
�en there is some PF such that

I(sF ⊎ [ℓ ↦ Dead(x , ℓ′)]) ⇐⇒ PF ∗DeadSeg([ℓ ↦ Dead(x , ℓ′)], ℓ, ℓ′)

or, more to the point,

∀sF . ∃PF . I(sF ⊎ [ℓ ↦ Dead(x , ℓ′)]) ⇐⇒ PF ∗ ℓ ↦i (x , ℓ′)

�is simple lemma supports local reasoning about dead nodes: from local

abstract knowledge about such nodes (e.g., [ℓ ↦ Dead(x , ℓ′)]), we derive
local physical knowledge—enough to support reading their contents, for
example.

To support this kind of localized reasoning in general, we next introduce

a bit of shorthand. Assuming that θ is the global STS given in Figure 9.1, we
set

n ∝ s0 ≜ (θ , I, [n ↦ s0],∅)

�us, if we want to assert that ℓ is dead, we can say ℓ ∝ Dead(x , ℓ′). Because
island assertions are implicitly rely-closed (Chapter 5), the assertion says that

the global state is some rely-future state of s = [ℓ ↦ Dead(x , ℓ′)]. Even though
s itself sends every location other than ℓ to state �,13 a rely-future state of 13 Recall the pun with partial functions.

s might send these other locations to a future state of �—i.e., to any state
whatsoever.

In fact, the global state must be strictly in the rely-future of s: the inter-
pretation I(s) is unsatis�able, so s itself is not a valid state for the STS. (�e

michael and scott’s queue 115

interpretation of a global state requires, in particular, that the state has exactly
one node as Sentinel, which is not true of s). So an assertion n ∝ s0 claims
not just that n is in at least state s0, but also that the state of other locations
su�ce to make the STS interpretation satis�able. �is is a subtle, but key

point; it enables us to draw conclusions by using some local knowledge and

the interpretation in tandem. For example, we have:

n ∝ Live(−,m) ∧m ≠ null Ô⇒ n ∝ Live(−,m) ∗m ∝ Live(−,−)

�us, from abstract local knowledge about one node, we gain abstract local

knowledge about its neighbor.14 Note that the actual state of both m and n 14�e implication is a simple consequence

of the way that LiveSeg is de�ned.could be, for example, Dead—a state that is in the rely-future of Live. �is

simple-seeming implication is actually a key property for verifying both enq

and deq, as we will see below.

Figure 6.7: Proof for enq

Let P ≜ j ↣s K[enqBodys] ∗ ∃ℓ. n ↦i (ℓ, null) ∗ ℓ ↦i xi
Q ≜ ∀c. {P ∗ c ∝ Live(−,−)} try(c) {ret. ret = () ∧ j ↣s K[()]}

Outline for try

{P ∗ c ∝ Live(−,−)}
let t = get(c[2])
{P ∗ c ∝ Live(−, t)}
case t

of c′ ⇒
{P ∗ (c ∝ Live(−, c′) ∧ c′ ≠ null)}
{P ∗ c ∝ Live(−, c′) ∗ c′ ∝ Live(−,−)}
{P ∗ c′ ∝ Live(−,−)}
try(c′)
{ret. ret = () ∧ j ↣s K[()]}

∣ null⇒
{P ∗ c ∝ Live(−, null)}
if cas(c[2], null, n)
then

{ j ↣s K[()] ∗ c ∝ Live(−, n) ∗ n ∝ Live(−, null)}
()
{ret. ret = () ∧ j ↣s K[()]}

else

{P ∗ c ∝ Live(−,−)}
try(c)
{ret. ret = () ∧ j ↣s K[()]}

Outline for enq

{ j ↣s K[enqBodys] ∗ (θ , J ,∅,∅)}
let n = new (new x , null)
{P ∗ (θ , J ,∅,∅)}
let try = . . .
{(P ∗ (θ , J ,∅,∅)) ∧ Q}
let t = get head

{(P ∗ t ∝ Live(−,−)) ∧ Q}
in try(t)
{ret. ret = () ∧ j ↣s K[()]}

116 example proofs

6.5.3 �e proof: enq

We begin with the veri�cation of enq, shown in Figure 6.7, which is less

subtle15 than that for deq. 15 Surprisingly, given its traversal of the

queue!

To prove enq correct, we �rst characterize its inner loop (try) as follows:

∀c. { j ↣s K[enqBodys] ∗ ∃ℓ. n ↦i (ℓ, null) ∗ ℓ ↦i xi ∗ c ∝ Live(−,−)} try(c) {ret. ret = () ∧ j ↣s K[()]}

Since try is a tail-recursive function, the precondition here acts as a loop

invariant.16 Going piece-by-piece, it says that try assumes: 16 As usual, we unroll the recursion using

UnrollRec.

● Private ownership of the spec code K[enqBodys] for enqueuing,

● Private ownership of the node n to insert, the �rst component of which is
a privately owned reference to xi, and

● �at the “current node” c of the traversal is at least in the Live state.

�e node c could in reality be the Sentinel or even Dead (i.e., no longer
reachable from head), but by placing a lower-bound of Live we guarantee

that c was, at some point in the past, part of the queue.

In the code for try, we have added some intermediate let-bindings to the code

given in Chapter 4, e.g., the binding for t, which helps keep the proof outline
clear and concise.

In the �rst step, we read the second component c[2] from the current node
c, allowing us to enrich our knowledge from c ∝ Live(−,−) to c ∝ Live(−, t).
Howmuch richer is this new knowledge? It depends on t. If t is null, we have

not learned much, since the protocol allows c to move from Live(−, null) to
e.g., Live(−, x) for any x. If, on the other hand, t is non-null, thenwe know that

the second component of c will forever remain equal to t. (See the protocol
in Figure 6.6.)

In the next step, we perform a case analysis on t that tells us which of the
above situations obtains:

● Suppose t is some non-null value; call it c′. �e combined knowledge
c ∝ Live(−, c′) and c′ ≠ null is enough to deduce c′ ∝ Live(−,−), as
we explained in §6.5.2. And that, in turn, is enough knowledge to satisfy

the precondition for a recursive call to try, this time starting from c′. To
summarize the story so far: we can safely move from one used-to-be-Live

node to the next, using only local, abstract knowledge about the individual

nodes—despite the fact that both nodes might be currently unreachable
from head.

● Suppose instead that t is null. As we explained above, according to the

protocol this tells us nothing about the current value of c[2].�is is the
essential reason why the algorithm uses cas in the next step: because cas

allows us to combine instantaneous knowledge (in this case, a re-check

that c[2] is null) with instantaneous action (in this case, setting c[2] to n).

michael and scott’s queue 117

● If the cas succeeds, then our thread is the one thatmoves c from abstract
state Live(−, null) to Live(−, n). Making this move in the protocol
requires us to move n from abstract state � to Live(−, null),17 which in 17 Note that n must be in state �; otherwise,

the protocol interpretation would force the

shared island to own n, which we own pri-
vately.

turn requires us to transfer ownership of n and its �rst component into
the shared island.

● Finally, if the cas fails, we nevertheless still know that c ∝ Live(−,−),
and we retain ownership of n and its �rst component. �us, we can
safely restart traversal from c.

{ j ↣s K[deqBodys] ∧ (θ , J ,∅,∅)}
let n = get head

{ j ↣s K[deqBodys] ∧ n ∝ Sentinel(−,−)}
let t = get(n[2])

{n ∝ Sentinel(−, t) ∧ (t = null ∧ j ↣s K[null]
⊕ t ≠ null ∧ j ↣s K[deqBodys]

)}

in case t
of n′ ⇒

{ j ↣s K[deqBodys] ∧ n ∝ Sentinel(−, n′) ∧ n′ ≠ null}
{ j ↣s K[deqBodys] ∧ n ∝ Sentinel(−, n′) ∧ n′ ∝ Live(−,−)}
if cas(head, n, n′)
then

{∃xi , xs . xi ⪯
V xs ∶ α ∗ ∃yi , ys . yi ↦i xi ∗ ys ↦s xs ∗ j ↣s K[ys]

∗ n ∝ Dead(−, n′) ∗ n′ ∝ Sentinel(yi ,−)
}

{∃yi , ys . yi ⪯V ys ∶ ref?(α) ∗ j ↣s K[ys] ∗ n′ ∝ Sentinel(yi ,−)}
get(n′[1])
{yi . ∃ys . yi ⪯V ys ∶ ref?(α) ∗ j ↣s K[ys]}

else

{ j ↣s K[deqBodys] ∧ (θ , J ,∅,∅)}
deq()
{yi . ∃ys . yi ⪯V ys ∶ ref?(α) ∗ j ↣s K[ys]}

∣ null⇒
{ j ↣s K[null]}
null

{ret. ret = null ∧ j ↣s K[null]}
{yi . ∃ys . yi ⪯V ys ∶ ref?(α) ∗ j ↣s K[ys]}

Figure 6.8: Proof outline for deq

6.5.4 �e proof: deq

�e code for deq begins by simply reading head.�e node read,18 n, is at least 18 By the interpretation of the protocol, we

know there must be such a node.in the sentinel state.

�e next step reads the second component of n, which will ultimately
tell whether the queue “is” empty. But, of course, a concurrent queue that is

momentarily empty may gain elements in the next instant. So when the code

118 example proofs

reads n[2] into t—but before it inspects the value of t—we perform a subtle
maneuver in the logic: we “inspect” the value of t within the logic (using
speculative choice), and in the case that t is null we speculatively execute the
spec.19 It is crucial to do so at this juncture, because by the time the code itself 19 Using speculative choice ⊕ is not strictly

necessary: we could have used vanilla dis-

junction instead, because the added condi-

tions on t ensure that only one branch of the
speculation is ever in play.

discovers that the value t is null, the value of n[2] may have changed—and
the contents of the queue on the speci�cation side will have changed with it.

Assuming that t is not null, we can deduce that it points to a node n′ that
is at least in the Live state.20 But the knowledge we have accumulated so far 20�is is yet another application of the

lemma given in §6.5.2.about n and n′ gives only a lower bound on their abstract states. So in the
next step, the code performs a cas, which atomically re-checks that n is still
the sentinel, and at the same time updates head to point to n′:

● If successful, n will be Dead, n′ will be the new Sentinel, and we will have

gained ownership of the �rst component of n. We then package up that
�rst component in a ref island, and return it.

● Otherwise, we drop essentially all our knowledge on the �oor, and retry.

If on the other hand t is null, there is little to show: we have already

speculatively executed the speci�cation, which must have returned null—the

same value returned by the implementation.

michael and scott’s queue 119

▸ Conditional counter specification.

counters ≜
let c = new 0, f = new false

let setFlag(b) = f ∶= b
let get() = get c
let cinc() = c ∶= get c + if get f then 1 else 0

in mkAtomic(setFlag, get, cinc)

▸ Conditional counter implementation.

counteri ≜
let c = new inj1 0, f = new false

let setFlag(b) = f ∶= b
let complete(x , n) =

if get f then cas(c, x , inj1 (n + 1))
else cas(c, x , inj1 n)

let rec get() = let x = get c in case x of

inj1 n⇒ n
∣ inj2 n⇒ complete(x , n); get()

let rec cinc() = let x = get c in case x of

inj1 n⇒ let y = inj2 n in

if cas(c, x , y) then complete(y, n); ()
else cinc()

∣ inj2 n⇒ complete(x , n); cinc()
in (setFlag, get, cinc)

▸ Per-cell protocol.

�; ●

Upd(d ,∅); ○

Upd(d , {0}); ○

Upd(d , {1}); ○

Upd(d , {0, 1}); ○ Done(d); ○ Gone; ●

Const(n); ● Dead; ●

d
n

▸ Global protocol and interpretation.

d ∶∶= n, j,K B ⊆ {0, 1} A ≜ Loc S0 ≜ {�,Upd(d , B),Done(d),Gone, Const(n),Dead} S ≜ Loc fin⇀ S0

I(s) ≜ ∃b ∶ bool. fi ↦i b ∗ fs ↦s b ∗ locks ↦s false

∗ ∃!ℓc . s(ℓ) ∈ {Const(−),Upd(−,−)}

∗
⎧⎪⎪⎪⎨⎪⎪⎪⎩

linkUpd(ℓc , n, j,K , B) s(ℓc) = Upd(n, j,K , B)

linkConst(ℓc , n) s(ℓc) = Const(n)
∗ ∗s(ℓ)=Done(n , j ,K)

ℓ ↦i inj2 n ∗ j ↣s K[()]
∗ ∗s(ℓ)=Gone

ℓ ↦i inj2 − ∗ ∗s(ℓ)=Dead
ℓ ↦i inj1 −

linkConst(ℓc , n) ≜ ci ↦i ℓc ∗ ℓc ↦i inj1 n ∗ cs ↦s n

linkUpd(ℓc , n, j,K , B) ≜ ci ↦i ℓc ∗ ℓc ↦i inj2 n

∗
⎛
⎜⎜⎜
⎝

cs ↦s n ∗ j ↣s K[cincBodys]
⊕ cs ↦s n ∗ j ↣s K[()] if 0 ∈ B
⊕ cs ↦s (n + 1) ∗ j ↣s K[()] if 1 ∈ B

⎞
⎟⎟⎟
⎠

Figure 6.9: Conditional increment, a
simpli�cation of CCAS

120 example proofs

6.6 conditional cas

We are now in a position to tackle, in detail, a rather complex scalable

concurrent algorithm: Harris et al.’s conditional CAS,21 which performs a 21 Timo Harris et al. (2002), “A practical
multi-word compare-and-swap operation”,

and Fraser and Tim Harris (2007),

“Concurrent programming without locks”

compare-and-set on one word of memory, but only succeeds when some

other word (the control �ag) is non-zero at the same instant. �is data
structure is the workhorse that enables Harris et al. to build their remarkable
lock-free multi-word CAS from single-word CAS.

As with theMichael-Scott queue, we have boiled down conditional CAS to

its essence, retaining its key veri�cation challenges while removing extrane-

ous detail.�us, we study lock-free conditional increment on a counter, with
a �xed control �ag per instance of the counter; see the speci�cation counters
in Figure 6.9.�ese simpli�cations eliminate the need to track administrative

information about the operation we are trying to perform but do not change

the algorithm itself, so adapting our proof of conditional increment to full

CCAS is a straightforward exercise.

6.6.1 �e protocol

To explain our implementation, counteri, we begin with its representation

and the protocol that governs it. �e control �ag f is represented using a
simple boolean reference; all of the action is in the counter c, which has
type ref(nat + nat). A value inj1 n represents an “inactive” counter with
logical value n. A value inj2 n, in contrast, means that the counter is
undergoing a conditional increment, and had the logical value n when the
increment began. Because inj2 n records the original value, a concurrent
thread attempting another operation on the data structure can help �nish

the in-progress increment.22 Helping is what makes the algorithm formally 22 To help yourself, �rst help others (to get

out of your way).nonblocking (obstruction-free in particular; see §2.5.2): at any point in an

execution, if a thread operating on the data structure is run in isolation, it

will eventually �nish its operation.�is property precludes the use of locks,

since a thread that does not hold the lock will, in isolation, forever wait by

trying to acquire it.

�e question is how to perform a conditional increment without using

any locks. Remarkably, the algorithm simply reads the �ag f , and then—in a
separate step—updates the counter c with a cas; see the complete function. It

is possible, therefore, for one thread performing a conditional increment to

read f as true, at which point another thread sets f to false; the original thread

then proceeds with incrementing the counter, even though the control �ag is

false! Proving that counteri re�nes counters despite this blatant race condition

will require all the features of our model, working in concert.

▸ An initial idea is that when the physical value of the counter is inj2 n, its
logical value is ambiguous: it is either n or n + 1.�is idea will only work if
we can associate such logical values with feasible executions of the spec’s cinc

http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://dx.doi.org/10.1145/1233307.1233309

conditional cas 121

code, since “logical” value really means the spec’s value.�e di�culty is in

choosing when to take spec steps. If we wait to execute the spec code until a
successful cas in complete, wemay be too late: as the interleaving above shows,

the �ag may have changed by then. But we cannot execute the spec when we

read the �ag, either: the cas that follows it may fail, in which case some other
thread must have executed the spec.

�e way out of this conundrum is for threads to interact via a speculative

protocol, shown in Figure 6.9. Recall that injections into sum types are heap-

allocated, so every value c takes on has an identity: its location.�e protocol
gives the life story for every possible location in the heap as a potential value

of c, with the usual constraint that all but �nitely many locations are in the
unborn (�) state.�e �rst step of the protocol re�ects the choice latent in the
sum type:

● �e location location may be a quiescent inj1 n, represented initially by
Const(n).

● Alternatively, the location may be an active increment operation inj2 n,
represented initially by Upd(d ,∅).�e logical descriptor d gives the old
value n of the counter, together with the thread id j and spec evaluation
context K of the thread attempting the increment.�e latter information
is necessary because thread j temporarily donates its spec to the protocol,
permitting helping threads to execute the spec on its behalf. Following the

pattern laid out in Section 4.4, in return for donating its spec, thread j
receives a token which will later permit it, and only it, to recover its spec.

As usual, we depict the token with a bullet.

�e life story for a quiescent inj1 n is quite mundane: either it is the current
value pointed to by c, or it is Dead.

An active cell inj2 n leads a much more exciting life. In the �rst phase
of life, Upd(d , B), the cell records which branches B ⊆ {0, 1} of the complete

code have been entered by a thread. Initially, no thread has executed complete,

so the set is empty. If a thread subsequently reads that f = true in the �rst

step of executing complete, it moves to the set {1}, since it is now committed
to the branch that adds 1 to the initial value n. Crucially, this step coincides
with a speculative run of the speci�cation; the un-run spec is also retained, in
case some other thread commits to the 0 branch.�e branch-accumulation

process continues until some thread (perhaps not the original instigator of

the increment) actually succeeds in performing its cas in complete. At that

point, the increment is Done, and its inj2 n cell is e�ectively dead, but not yet
Gone: in the end, the thread that instigated the original increment reclaims

its spec, whose execution is guaranteed to be �nished.

122 example proofs

6.6.2 �e proof

We now formally justify that counteri re�nes counters by giving a concrete

interpretation to the protocol and providing a Hoare-style proof outline for

complete and cinc.�e outline for get is then a straightforward exercise.

To formalize the protocol, we �rst give the set of states S0 for an individual
life story; see Figure 6.9. �e states S for the data structure are then a
product of individual STS states indexed by location,with all but �nitelymany

locations required to be in state �.�e set of tokens A for the product STS is
just the set of locations, i.e., there is one token per location (and hence per
individual life story).�e transition relation ↝ on the product STS li�s the
one for individual life stories:

s ↝ s′ ≜ ∀ℓ. s(ℓ) = s′(ℓ) ∨ s(ℓ)↝ s′(ℓ)

If F0 is the free-token function for an individual STS, we can then de�ne the
product STS as follows:

θ ≜ (S ,A,↝, λs.{ℓ ∣ F0(s(ℓ)) = {●}})

�e interpretation I for states of the product STS given in Figure 6.9 is
fairly straightforward.�e implementation and speci�cation �ag values must

always match.�ere must exist a unique location ℓc (“∃!ℓc”) in a “live” state
of Const or Upd.�is unique live location will be the one currently pointed to

by c. In the Upd state, it also owns speculative spec resources according to the

branch set B. Finally, Done nodes retain a �nished spec, while Dead and Gone

nodes are simply garbage inj1 (−) and inj2 (−) nodes, respectively.

▸ construction As usual, the implementation counteri begins by allocat-

ing some shared, hidden data for its representation. We elide the straightfor-

ward proof outline for the construction phase, and just give its precondition,

j ↣s K[counters]

and concrete postcondition,

∃x . ci ↦i x ∗ x ↦i inj1 0 ∗ fi ↦i false

∗ j ↣s K[(setFlags , gets , cincs)] ∗ cs ↦s 0 ∗ fs ↦s false ∗ locks ↦s false

To prepare to prove method re�nement, we need to move these private

resources into a new shared island governed by the protocol in Figure 6.9.We

�rst use Consequence to rewrite the postcondition in terms of the protocol

with a single live cell x, i.e., at state [x ↦ Const(0)]:

∃x .I([x ↦ Const(0)]) ∗ j ↣s K[(setFlags , gets , cincs)]

We are thus in a position to apply the NewIsland rule to move these

resources into an island:

∃x . (θ , I, [x ↦ Const(0)],∅) ∗ j ↣s K[(setFlags , gets , cincs)]

conditional cas 123

▸ method refinement We must then show, in the context of this ex-

tended island, that each of the implementation procedures re�nes the cor-

responding speci�cation procedure. We give the detailed proof for cinc, i.e.,

{ j ↣s K[cincBodys] ∗ (θ , I,∅,∅)} cincBodyi {ret. ret = () ∧ j ↣s K[()]}

In the precondition, we weaken our knowledge about the island to simply

saying that it is in a rely-future state of ∅ (where every location maps to �),
since this is all we need to know.

�e locality of the local life stories is manifested in our ability to make

isolated, abstract assertions about a particular location governed by the data

structure. Because every location is in some rely-future state of �, we can
focus on a location x of interest by asserting that the product STS is in a
rely-future state of [x ↦ s0], where s0 ∈ S0.23 For readability, we employ the 23 And so every other location is in a rely-

future state of �, i.e., in an arbitrary state.following shorthand for making such local assertions about the island, with

and without the token for the location in focus:

x ∝ s0 ≜ (θ , I, [x ↦ s0],∅) x ∝● s0 ≜ (θ , I, [x ↦ s0], {x})

�us empowered, we can glean some additional insight about the algorithm:

that the complete function satis�es the triple

{x ∝ Upd(n, j,K ,∅)} complete(x , n) {ret. x ∝ Done(n, j,K)}

In reading this triple, it is crucial to remember that assertions are closed under

rely moves—so x ∝ Upd(n, j,K ,∅)means that the location x was once a live,
in-progress update.�e interesting thing about the triple is that, regardless of

the exact initial state of x, on exit we know that x is at least Done—and there’s

no going back.

�e proof outline for complete is as follows:

let complete(x , n) = {x ∝ Upd(n, j,K ,∅)}
if get fi then {x ∝ Upd(n, j,K , {1})} cas(ci , x , inj1 (n + 1)) {x ∝ Done(n, j,K)}

else {x ∝ Upd(n, j,K , {0})} cas(ci , x , inj1 n) {x ∝ Done(n, j,K)}

According to the proof outline, a�er reading the value of the �ag, the location

x is in an appropriately speculative state. To prove that fact, we must consider
the rely-future states of Upd(n, j,K ,∅), and show that for each such state we
can reach (via a guarantee move) a rely-future state of Upd(n, j,K , {1}) or
Upd(n, j,K , {0}), depending on the value read from the �ag. For example, if
the initial state of the island is s ⊎ [x ↦ s0] and we read that the �ag is true,

we take a guarantee move to s ⊎ [x ↦ s′0] as follows:24 24�is table is just a condensed version of

the usual one for a use of the Shared rule,

although here we are only considering the

case where the read returned true.�e full
table extends this one symmetrically for

reading a false �ag.

If s0 is then s′0 is

Upd(d ,∅) Upd(d , {1})
Upd(d , {0}) Upd(d , {0, 1})
Done(d) Done(d)

If s0 is then s′0 is

Upd(d , {1}) Upd(d , {1})
Upd(d , {0, 1}) Upd(d , {0, 1})
Gone Gone

124 example proofs

If the initial state for location x already included the necessary speculation
(or was Done or Gone), there is nothing to show; otherwise, changing the state

requires speculative execution of the spec using ASpecExec.�e fact that the

rest of the island’s state s is treated as an unexamined frame here is the most
direct re�ection of protocol locality.

We perform a similar case analysis for both of the cas steps, but there we

start with the knowledge that the appropriate speculation has already been

performed—which is exactly what we need if the cas succeeds. If, on the other

hand, the cas fails, it must be the case that x is at least Done: if it were still in

an Upd state, the cas would have succeeded.

{ j ↣s K[cincBodys] ∗ (θ , I,∅,∅)}
let x = get ci in

{ j ↣s K[cincBodys] ∗ (x ∝ Const(−) ∨ x ∝ Upd(−,−))}
case x

of inj1 n⇒
{ j ↣s K[cincBodys] ∗ x ∝ Const(n)}
let y = inj2 n in

{ j ↣s K[cincBodys] ∗ x ∝ Const(n) ∗ y ↦ inj2 n}
if cas(ci , x , y)
then

{x ∝ Dead(n) ∧ y ∝● Upd(n, j,K ,∅)}
{y ∝● Upd(n, j,K ,∅)}
complete(y, n);
{y ∝● Done(n, j,K)}
()
{ret. ret = () ∧ j ↣s K[()] ∧ y ∝ Gone}
{ret. ret = () ∧ j ↣s K[()]}

else

{ j ↣s K[cincBodys] ∗ (θ , I,∅,∅)}
cinc()
{ret. ret = () ∧ j ↣s K[()]}

∣ inj2 n⇒
{ j ↣s K[cincBodys] ∗ x ∝ Upd(n,−,−,−)}
complete(x , n);
{ j ↣s K[cincBodys] ∗ x ∝ Done(n,−,−)}
{ j ↣s K[cincBodys] ∗ (θ , I,∅,∅)}
cinc()
{ret. ret = () ∧ j ↣s K[()]}

Figure 6.10: Proof outline for cinc

▸ With complete out of the way, the proof of cinc is relatively easy.

�e proof outline is in Figure 6.10.25 When entering the procedure, all that 25�e steps labeled with ∴ indicate uses of
the rule of consequence to weaken a post-

condition.
is known is that the island exists, and that the spec is owned.�e thread �rst

examines ci to see if the counter is quiescent, which is the interesting case.

conditional cas 125

If the subsequent cas succeeds in installing an active descriptor inj2 n, that
descriptor is the new live node (in state Upd(n, j,K ,∅))—and the thread,
being responsible for this transition, gains ownership of the descriptor’s token.

�e resulting assertion y ∝● Upd(n, j,K ,∅) is equivalent to

∃i . i ↦ (y ∝ Upd(n, j,K ,∅)) ∗ i ↦ (y ∝● Upd(n, j,K ,∅))

which means that we can use i ↦ y ∝● Upd(n, j,K ,∅) as a frame in an
application of the frame rule to the triple for complete(y, n).�is gives us
the framed postcondition

∃i . i ↦ (y ∝ Done(n, j,K)) ∗ i ↦ (y ∝● Upd(n, j,K ,∅))

which is equivalent to y ∝● Done(n, j,K). Since our thread still owns the
token, we know the state is exactly Done(n, j,K), and in the next step (where
we return the requisite unit value) we trade the token in return for our spec—

which some thread has executed.

7
Related work:
understanding concurrency

“�e whole thing that makes a mathemati-
cian’s life worthwhile is that he gets the grudg-
ing admiration of three or four colleagues.”

—Donald E. Knuth

We have presented a model and logic for a high-level language with con-
currency that enables direct re�nement proofs for scalable concurrent al-
gorithms, via a notion of local protocol that encompasses the fundamental
phenomena of role-playing, cooperation, and nondeterminism. In this
section, we survey the most closely related work along each of these axes.

7.1 high-level language

�ere is an enormous literature on reasoning about programs in high-level

languages, so we can only mention the most relevant precursors to our work.

As far as we are aware, there are no prior proof methods that handle higher-

order languages, shared-state concurrency, and local state.

7.1.1 Representation independence and data abstraction

John Reynolds famously asserted1 that 1 Reynolds (1983), “Types, abstraction and

parametric polymorphism”

Type structure is a syntactic discipline for enforcing levels of abstraction.

and formalized this assertion through an “abstraction” theorem, which was

later renamed to representation independence by John Mitchell.2 �e basic 2Mitchell (1986), “Representation

independence and data abstraction”idea is very simple: a language enforces an abstraction if “benign” changes to

the information hidden behind the abstraction cannot alter the behavior of its

clients. In other words, client behavior is independent of the representation

of the abstraction.

To formalize this idea, Reynolds adopted a relational view of semantics,
which makes it easy to compare programs that di�er only in the implemen-

tation of some abstraction. Representation independence is then a theorem

about a language saying that if two implementations of an abstraction are

appropriately related, the behavior of a program using one implementation is

likewise related to the behavior using the other implementation. In particular,

if the program returns some concrete output, e.g., a natural number, it will
return the same output in both cases.�e formalization was an early instance
of a (denotational) logical relation, and the central mantra of “related inputs

produce related outputs” persists in current work in the area.

127

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://dx.doi.org/10.1145/512644.512669
http://dx.doi.org/10.1145/512644.512669

128 related work: understanding concurrency

In a language with the ability to introduce new abstractions—one with

existential types, say, or with closures over mutable state—representation

independence enables the reasoning technique of data abstraction, of which

our approach to reasoning about concurrent data structures is one example.

However, as we discussed in §3.3 and §3.4, we enable the client to reason not

just in terms of simpler data, but also using a coarser grain of concurrent

interaction.

A key takeaway point here is that representation independence and the

data abstraction principle it enables are properties of high-level languages.

In fact, enforcing abstraction boundaries could be taken as a necessary

condition for being a high-level language. As we discussed in Chapter 3, such
linguistic hiding mechanisms play an important role in real implementations

of concurrent data structures, which motivated our semantic treatment in a

high-level calculus like F µ
cas.

7.1.2 Local state

�e early treatment of linguistic hiding mechanisms focused primarily on

existential types and on languages without mutable state. But of course many

data structures in practice rely on localmutable state, i.e., state that is hidden
behind an abstraction boundary.

7.1.2.1▸ Kripke logical relations

Andrew Pitts pioneered an operational approach to logical relations,3 and 3 Pitts (2002); Pitts (2005)

together with Ian Stark gave a logical relation for reasoning about functions

with hidden state.4 �e language they studied included �rst-class functions 4 Pitts and Stark (1998), “Operational

reasoning for functions with local state”and dynamically allocated references, but the references were limited to

base type only (no “higher-order state”). Pitts and Stark use a Kripke-style
logical relation, i.e., one parameterized by a “possible world” and with an
attendant notion of “future” worlds. In their model (a binary logical relation),

a world is a relation on heaps, giving some invariant relationship between the

heaps of two implementations of an abstraction—and thereby enabling data

abstraction at the heap level. A world can be extended through a relational

form of separating conjunction, i.e., an additional relational invariant can be
added so long as the new invariant governs disjoint pieces of the heaps.�us,

while worlds are �at relations, they are extended in an island-like fashion.

Many extensions of the Pitts-Stark model subsequently appeared. Ahmed

et al. in particular showed how to scale the technique to a higher-order store
and incorporated existential types.5�e same paper also included an explicit 5 Ahmed et al. (2009), “State-dependent

representation independence”notion of island—one in which the heap invariant can evolve over time.6
6 It is folklore that this is equivalent to

adding ghost state and so-called “history”

invariants.

Unfortunately, this island evolution was described in a somewhat complex

way, by giving islands “populations” and “laws.” Follow-up work7 showed
7 Dreyer, Neis, and Birkedal (2010), “�e

impact of higher-order state and control

e�ects on local relational reasoning”

how the evolution of invariants can in fact be understood through simple

http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566

high-level language 129

state-transition systems, which were the impetus for our local protocols in

Chapter 4.8 8�e work also showed how the presence or

absence of various language features can be

understood by the presence or absence of

certain kinds of transitions in the STS.

All of these logical relations provide semantic models through which one

can reason about e.g., contextual equivalence, but reasoning “in the model”
is sometimes too low-level (involving arithmetic on step-indices) or too

unstructured. Plotkin and Abadi (1993) gave a logic in which one can de�ne

and reason about logical relations proof-theoretically.9 Subsequently, Dreyer 9 Plotkin and Abadi (1993), “A logic for

parametric polymorphism”et al. (2009) showed how to build a similar logic in the presence of step
indexingwith proof rules that largely eliminate the need for step arithmetic.10 10�e logic incorporates the “later” modal-

ity �rst studied in Appel et al. (2007).Follow-upwork extended these ideas to a languagewith local state, proposing

a logic called LADR in which one can de�ne and reason about the logical

relation of Ahmed et al. (2009).11�ese logics had a substantial in�uence on 11 Dreyer, Neis, Rossberg, et al. (2010), “A
relational modal logic for higher-order

stateful ADTs”
the logic presented in Chapter 5: we include a later modality and our island

assertions resemble similar assertions in Dreyer, Neis, Rossberg, et al. (2010).
�ere are some important di�erences, however. First, we kept our logic �rst-

order (no quanti�cation over predicates), which prevents us from de�ning
the logical relation inside the logic; instead, we treat the logical relation as

a particular assertion. Second, while Dreyer, Neis, Rossberg, et al. (2010)
supports Hoare-style reasoning, we go further in de�ning our computation

relation (⪯E) in terms of Hoare triples, which signi�cantly streamlines the
logic.

7.1.2.2▸ Simulations with local state

Although our work descends from research on logical relations, we would be

remiss to not also mention the related work in the competing framework of

(bi)simulations. Sumii and Pierce (2005) showed how to adapt simulation-

style reasoning to existential types,12 which Koutavas and Wand (2006) 12 Sumii and Pierce (2005), “A bisimulation

for type abstraction and recursion”extended to an untyped language with general references.13�ese techniques
13 Koutavas and Wand (2006), “Small

bisimulations for reasoning about higher-

order imperative programs”

were later generalized to “environmental bisimulations,” in which a bisimu-

lation between expressions is parameterized by the knowledge of the envi-

ronment.14�e use of the environment parameter in this last generalization 14 Sangiorgi et al. (2007), “Environmental
Bisimulations for Higher-Order

Languages”
o�en resembles the possible worlds technique on the logical relation side. See

Dreyer et al. (2012) for a more detailed comparison.
Simulations, of course, also have a long history in reasoning about concur-

rency.However, as we said above, ourmodel is the �rst to handle higher-order

languages, shared-state concurrency, and local state.We will discuss themost
closely-related simulation technique, RGSim, below.

7.1.3 Shared-state concurrency

Birkedal et al. recently developed the �rst logical-relationsmodel for a higher-
order concurrent language similar to the one we consider here.15 �eir 15 Birkedal et al. (2012), “A concurrent

logical relation”aim was to show the soundness of a sophisticated Lucassen-and-Gi�ord-

style16 type-and-e�ect system, and in particular to prove the soundness of 16 Lucassen and Gi�ord (1988),

“Polymorphic e�ect systems”

http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1047659.1040311
http://dx.doi.org/10.1145/1047659.1040311
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1109/LICS.2007.17
http://dx.doi.org/10.1109/LICS.2007.17
http://dx.doi.org/10.1109/LICS.2007.17
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://dx.doi.org/10.1145/73560.73564

130 related work: understanding concurrency

a Parallelization �eorem for disjoint concurrency expressed by the e�ect

system (when the Bernstein conditions are satis�ed).�e worlds used in the

logical relation capture the all-or-nothing approach to interference implied by

the type-and-e�ect system. As a result, the model has rather limited support

for reasoning about �ne-grained data structures: it can only prove correctness

of algorithms that can withstand arbitrary interference.

7.2 direct refinement proofs

7.2.1 Linearizability

Herlihy andWing’s seminal notion of linearizability17 has long been the gold 17 Herlihy and Wing (1990),

“Linearizability: a correctness condition for

concurrent objects”
standard of correctness for scalable concurrency, but as Filipović et al. ar-
gue,18 what clients really want is a contextual re�nement property. Filipović 18 Filipović et al. (2010), “Abstraction for

Concurrent Objects”et al. go on to show that, under certain (strong) assumptions about a pro-
gramming language, linearizability implies contextual re�nement for that

language.19 19 Under certain additional conditions, lin-

earizability is also complete for contextual
re�nement.

More recently, Gotsman and Yang generalized both linearizability and

this result (the so-called abstraction theorem) to include potential ownership
transfer of memory between data structures and their clients.20 While it is 20 Gotsman and Yang (2012),

“Linearizability with Ownership Transfer”possible to compose this abstraction theorem with a proof of linearizability

to prove re�nement, there are several advantages to our approach of proving

re�nement directly:

● First and foremost, it is a simpler approach: there is no need to take
a detour through linearizability, or perform the (nontrivial!) proof that

linearizability implies re�nement. As it turns out, linearizability is neither

the right proof technique (one would rather use something like protocols

and thread-local reasoning) nor the right speci�cation (clients really want

re�nement).

● We can treat re�nement as an assertion in our logic, which means that we
can compose proofs of re�nement when reasoning about compound data
structures, and do so while working within a single logic.

● Working with re�nement makes it easier to leverage recent work for
reasoning about hidden state, e.g., Dreyer et al.’s STS-based logical rela-
tions Dreyer, Neis, and Birkedal 2010.

● Re�nement seamlessly scales to the higher-order case, which would oth-
erwise require extending the de�nition of linearizability to the higher-

order case.We believe that this scalability is crucial for faithfully reasoning

about algorithms that use higher-order features, e.g., Herlihy’s universal
construction21 or the recently proposed �at combining construction.22 21 Herlihy and Shavit (2008), “�e Art of

Multiprocessor Programming”

22 Hendler et al. (2010), “Flat combining
and the synchronization-parallelism

tradeo�”

● Finally, it should in principle allow us to combine reasoning about �ne-
grained concurrency with other kinds of relational reasoning, e.g., rela-
tional parametricity.23 23 Reynolds (1983), “Types, abstraction and

parametric polymorphism”

http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

local protocols 131

7.2.2 Denotational techniques

Turon and Wand developed the �rst logic for reasoning directly about con-

textual re�nement for scalable concurrent data structures.24 �eir model is 24 Turon and Wand (2011), “A separation

logic for re�ning concurrent objects”based on ideas from rely-guarantee and separation logic and was developed

for a simple �rst-order language, using an extension of Brookes’s trace-

based denotational semantics.25 While it is capable of proving re�nement 25 Brookes (1996), “Full Abstraction for a

Shared-Variable Parallel Language”for simple data structures like Treiber’s stack, it does not easily scale to

more sophisticated algorithms with hard-to-pinpoint linearization points

(e.g., those involving cooperation or temporally-dependent linearization).

7.2.3 RGSim

More recently, Liang et al. proposed RGSim,26 an inter-language simulation 26 Liang et al. (2012), “A rely-guarantee-
based simulation for verifying concurrent

program transformations”
relation for verifying program transformations in a concurrent setting.�e

simulation relation is designed for compositional, concurrent reasoning: it

is parameterized by rely and guarantee relations characterizing potential

interference. Liang et al. use their method to prove that some simple, but
realistic, data structures are simulated by their spec. While the original paper

on RGSim did not relate simulation to re�nement or linearizability, new

(currently unpublished) work has done so.27 We discuss this latter work, 27 Liang and Feng (2013), “Modular

Veri�cation of Linearizability with Non-

Fixed Linearization Points”
which also incorporates reasoning about cooperation, in §7.5.

7.3 local protocols

7.3.1 �e hindsight approach

O’Hearn et al.’s work on Linearizability with hindsight28 clearly articulates 28 O’Hearn et al. (2010), “Verifying
linearizability with hindsight”the need for local protocols in reasoning about scalable concurrency, and

demonstrates how a certain mixture of local and global constraints leads to

insightful proofs about lock-free traversals. At the heart of the work is the re-

markableHindsight Lemma, which justi�es conclusions about reachability in
the past based on information in the present. Since O’Hearn et al. are focused
on providing proofs for a particular class of algorithms, they do not formalize

a general notion of protocol, but instead focus on a collection of invariants

speci�c to the traversals they study. We have focused, in contrast, on giving

a simple but general account of local protocols that su�ces for temporally-
local reasoning about a range of quite di�erent data structures. It remains to
be seen, however, whether our techniques yield a satisfying temporally-local

correctness proof for the kinds of traversals O’Hearn et al. study, or whether
(as O’Hearn et al. argue) these traversals are best understood non-locally.

http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1145/1926385.1926415
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/1835698.1835722
http://dx.doi.org/10.1145/1835698.1835722

132 related work: understanding concurrency

7.3.2 Concurrent abstract predicates

�e notion of protocol most closely related to ours is Dinsdale-Young et al.’s
Concurrent abstract predicates (CAP).29 CAP extends separation logic with 29 Dinsdale-Young et al. (2010),

“Concurrent Abstract Predicates”shared, hidden regions similar to our islands.�ese regions are governed by

a set of abstract predicates,30 which can be used to make localized assertions 30 First introduced in Parkinson and Bier-

man (2005).about the state of the region. In addition, CAP provides a notion of named

actions which characterize the possible changes to the region. Crucially,
actions are treated as a kind of resource which can be gained, lost, or split
up (in a fractional permissions style), and executing an action can result in

a change to the available actions. It is incumbent upon users of the logic to

show that their abstract predicates and actions cohere, by showing that every

abstract predicate is “self-stable” (remains true a�er any available action is

executed).

While CAP’s notion of protocol is very expressive, it is also somewhat

“low-level” compared to our STS-based protocols, which would require a

somewhat unwieldy encoding to express in CAP. In addition, our protocols

make a clear separation between knowledge bounding the state of the protocol
(treated as a copyable assertion) and rights to change the state (treated as a
linear resource: tokens), which are mixed in CAP. Another major di�erence

is that CAP exposes the internal protocol of a data structure as part of the

speci�cation seen by a client—which means that the spec for a given data

structure o�en depends on how the client is envisioned to use it. Additional

specs (and additional correctness proofs) may be necessary for other clients.

By contrast, we take a coarse-grained data structure as an all-purpose spec; if

clients then want to use that data structure according to some sophisticated

internal protocol, they are free to do so. Finally, our protocols support

speculation and spec code as a resource, neither of which are supported by

CAP.

Very recent work has sought to overcome some of the shortcomings of

CAP by, in part, moving to a higher-order logic.31 �e key idea is to avoid 31 Svendsen et al. (2013), “Modular
Reasoning about Separation of Concurrent

Data Structures”
overspecialization in speci�cations by quantifying over the pre- and post-
conditions a client might want to use.�rough a clever use of ghost state and

fractional permissions, these client-side assertions are linked to the abstract

state of the data structure being veri�ed, and can thus track atomic changes

to that data structure.�e downside is that the model theory supporting this

higher-order extension is quite tricky, and at present requires restrictions on

instantiation to rule out certain kinds of self-reference. In addition, because

the approach is not known to be sound for re�nement, clients can make use

of HOCAP speci�cations only if they also work within the HOCAP logic.

With re�nement, by contrast, the speci�cation is given in a logic-independent
way, i.e., solely in terms of the operational semantics of a language, which
means that clients are free to use any logic of their choice when reasoning

about their code. Finally, it is as yet unclear whether the HOCAP approach

http://www.springerlink.com/index/184241T463712776.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf

local protocols 133

can scale to handle cooperation and changes to the branching structure of

nondeterminism.

7.3.3 Views and other �ctions of separation

In the last year, there has been an explosion of interest in a new, highly

abstract way to express the knowledge and rights of program components:

through a (partial, commutative) monoid. �e idea is that each element

of the monoid captures a “piece” of abstract knowledge that a component

(say, a thread) might have—and this piece of knowledge constrains changes

that other components can make, since the knowledge is not allowed to be
violated.32 Formally, this is expressed by giving a concrete interpretation ⌊−⌋ 32 Jensen and Birkedal (2012), “Fictional

Separation Logic”to the “global supply” of monoid elements (the product of each component’s

knowledge), and then insisting that all actions obey an abstract frame condi-

tion. Namely: if a command C claims to go from local knowledge m to m′, it

must satisfy

∀mF .JCK(⌊m ⋅mF⌋) ⊆ ⌊m′ ⋅mF⌋

�at is, the new global state of themonoidm′ ⋅mF must still contain the frame

mF from the original global state m ⋅mF . A command cannot invalidate the

abstract knowledge of its environment.

�e result is �ctional separation logic:33 using monoid elements as asser- 33 Jensen and Birkedal (2012), “Fictional

Separation Logic”tions, we get an abstract notion of separation (via the monoid product) that

may be �ctional in that it does not coincide with physical separation. Put
di�erently, the map ⌊−⌋ that gives a physical interpretation to the global
abstract state need not be a homomorphism, so in general

⌊m ⋅m′⌋ ≠ ⌊m⌋ ∗ ⌊m′⌋

As a simple example, amonotonic counter can be represented using amonoid

of natural numberswithmax as the product; if the counter is at location ℓ then
the interpretation is just

⌊n⌋ = ℓ ↦ n

Notice that

⌊n ⋅m⌋ = ℓ ↦ max(n,m) ≠ ℓ ↦ n ∗ ℓ ↦ m = ⌊n⌋ ∗ ⌊m⌋

By asserting the monoid element n, a component claims that the value of the
counter is at least n; a�er all, the other components will contain some addi-
tional knowledge, say nF , but n ⋅ nF = max(n, nF) ≥ n. Similarly, the frame
condition will ensure that the physical value of the counter monotonically

increases.

While �ctional separation logic began in a sequential setting, it has already

been adapted to concurrent settings, both to give a compositional account of

ghost state34 and to provide an abstract framework (“Views”) for concurrent 34 Ley-Wild and Nanevski (2013),

“Subjective Auxiliary State for Coarse-

Grained Concurrency”
program logics and type systems, with a single soundness proof that can be

instantiated with arbitrary choices of monoids.35 �e Views framework has 35 Dinsdale-Young et al. (2013), “Views:
Compositional Reasoning for Concurrent

Programs”

http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104

134 related work: understanding concurrency

even been instantiated with CAP, which means that CAP’s notion of protocol

can be understood as a particular choice of monoid.

In joint work with Krishnaswami, Dreyer and Garg, we showed that the

central ideas of �ctional separation logic can be applied in the setting of

a logical relation for a sequential language, where we use linguistic hiding

mechanisms to introduce newmonoids.36�e logical relation uses a possible- 36 Krishnaswami et al. (2012), “Super�cially
substructural types”worlds model in which each island consists of a di�erent monoid equipped

with an interpretation (like ⌊−⌋ above). We thus expect that we could re-
do the work of Chapter 5 using monoids instead of STSs, by encoding our

token-based STSs as monoids. It is an open question whether the converse

is true—i.e., whether STSs with tokens can express arbitrary monoids with
frame conditions. In any case, for all of the algorithms we have examined,

expressing the relevant protocol as an STS with tokens is invariably simpler

and more intuitive than doing so with monoids, which is what led us to stick

with our STS-based worlds. Other aspects of our model—direct re�nement

proofs, high-level languages, cooperation and speculation—have not yet been

incorporated into the Views approach.

7.4 role-playing

�e classic treatment of role-playing in shared-state concurrency is Jones’s

rely-guarantee reasoning,37 in which threads guarantee to make only certain 37 Jones (1983), “Tentative steps toward

a development method for interfering

programs”
updates, so long as they can rely on their environment to make only certain
(possibly di�erent) updates. More recent work has combined rely-guarantee

and separation logic (SAGL and RGSep38), in some cases even supporting 38 Feng et al. (2007);Vafeiadis andParkinson
(2007)a frame rule over the rely and guarantee constraints themselves (LRG39).
39 Feng (2009), “Local rely-guarantee

reasoning”�is line of work culminated in Dodds et al.’s deny-guarantee reasoning40—
40 Dodds et al. (2009), “Deny-guarantee
reasoning”

the precursor to CAP—which was designed to facilitate a more dynamic

form of rely-guarantee to account for non-well-bracketed thread lifetimes.

In the deny-guarantee framework, actions are classi�ed into those that both

a thread and its environment can perform, those that neither can perform,

and those that only one or the other can perform. �e classi�cation of an

action is manifested in terms of two-dimensional fractional permissions (the

dimensions being “deny” and “guarantee”), which can be split and combined

dynamically. Our STSs express dynamic evolution of roles in an arguably

more direct and visual way, through tokens.

7.5 cooperation

7.5.1 RGSep

Vafeiadis’s thesis41 set a high-water mark in veri�cation of the most sophis- 41 Vafeiadis (2008), “Modular �ne-grained

concurrency veri�cation”ticated concurrent data structures (such as CCAS). Building on his RGSep

logic, Vafeiadis established an informal methodology for proving linearizabil-

http://dx.doi.org/10.1145/2364527.2364536
http://dx.doi.org/10.1145/2364527.2364536
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://books.google.com/books?vid=ISSN0164-0925
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1145/1360443.1360452
http://dx.doi.org/10.1145/1360443.1360452

cooperation 135

ity by employing several kinds of ghost state (including prophecy variables

and “one-shot” resources, the latter representing linearization points). By

cleverly storing and communicating this ghost state to another thread, one

can perform thread-local veri�cation and yet account for cooperation: the

other thread “�res” the single shot of the one-shot ghost resource. While

this account of cooperation seems intuitively reasonable, it lacks any formal

metatheory justifying its use in linearizability or re�nement proofs. Our

computational resources generalize Vafeiadis’s “one-shot” ghost state, since

they can (and do) run computations for an arbitrary number of steps, and

we have justi�ed their use in re�nement proofs—showing, in fact, that the

technique of logical relations can be expressed in a “unary” (Hoare logic) style

by using these computational resources.

7.5.2 RGSim

Concurrently with our work, Liang and Feng have extended their RGSim

framework to account for cooperation.42 �e new simulation method is 42 Liang and Feng (2013), “Modular

Veri�cation of Linearizability with Non-

Fixed Linearization Points”
parameterized by a “pending thread inference map” Θ, which plays a role

somewhat akin to our worlds. For us, worlds impose a relation between the

current protocol state, the current implementation heap, and the current,

speculative spec resources. By contrast, Θ imposes a relation between the

current implementation heap and the current spec thread pool. To recover

something like our protocols, one instead introduces ghost state into the
implementation heap, much as Vafeiadis does; as a result, Θ can be used

to do thread-local reasoning about cooperation. However, there are several

important di�erences from our approach:

● �ere is no notion of composition on thread inference maps, which take
the perspective of the global implementation heap and global pool of spec

threads.�us thread inference maps do not work as resources that can be

owned, split up, transferred and recombined.

● �e assertions that are used in pre- and post-conditions cannot talk

directly about the thread inference map; they must control it indirectly,

via ghost state.

● �e simulation approach does not support speculation or high-level lan-

guage features like higher-order functions or polymorphism.

● Finally, it requires encoding protocols via traditional ghost state and
rely/guarantee, rather than through standalone, visual protocols.

7.5.3 Reduction techniques

Groves and Colvin propose43 a radically di�erent approach for dealing with 43 Groves and Colvin (2009), “Trace-based

derivation of a scalable lock-free stack

algorithm”
cooperation, based on Lipton’s method44 of reduction. Reduction, in a sense,

44 Lipton (1975), “Reduction: a method of

proving properties of parallel programs”

“undoes” the e�ects of concurrency by showing that interleaved actions

http://dx.doi.org/10.1007/s00165-008-0092-5
http://dx.doi.org/10.1007/s00165-008-0092-5
http://dx.doi.org/10.1007/s00165-008-0092-5

136 related work: understanding concurrency

commute with one another: if a thread performs action a and then b and
a is a “right-mover” (a; c ⊑ c; a for all environment actions c) then we can
instead imagine the thread executes ⟨a; b⟩, i.e., executes a and b together in
one atomic step. Groves and Colvin are able to derive an elimination stack
from its spec by a series of transformations including atomicity re�nement

and data re�nement. �e key to handling cooperation is working not just

with individual actions, but with traces, so that a given re�nement step can
map a trace with a single action by one thread (say, accepting an o�er to push)

to a trace with two contiguous steps (say, a push and a pop) attributed to two

di�erent threads. Elmas et al. also developed a similar method45 for proving 45 Elmas et al. (2010), “Simplifying
Linearizability Proofs with Reduction

and Abstraction”
linearizability using reduction and abstraction (the converse to re�nement)
and while they do not study cooperation explicitly, it is likely that their

method could be adapted to cope with it too, if it was likewise reformulated

using traces.

Groves and Colvin’s approach is somewhat like reasoning directly about

linearizability, since it is focused on proving the reorderability of steps within

a trace with the aim of producing a sequential interleaving in the end.�e

downside is that the approach o�ers none of the kinds of locality we have

emphasized:

● It lacks temporal locality because it is based on traces recording a complete
method execution interleaved with arbitrary action sequences performed

by other threads.

● It lacks thread locality because interleaved actions are drawn directly from
the code of other executing threads, rather than an abstraction of their
possible interference (say, a rely constraint or a protocol). �is point is

somewhat mitigated by the use of abstraction, especially for Elmas et al.’s
calculus of atomic actions,46 which allows code to be abstracted while 46 Elmas et al. (2009), “A calculus of atomic

actions”delaying the proof that the abstraction is valid. It is unclear, however, how

these abstraction techniques compare to rely/guarantee reasoning or local

protocols.

● It lacks spatial locality in that the commutativity checks require consider-
ing “interference” from environment code even when that code is access-

ing a completely di�erent part of the heap. Granted, such circumstances

make commutativity easy to show, but with a spacially local account of

interference the checks are unnecessary in the �rst place.

Finally, in a reduction-based proof there is rarely an articulation of the

protocol governing shared state.We believe that such an artifact is valuable in

its own right as a way of understanding the basic mechanics of an algorithm

separately from its implementation.

http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1145/1480881.1480885

nondeterminism 137

7.6 nondeterminism

7.6.1 �e linear time/branching time spectrum

Reasoning about time is a fraught issue, because in the presence of nonde-

terminism there is not necessarily a �xed notion of “the future.” �ere is,

in fact, a whole spectrum of possible ways to understand nondeterminism
and temporal reasoning, elegantly summarized in Glabbeek (1990).�e two

extreme points in the spectrum are linear time and branching time:

● In the linear-time view, all nondeterminism is resolved in one shot, at

the beginning of program execution—so a�er a program begins running,

there is a coherent notion of “the future.”�is view of time works well with
a trace semantics: by taking the meaning of a program to be a set of traces,

one commits to the view that all nondeterminism is resolved through one
choice, namely, the choice of trace. From the perspective of a particular

point in a particular trace, “the future” is just the remaining su�x of the

trace.

● In the branching-time view, one distinguishes between a program

that makes a nondeterministic choice now versus one that makes the
choice later.�ese distinctions o�en go hand-in-hand with a distinction
between internal nondeterminism (over which the environment has no
control) or external nondeterminism (usually called external choice) in
which the environment has some say.�us, for example, the following two

“programs” are distinguished according to a branching-time model:

⋅

⋅

⋅ ⋅

a

b c

⋅

⋅ ⋅

⋅ ⋅

a a

b c

�e program on the le� �rst interacts with the environment along channel

a, and is then willing communicate along either b or c—whichever the
environment chooses.47 On the other hand, the program on the right 47 In terms of reagents or CML events, this is

just a choice between communication along

two channels.
communicates along a, but also makes an internal choice about whether
to next attempt communication on b or on c. �ese two programs have
the same set of traces, at least in a naive trace semantics. Semantically, the
branching-time view is usually associated with (bi)simulation rather than

traces; simulation requires that choices which are available at any point in

an implementation’s execution are also still available in a corresponding

spec execution.

�ere are strong arguments that the branching-time view is too �ne-grained:

in many settings, it is not possible to write a program context which can

138 related work: understanding concurrency

observe such di�erences.48�is is typically true when, for example, de�ning 48 See Bloom et al. (1995) andNain andVardi
(2007).contextual equivalence (or re�nement) in terms of observing the �nal value

produced, as we do.�is is the essential reason why speculation—which de-

stroys sensitivity to branching structure—is valid in ourmodel: the de�nition

of contextual re�nement for F µ
cas is similarly branching-insensitive, in part

because F µ
cas has no notion of external choice.

7.6.2 Forward, backward, and hybrid simulation

Forward simulation (the usual kind of simulation) is well-known to be

sensitive to branching, which in many cases means it distinguishes too many

programs. On the other hand, forward simulation is appealingly local, since
it considers only one step of a program at a time (as opposed to e.g., trace
semantics). To retain temporally-local reasoning but permit di�erences in

nondeterminism (as in the late/early choice example), it su�ces to use a

combination of forward and backward simulation49 or, equivalently, history 49 Lynch and Vaandrager (1995), “Forward

and Backward Simulations: Part I: Untimed

Systems”
and prophecy variables.50 Lynch and Vaandrager showed that there are also

50 Abadi and Lamport (1991), “�e

existence of re�nement mappings”

hybrids of forward and backward simulations, which relate a single state in
one system to a set of states in the other—much like our speculation. In fact,
although it was not stated explicitly, Herlihy and Wing’s original paper on

linearizability proposed using something like hybrid simulation to deal with

indeterminite linearization points.51 51 Herlihy and Wing (1990),

“Linearizability: a correctness condition for

concurrent objects”
Our technique goes further, though, in combining this temporally-local

form of reasoning with thread-local reasoning: hybrid simulations work at
the level of complete systems, whereas our threadpool simulations can be

composed into larger threadpool simulations. Composability allows us to

combine thread-private uses of speculationwith shared uses of speculation in

protocols, which is critical for proving soundness with respect to contextual

re�nement.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972

Part III

EXPRESSING SCALABLE CONCURRENCY

8
Join patterns

“Programming is the art of writing essays
in crystal clear prose and making them exe-
cutable.”

—Per Brinch Hansen

▸ Synopsis �is chapter introduces join patterns and Russo (2007)’s joins

API for C♯. It shows how join patterns can solve a wide range of synchroniza-

tion problems, including many of the problems solved by JUC’s primitives.1

1 Our versions lack some features of the

real library, such as timeouts and cancella-

tion, but these should be straightforward to

add (§9.6).

�e full API is given in Appendix D.

8.1 overview

�e subtlety of scalable concurrent algorithms should, by now, be clear. In

practice design and implementation is generally le� up to the experts, who

build extensive libraries of scalable primitives for application programmers

to use. Inevitably, though, programmers are faced with new problems not

directly addressed by the primitives.�e primitives must then be composed

into a solution—and doing so correctly and scalably can be as di�cult as

designing a new primitive.

Take the classic Dining Philosophers problem,2 in which philosophers 2 Dijkstra (1971), “Hierarchical ordering of

sequential processes”sitting around a table must coordinate their use of the chopstick sitting

between each one; such competition over limited resources appears in many

guises in real systems.�e problem has been thoroughly studied, and there

are solutions using primitives like semaphores that perform reasonably well.

�ere are also many natural “solutions” that do not perform well—or do not

perform at all. Naive solutions may su�er from deadlock, if for example each
philosopher picks up the chopstick to their le�, and then �nds the one to

their right taken. Correct solutions built on top of library primitives may still

scale poorly with the number of philosophers (threads). For example, using a

single global lock to coordinate philosophers is correct, but will force non-

adjacent philosophers to take turns through the lock, adding unnecessary

sequentialization. Avoiding these pitfalls takes experience and care.

In this chapter, we demonstrate that Fournet and Gonthier’s join calculus3 3 Fournet and Gonthier (1996), “�e

re�exive CHAM and the join-calculus”can provide the basis for a declarative and scalable synchronization library.

By declarative, we mean that the programmer needs only to write down the
constraints for a synchronization problem,4 and the library will automatically 4We will not attempt for formalize the pre-

cise class of “synchronizations” that can be

solved using join patterns, but the exam-

ples in this chapter give some indication

of the range of sharing (§2.2.2) and tim-

ing (§2.2.3) problems that can be declara-

tively addressed.

derive a correct solution. By scalable, we mean that the derived solutions
deliver robust, competitive performance both as the number of processors or

cores increase, and as the complexity of the synchronization problem grows.

Figure 8.1 shows a solution toDiningPhilosophers using our library, which

is a drop-in replacement for Russo’s C♯ Joins library.5�e library is based on 5 Russo (2007), “�e Joins Concurrency

Library”

141

http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1007/978-3-540-69611-7_17

142 join patterns

var j = Join.Create();

Synchronous.Channel[] hungry; j.Init(out hungry, n);

Asynchronous.Channel[] chopstick; j.Init(out chopstick, n);

for (int i = 0; i < n; i++) {

var left = chopstick[i];

var right = chopstick[(i+1) % n];

// define one join pattern per philosopher

j.When(hungry[i]).And(left).And(right).Do(() ⇒ {

eat();

left(); right(); // return the chopsticks

});

}

Figure 8.1:Dining Philosophers,
declaratively

the message-passing primitives of the join calculus. For Dining Philosophers,

we use two arrays of channels (hungry and chopstick) to carry value-less

messages; being empty, these messages represent unadorned events. �e

declarative aspect of this example is the join pattern starting with j.When.�e
declaration says that when events are available on the channels hungry[i],

left, and right, theymay be simultaneously and atomically consumed.When
the pattern �res, the philosopher, having obtained exclusive access to two

chopsticks, eats and then returns the chopsticks. In neither the join pattern

nor its body is the order of the chopsticks important.�e remaining details

of Russo’s API are explained in §8.2.

Most implementations of join patterns, including Russo’s, use coarse-

grained locks to achieve atomicity, resulting in poor scalability (as we show

experimentally in §9.8). Our contribution is a new implementation of the join

calculus that uses ideas from �ne-grained concurrency to achieve scalability

on par with custom-built synchronization primitives. We present that imple-

mentation in Chapter 9.

�is brief chapter provides a review of the join calculus, and of Russo’s

library API in particular. We recall how join patterns can be used to solve

a wide range of coordination problems (§8.2), as is well-established in the

literature.6�e examples provide basic implementations of some of the JUC 6 Fournet and Gonthier 1996; Fournet and

Gonthier 2002; Benton et al. 2004primitives mentioned in the introduction (Chapter 1). In each case, the

Joins-based solution is as straightforward to write as the one for dining

philosophers.

the join calculus and russo’s api 143

8.2 the join calculus and russo’s api

�e join calculus takes a message-passing approach to concurrency where

messages are sent over channels and channels are themselves �rst-class values

that can be sent as messages. What makes the calculus interesting is the way

messages are received. Programs do not actively request to receive messages

from a channel. Instead, they employ join patterns (also called chords7) to 7 Benton et al. (2004), “Modern
concurrency abstractions for C#”declaratively specify reactions to message arrivals.�e power of join patterns

lies in their ability to respond atomically to messages arriving simultaneously
on several di�erent channels.

Suppose, for example, that we have two channels Put and Get, used by

producers and consumers of data.When a producer and a consumermessage

are available, we would like to receive both simultaneously, and transfer the

produced value to the consumer. Using Russo’s API, we write:

class Buffer<T> {

public readonly Asynchronous.Channel<T> Put; // T = message type

public readonly Synchronous<T>.Channel Get; // T = reply type

public Buffer() {

Join j = Join.Create(); // allocate a Join object

j.Init(out Put); // bind its channels

j.Init(out Get);

j.When(Get).And(Put).Do // register chord

(t ⇒ { return t; });

}

}

�is simple example introduces several aspects of the API.

First, there are multiple kinds of channels: Put is an asynchronous channel

that carries messages of type T, while Get is a synchronous channel that

yields replies of type T but takes no argument. A sender never blocks on an

asynchronous channel, even if the message cannot immediately be received

through a join pattern. For the Buffer class, that means that a single producer

may send many Put messages, even if none of them are immediately con-

sumed. Because Get is a synchronous channel, on the other hand, senders will

block until or unless a pattern involving it is enabled. Synchronous channels

also return a reply to message senders; the reply is given as the return value

of join patterns.

Join patterns are declared using the When method.�e single join pattern

in Buffer stipulates that when one Get request and one Putmessage are avail-

able, they should both be consumed. A�er specifying the involved channels

through When and And, the Do method is used to give the body of the join
pattern.�e body is a piece of code to be executed whenever the pattern is

matched and relevant messages consumed. It is given as a delegate8 taking as 8 C♯’s �rst-class functions

arguments the contents of the messages. In Buffer, the two channels Get and

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

144 join patterns

Put yield only one argument, because Get messages take no argument.�e

body of the pattern simply returns the argument t (from Put), which then

becomes the reply to the Get message. Altogether, each time the pattern is

matched, one Get and one Put message are consumed, and the argument is

transferred from Put to the sender of Get as a reply.

Channels are represented as delegates, so that messages are sent by simply

invoking a channel as a function. From a client’s point of view, Put and Get

look just likemethods of Buffer. If buf is an an instance of Buffer, a producer

thread can post a value t by calling buf.Put(t), and a consumer thread can

request a value by calling buf.Get().

Finally, each channel must be associated with an instance of the Join

class.9 Such instances are created using the static factorymethod Join.Create, 9�is requirement retains compatibility

with Russo’s original Joins library; we also

use it for the stack allocation optimization

described in §9.6.

which optionally takes themaximumnumber of required channels. Channels

are bound using the Init method of the Join class, which initializes them

using an out-parameter. �ese details are not important for the overall

design, and are elided from subsequent examples.�e full API—including

the determination of types for join pattern bodies—is given in Appendix D.

8.3 solving synchronization problems with joins

As we have seen, when a single pattern mentions several channels, it forces

synchronization:

Asynchronous.Channel<A> Fst;

Asynchronous.Channel Snd;

Synchronous<Pair<A,B>>.Channel Both;

// create j and init channels (elided)

j.When(Both).And(Fst).And(Snd).Do((a,b) ⇒ new Pair<A,B>(a,b));

�e above pattern will consume messages Fst(a), Snd(b) and Both() atomi-

cally, when all three are available.Only the �rst twomessages carry arguments,

so the body of the pattern takes two arguments. Its return value, a pair,

becomes the return value of the call to Both().

On the other hand, several patterns may mention the same channel,

expressing choice:

Asynchronous.Channel<A> Fst;

Asynchronous.Channel Snd;

Synchronous<Sum<A,B>>.Channel Either;

// create j and init channels (elided)

j.When(Either).And(Fst).Do(a ⇒ new Left<A,B>(a));

j.When(Either).And(Snd).Do(b ⇒ new Right<A,B>(b));

Each pattern can ful�ll a request on Either(), by consuming amessage Fst(a)

or a message Snd(b), and wrapping the value in a variant of a disjoint sum.

Using what we have seen, we can build a simple (non-recursive) Lock:

solving synchronization problems with joins 145

class Lock {

public readonly Synchronous.Channel Acquire;

public readonly Asynchronous.Channel Release;

public Lock() {

// create j and init channels (elided)

j.When(Acquire).And(Release).Do(() ⇒ { });

Release(); // initially free

}

}

As in the dining philosophers example, we use void-argument, void-returning

channels as signals.�e Release messages are tokens that indicate that the
lock is free to be acquired; it is initially free. Clients must follow the protocol

of calling Acquire() followed by Release() to obtain and relinquish the lock.

Protocol violations will not be detected by this simple implementation. How-

ever, when clients follow the protocol, the code will maintain the invariant

that at most one Release() token is pending on the queues and thus at most

one client can acquire the lock.

With a slight generalization, we obtain a semaphore:10 10 Dijkstra (1965), “EWD123: Cooperating

Sequential Processes”

class Semaphore {

public readonly Synchronous.Channel Acquire;

public readonly Asynchronous.Channel Release;

public Semaphore(int n) {

// create j and init channels (elided)

j.When(Acquire).And(Release).Do(() ⇒ { });

for (; n > 0; n--) Release(); // initially n free

}

}

A semaphore allows at most n clients to Acquire the resource and proceed;

further acquisitions must wait until another client calls Release(). We ar-

range this by priming the basic Lock implementation with n initial Release()
tokens.

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

146 join patterns

We can also generalize Buffer to a synchronous channel that exchanges

data between threads:

class Exchanger<A, B> {

readonly Synchronous<Pair<A, B>>.Channel<A> left;

readonly Synchronous<Pair<A, B>>.Channel right;

public B Left(A a) { return left(a).Snd; }

public A Right(B b) { return right(b).Fst; }

public Exchanger() {

// create j and init channels (elided)

j.When(left).And(right).Do((a,b) ⇒ new Pair<A,B>(a,b));

}

}

Dropping message values, we can also implement an n-way barrier that
causes n threads to wait until all have arrived:

class SymmetricBarrier {

public readonly Synchronous.Channel Arrive;

public SymmetricBarrier(int n) {

// create j and init channels (elided)

var pat = j.When(Arrive);

for (int i = 1; i < n; i++) pat = pat.And(Arrive);

pat.Do(() ⇒ { });

}

}

�is example is unusual in that its sole join patternmentions a single channel

n times: the pattern is nonlinear.�is repetition means that the pattern will
not be enabled until the requisite n threads have arrived at the barrier, and
our use of a single channel means that the threads need not distinguish them-

selves by invoking distinct channels (hence “symmetric”). On the other hand,

if the coordination problem did call for separating threads into groups,11 it is 11 e.g., “gender” is useful in a parallel ge-
netic algorithm (William N. Scherer, III et
al. 2005)

easy to do so. We can construct a barrier requiring n threads of one kind and
m threads of another, simply by using two channels.
We can also implement a tree-structured variant of an asymmetric barrier,

which breaks a single potentially large n-way coordination problem into
O(n) two-way problems. Such tree-structured barriers (or more generally,
combiners) have been studied in the literature;12 the point here is just that 12 See Herlihy and Shavit 2008 for a survey

adding tree-structured coordination is straightforward using join patterns.

As we show in §9.8, the tree-structured variant performs substantially better

than the �at barrier, although both variants easily outperform the .NET

Barrier class (a standard sense-reversing barrier).

solving synchronization problems with joins 147

class TreeBarrier {

public readonly Synchronous.Channel[] Arrive;

private readonly Join j; // create j, init chans ...

public TreeBarrier(int n) {Wire(0, n-1, () ⇒ {});}

private void Wire(int low, int high, Action Done) {

if (low == high) {

j.When(Arrive[low]).Do(Done);

} else if (low + 1 == high) {

j.When(Arrive[low]).And(Arrive[high]).Do(Done);

else { // low + 1 < high

Synchronous.Channel Left, Right; // init chans

j.When(Left).And(Right).Do(Done);

int mid = (low + high) / 2;

Wire(low, mid, () ⇒ Left());

Wire(mid + 1, high, () ⇒ Right());

}

}

}

Finally, we can implement a simple reader-writer lock, using private

asynchronous channels (idle and shared) to track the internal state of a

synchronization primitive:13 13 Benton et al. (2004), “Modern
concurrency abstractions for C#”

class ReaderWriterLock {

private readonly Asynchronous.Channel idle;

private readonly Asynchronous.Channel<int> shared;

public readonly Synchronous.Channel AcqR, AcqW,

RelR, RelW;

public ReaderWriterLock() {

// create j and init channels (elided)

j.When(AcqR).And(idle).Do(() ⇒ shared(1));

j.When(AcqR).And(shared).Do(n ⇒ shared(n+1));

j.When(RelR).And(shared).Do(n ⇒ {

if (n == 1) idle(); else shared(n-1);

});

j.When(AcqW).And(idle).Do(() ⇒ { });

j.When(RelW).Do(() ⇒ idle());

idle(); // initially free

}

}

While we have focused on the simplest synchronization primitives as a

way of illustrating Joins, join patterns can be used to declaratively implement

more complex concurrency patterns, from Larus and Parks-style cohort-
scheduling,14 to Erlang-style agents or active objects,15 to stencil computations 14 Benton et al. 2004

15 Benton et al. 2004

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

148 join patterns

with systolic synchronization,16 as well as classic synchronization puzzles.17 16 Russo 2008
17 Benton 2003

9
Implementing join patterns

“While formerly it had been the task of the pro-
grams to instruct our machines, it had now
become the task of the machines to execute
our programs.”

—Edsger W. Dijkstra, “EWD952: Science

�ction and science reality in computing”

▸ Synopsis �is chapter walks through the implementation of scalable join

patterns, including excerpts of the core C♯ library code (§9.3 and §9.4) and

optimizations (§9.5). It validates our scalability claims experimentally on

seven di�erent coordination problems (§9.8). For each coordination problem

we evaluate a joins-based implementation running in both Russo’s lock-based

library and our new scalable library, and compare these results to the perfor-

mance of direct, custom-built solutions. In all cases, the new library scales

signi�cantly better than Russo’s, and competitively with—sometimes better

than—the custom-built solutions, though it su�ers from higher constant-

time overheads in some cases.

9.1 overview

In the previous chapter we saw, through a range of examples, how the join

calculus allows programmers to solve synchronization problems by merely

writing down the relevant constraints. Now we turn to our contribution: an

implementation that solves these constraints in a scalable way.

9.1.1 �e problem

�e chief challenge in implementing the join calculus is providing atomicity

when �ring patterns:messagesmust be noticed andwithdrawn frommultiple

collections simultaneously. A simple way to ensure atomicity, of course, is to

use a lock (§2.4), and this is what most implementations do (see Chapter 12).1 1 Some implementations use STM (Shavit

and Touitou 1995), which we also discuss in

Chapter 12.
For example, Russo’s original library associates a single lock with each Join

object. Each sendermust acquire the lock and, while holding it, enqueue their

message and determine whether any patterns are thereby enabled.

But Russo’s library goes further, putting signi�cant e�ort into shortening

the critical section: it uses bitmasks summarizing message availability to

accelerate patternmatching,2 represents void asynchronous channels as coun- 2 Le Fessant and Maranget (1998),

“Compiling Join Patterns”ters, and permits “message stealing” to increase throughput—all the tricks

from Benton et al. (2004).
Unfortunately, even with relatively short critical sections, coarse-grained

locking inevitably limits scalability (§2.4).�e scalability problemswith locks

are a major obstacle to using the Joins library to implement custom, low-
level synchronization primitives. In addition to the general memory tra�c

149

http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html

150 implementing join patterns

problems caused by locks, coarse-grained locking for joins unnecessarily

serializes the process of matching and �ring chords: at most one thread can

be performing that work at a time. In cases like the exchanger and Dining

Philosophers, a much greater degree of concurrency is both possible and

desirable.

In short, for joins to be viable as a user-extensible synchronization library,

we need an implementation that matches and �res chords in parallel while

minimizing costly interprocessor communication, i.e., we need scalable join
patterns.

9.1.2 Our approach

In order to permit highly-concurrent access to the collection of messages

available on a given channel, we use lock-free bags to represent channels.3 3�e bag implementation we used for our

measurements is, unfortunately, a closed-

source implementation based on Microso�

intellectual property, but it is loosely based

on the Michael-Scott queue (Michael and

Scott 1998) and thus does not take full ad-

vantage of the orderless bag semantics. Sub-

sequent to our implementation, several lock-

free bag implementations have appeared in

the literature (Sundell et al. 2011; David Dice
and Otenko 2011).

�e result is that, for example, two threads can be simultaneously adding

separate messages to the same channel bag, while a third examines a message

already stored in the bag—without any of the threads waiting on any other,

and in many cases without any memory bus tra�c. In choosing a bag rather

than, say, a queue, we sacri�cemessage ordering guarantees to achieve greater

concurrency: FIFO ordering imposes a sequential bottleneck on queues.

�e original join calculus did not provide any ordering guarantees, and

relaxed ordering is typical in implementations.4 �e choice of ordering is 4 Fournet and Gonthier 1996; Russo 2007;

Benton et al. 2004not, however, fundamental to our algorithm; ordered channels are easy to

provide (§9.6). None of our examples rely on ordering.

Lock-free bags allow messages to be added and inspected concurrently,

but they do not solve the central problem of atomically consuming a pattern’s
worth of messages. To provide atomic matching, we equip messages with a

Status �eld of the following type:

enum Stat { PENDING, CLAIMED, CONSUMED };

Statuses are determined according to the following protocol:

● Each message is PENDING to begin with, meaning that it is available for
matching and �ring.

● Matching consists of �nding su�ciently many PENDING messages, then

using CAS to try to change them one by one to from PENDING to CLAIMED.

● If matching is successful, each message can be marked CONSUMED. If it is

unsuccessful, each CLAIMEDmessage is reverted to PENDING.

Messages marked CONSUMED are logically deleted, but need not be physically
removed from the bag until a later, more convenient moment.

Using the techniques of Chapter 4, we can visualize the per-message

protocol as follows as shown in Figure 9.1.�e local protocol uses a single

token, denoted as usual with “●”, which represents ownership of the message.

representation 151

�; ● Pending; ● Claimed; ○ Consumed; ● Dead; ●

Logically in bag Logically removed

Physically in bag

Figure 9.1: Per-message protocol
Part of this protocol should look familiar: the token-controlled loop between

the Pending and Claimed states is isomorphic to the simple lock protocol

in §4.3. Indeed, the status �eld does act as a kind of �ne-grained lock, one tied

to individual messages rather than an entire instance of Join. But if we fail to

“acquire” amessage, we do not immediately spinwait or block. Instead, we can

continue looking through the relevant bag of messages for another message

to claim—or, more generally, for another join pattern to match (§9.3).

�ere are three reasons the above is just an “overview” and not the full

algorithm:

● Knowing when to terminate the protocol with the result of “no pattern
matched” turns out to be rather subtle: because the message bags are not

locked, new potential matches can occur at any time. Terminating the

protocol is important for returning control to an asynchronous sender,

or deciding to block a synchronous sender. But terminating too early can

result in dropped (undetected, but enabled) matches, which can lead to

deadlock.�e full algorithm, including its termination condition, is given

in §9.3.

● Patterns involving synchronous channels add further complexity: if an
asynchronousmessage causes such a pattern to be �red, it must alert a syn-

chronous waiter, which must in turn execute the pattern body. Likewise,

if there are multiple synchronous senders in a given pattern, they must

be coordinated so that only one executes the body and communicates the

results to the others. We cover these details in §9.4.

● Two “optimizations” of the protocol turn out to be crucial for achieving
scalability: lazy queueing and message stealing.�e details of these opti-

mizations are spelled out in §9.5, while their rami�cations on scalability

are examined empirically in §9.8.

9.2 representation

Before delving into the C♯ implementation of scalable join patterns, we brie�y

survey the interfaces to the key data structures it uses; see Figure 9.2.

152 implementing join patterns

// Msg implements:

Chan Chan { get; };

Stat Status { get; set; };

bool TryClaim(); // CAS from PENDING to CLAIMED

Signal Signal { get; };

Match ShouldFire { get; set; };

object Result { get; set; };

// Chan<A> implements:

Chord[] Chords { get; };

bool IsSync { get; };

Msg AddPending(A a);

Msg FindPending(out bool sawClaims);

// Match implements:

Chord Chord { get; };

Msg[] Claims { get; };

// Chord implements:

Chan[] Chans; { get; };

Msg[] TryClaim(Msg msg, ref bool retry);

Figure 9.2: Interfaces to the key data
structures

Messages are represented as instances of the Msg class, which, in addition

to carrying the message payload, includes a Chan property5 tying it to the 5�e get and set keywords are used to

specify the existence of “getters” and “setters”

for properties in .NET interfaces. Properties

externally look like �elds, but they can be

read-only, write-only, or read-write. Inter-

nally, setting or getting a property invokes

the corresponding getter or setter method.

channel in which it was created, and the Status �eld discussed above.6

6�e Chan property is just a convenience for

the presentation in this paper. It is avoided

in the real implementation for the sake of

space.

�e remaining Msg properties (Signal, ShouldFire and Result) are used for

blocking on synchronous channels, and are discussed in §9.4.

�e Chan<A> class implements a lock-free bag of messages of type A. Its

Chords property gives, as an array, all of the chords that mention the channel,

while the IsSync property records whether the channel is synchronous.�e

key operations on a channel are:

● AddPending, which takes a message payload and atomically adds a Msg<A>

with PENDING status to the bag and returns it.

● FindPending attempts to locate and return—but not remove—some mes-
sage with PENDING status. Its precise semantics is subtle, and is closely
connected to the status protocol shown in Figure 9.1. �ere are three

possible outcomes of a call to FindPending:

“Yes”: if FindPending returns a (non-null) message, that message was

atomically observed to have status PENDING. Of course, by the time

control is returned to the caller, the status may have been altered by

the core algorithm: resolving a message 153

a concurrent thread (see Figure 9.1, and notice that no thread owns the

token in the PENDING status).

“Maybe”: if FindPending returns null and its out-parameter7 sawClaims 7 A method parameter marked out in C♯

is passed as a reference that is considered

uninitialized and can be updated by the

method (with visible e�ect for the caller).

is true, all that can be concluded is that some message was observed

with a CLAIMED status (see Figure 9.1, and notice that a message with

CLAIMED status might be reverted to PENDING by another thread at any

time).

“No”: if FindPending returns null and its out-parameter sawClaims is
false, then there was some atomic instant during its execution at which

allmessages in the bagweremarked CONSUMED (see Figure 9.1, and notice

that a message with CONSUMED status can never be reverted to PENDING).

�ere is no explicit method for removing a message. As wementioned earlier,

a message can be logically removed from the bag by marking it as CONSUMED

(leaving the bag implementation to physically delete it when convenient).

Match is a simple, immutable class used to record the data making up a

matched pattern: a chord, and an array of CLAIMEDmessages8 su�cient to �re 8�is array is heterogeneous: it containsmes-
sages of varying types. In situations like

this, we introduce an additional interface

(here Msg without a type parameter) that

represents, essentially, an existential pack-

age quantifying over the di�erence in types.

We will gloss over this point from here on.

See Kennedy andRusso (2005) for a detailed

explanation.

it.

Finally, the Chord class represents a join pattern, which is simply a (hetero-

geneous) array of channels.�e class includes a TryClaimmethod for trying

to claim a given message (presumed to be on a channel that is part of the

chord) together with enough other messages to satisfy the join pattern. Its

implementation is given in the next section.

9.3 the core algorithm: resolving a message

Wehave already discussed the key safety property for a Joins implementation:

pattern matching and message consumption should be atomic. In addition,

an implementation should ensure at least the following liveness property

(assuming a fair scheduler):

If a chord can �re, eventually some chord is �red.9 9 Notice that this property does not guaran-

tee fairness; see §9.7.

Our strategy is to drive the �ring of chords by the concurrent arrival of each

message: each sender must “resolve” its ownmessage. We consider a message

resolved if it has been added to the appropriate channel bag, and one of the
following holds:

1. It is marked CLAIMED by the sending thread, along with su�ciently many

other messages to �re a chord; or

2. It is marked CONSUMED by another thread, and hence was used to �re a

chord; or

3. No pattern can be matched using only the message and messages that

arrived prior to it.

154 implementing join patterns

Ensuring that each message is eventually resolved is tricky, because message

bags and statuses are constantly, concurrently in �ux. In particular, just as one

thread determines that its message msg does not enable any chord, another

message from another thread may arrive that enables a chord involving msg.

▸ The key idea is that each sender need only take responsibility for chords

involving its messages and the messages that arrived prior to it; if a later

sender enables a chord, that later sender is responsible for it. But given the

highly concurrent nature of message bags, what does it mean for onemessage

to arrive before another?

�ere is no need to provide a direct way of asking this question. Instead,

we rely on the atomicity of the bag implementation (in the sense of §3.4).

Atomicity means that we can think of calls to AddPending and FindPending

(along with CASes to Status) as being executed atomically, in some global

sequential order. In particular, all messages—even those added to distinct

bags—can be semantically ordered by “arrival,” i.e., the time of their insertion.
�e bag interface does not provide a way to observe this ordering directly, but

FindPending is guaranteed to respect it. For example, consider a thread that

inserts a message into one bag, and then looks for a message in a di�erent

bag:

Msg m1 = bag1.AddPending(x);

bool sawClaims;

Msg m2 = bag2.FindPending(out sawClaims);

Suppose that m2 = null and sawClaims = false, in other words that the

call to FindPending on bag2 says that there were (atomically) no PENDING

messages. By the time that call returns, bag2 might in fact contain some

PENDING messages—but they can only be messages that arrived a�er m1 did.
�us, atomicity is the foundation for our idea of “message responsibility”:

the “instantaneous time” at which we insert a message to send is the pivot

point determining which other messages we must consider when looking for

a pattern that the message enables.

Figure 9.3 gives our implementation of message resolution.�e Resolve

method takes a message msg that has already been added to the appropriate

channel’s bag and loops until the message has been resolved. It �rst attempts

to “claim” a chord involving msg, successively trying each chord in which

msg’s channel is involved (lines 5–9). �e Chord class’s TryClaim method

either returns an array of messages (which includes msg) that have all been

CLAIMED by the current thread, or null if claiming failed. In the latter case, the

retry by-reference10 parameter is set to true if any of the involved message 10 A by-reference parameter in C♯ must

be initialized prior to method invocation;

changes made to the parameter within the

method are visible to the caller.

bags contained a message CLAIMED by another thread; otherwise, retry is

unchanged by the chord’s TryClaimmethod.

Cumulatively, the retry �ag records whether an externally-CLAIMED mes-

sage was seen in any failing chord. We must track such CLAIMEDmessages be-

the core algorithm: resolving a message 155

1 Match Resolve(Msg msg) {

2 var backoff = new Backoff();

3 while (true) {

4 bool retry = false;

5 foreach (var chord in msg.Chan.Chords) {

6 Msg[] claims = chord.TryClaim(msg, ref retry);

7 if (claims != null)

8 return new Match(chord, claims);

9 }

10 if (!retry || msg.Status == Stat.CONSUMED)

11 return null;

12 backoff.Once();

13 }

14 }

Figure 9.3: Resolving a message

cause they are unstable, in the sense that theymay be reverted to PENDING (Fig-

ure 9.1), possibly enabling a chord for which the sender is still responsible.

�e �rst way a message can be resolved—by claiming it and enough

other messages to make up a chord—corresponds to the return on line 8.

�e second two ways correspond to the return on line 11. If none of the

three resolution conditions hold, we must try again.We perform exponential

backo� (line 12) in this case, because repeated retrying can only be caused

by contention over messages. Resolution may fail to terminate, but only if

the system as a whole is making progress (according to our liveness property

above); see §9.7 for a proof sketch.

Figure 9.4 gives the implementation of the TryClaim for the Chord class,11 11�e partial keyword in C♯ provides a way

of splitting a class de�nition up into several

pieces.
which works in two phases:

● In the �rst phase (lines 8–17), TryClaim tries to locate su�ciently many
PENDINGmessages to �re the chord. It is required to claim msg in particular.

If it is unable to �nd enough messages, it exits (line 15) without having

written anything to shared memory, which bodes well for its cache coher-

ence behavior (§2.3.1). Channels are always listed in chords in a consistent,

global order, which is needed to guarantee liveness (§9.7).

● Otherwise, the TryClaim enters the second phase (lines 20–28), wherein
it attempts to claim each message. �e message-level TryClaim method

performs a CAS on the Status �eld, ensuring that only one thread will

succeed in claiming a given message. If at any point we fail to claim a

message, we roll back all of the messages claimed so far (lines 23–24).�e

implementation ensures that the Chans arrays for each chord are ordered

consistently, so that in any race at least one thread entering the second

phase will complete the phase successfully (§9.7).

156 implementing join patterns

1 partial class Chord {

2 Chan[] Chans; // the channels making up this chord

3

4 Msg[] TryClaim(Msg msg, ref bool retry) {

5 var msgs = new Msg[Chans.length]; // cached

6

7 // locate enough pending messages to fire chord

8 for (int i = 0; i < Chans.Length; i++) {

9 if (Chans[i] == msg.Chan) {

10 msgs[i] = msg;

11 } else {

12 bool sawClaims;

13 msgs[i] = Chans[i].FindPending(out sawClaims);

14 retry = retry || sawClaims;

15 if (msgs[i] == null) return null;

16 }

17 }

18

19 // try to claim the messages we found

20 for (int i = 0; i < Chans.Length; i++) {

21 if (!msgs[i].TryClaim()) {

22 // another thread won the race; revert

23 for (int j = 0; j < i; j++)

24 msgs[j].Status = Stat.PENDING;

25 retry = true;

26 return null;

27 }

28 }

29

30 return msgs; // success: each message CLAIMED

31 }

32 }

Figure 9.4: Racing to claim a chord
involving msg

�e code in Figure 9.4 is a simpli�ed version of our implementation that does

not handle patterns with repeated channels, and does not stack-allocate or

recycle message arrays.�ese di�erences are discussed in §9.6.

9.4 sending a message: firing , blocking and rendezvous

Message resolution does not depend on the (a)synchrony of a channel, but the

rest of the message-sending process does. In particular, when a message on

an asynchronous channel is resolved with “no pattern matched,” the sending

sending a message: firing , blocking and rendezvous 157

process is �nished; but on a synchronous channel, the sender must wait until
a pattern is matched and the message is consumed, so that it can calculate the

reply to return.

To further complicate matters, chords can contain arbitrary mixtures of

the two types of channel, so the protocols for sending on each type are

intertwined. A key aspect of these protocols is determining which thread

executed the body of a matched pattern:

● �e body of an asynchronous chord (i.e., one involving no synchronous
channels) is executed by a newly-spawned thread; its return type must be

void.

● �e body of a synchronous chord (i.e., one involving at least one syn-
chronous channel) is executed by exactly one of the threads that sent a
message on one of the involved synchronous channels.

�ese requirements are part of the semantics of the Joins library.

�e code for sending messages is shown in Figure 9.5, with separate entry

points SyncSend and AsyncSend.�e actions taken while sending depend, in

part, on the result of message resolution:

Send We CLAIMED �ey CONSUMED No match

Sync Fire (14) Wait for result (6) Block (6)

Async
(AC) Spawn (32)

(SC) Wake (35–41)
Return (28) Return (28)

where AC and SC stand for asynchronous chord and synchronous chord

respectively.

▸ First we follow the path of a synchronous message, which begins by

adding and resolving the message (lines 2–3). If the message was resolved

by claiming it and enough additional messages to �re a chord, all relevant

messages are immediately consumed (line 11). Otherwise, either another

thread has CONSUMED the message, or no match was possible. In either case,

the synchronous sender must wait (line 6).

Each synchronous message has a Signal associated with it. Signals pro-

vide methods Block and Set, allowing synchronous senders to block12 and be 12 Block spinwaits a bit �rst; see §9.6

woken. Calling Set triggers the signal:

● If a thread has already called Block, it is then awoken and the signal is reset.

● Otherwise, the next call to Block will immediately return (instead of

waiting), again resetting the signal.

We ensure that Block and Set are each called by atmost one thread; the Signal

implementation then ensures that waking only occurs as a result of triggering

the signal (no “spurious wakeups”).

158 implementing join patterns

1 R SyncSend<R, A>(Chan<A> chan, A a) {

2 Msg msg = chan.AddPending(a); // make our message visible

3 Match mat = Resolve(msg); // and then resolve it

4

5 if (mat == null) { // msg CONSUMED, or no match

6 msg.Signal.Block(); // wait for pattern match

7 mat = msg.ShouldFire; // non-null if woken by async

8 if (mat == null) // is this a rendezvous?

9 return msg.Result; // return chord body’s result

10 } else { // we resolved msg by claiming,

11 ConsumeAll(mat.Claims); // so consume the messages

12 }

13

14 var r = mat.Fire(); // execute the chord body

15 // rendezvous with any other sync senders (they will be waiting)

16 for (int i = 0; i < mat.Chord.Chans.Length; i++) {

17 if (mat.Chord.Chans[i].IsSync && mat.Claims[i] != msg) {

18 mat.Claims[i].Result = r; // transfer result to sender

19 mat.Claims[i].Signal.Set(); // and wake it up

20 }

21 }

22 return (R)r;

23 }

24 void AsyncSend<A>(Chan<A> chan, A a) {

25 Msg msg = chan.AddPending(a); // make our message visible

26 Match mat = Resolve(msg); // and then resolve it

27

28 if (mat == null) return; // msg CONSUMED, or no match

29 ConsumeAll(mat.Claims); // resolved by CLAIMING

30

31 if (mat.Chord.IsAsync) { // asynchronous chord:

32 new Thread(mat.Fire).Start(); // fire in a new thread

33 } else { // synchronous chord:

34 // wake up the first synchronous caller

35 for (int i = 0; i < mat.Chord.Chans.Length; i++) {

36 if (mat.Chord.Chans[i].IsSync) {

37 mat.Claims[i].ShouldFire = mat; // tell it what to consume

38 mat.Claims[i].Signal.Set(); // and wake it up

39 return;

40 }

41 }

42 }

43 }

Figure 9.5: Sending a message

key optimizations 159

�ere are two ways a blocked, synchronous sender can be woken: by

an asynchronous sender or by another synchronous sender (which we call

“rendezvous”). In the former case, the (initially null) ShouldFire �eld will

contain a Match object whose body the synchronous caller is responsible for

executing on behalf of the asynchronous sender (line 14). In the latter case,

ShouldFire remains null, but the Result �eld will contain the result of a

chord body as executed by another synchronous sender, which is immediately

returned (line 9).

We regroup at line 14, in which the synchronous sender actually executes

the chord body. It could have arrived at this line in two ways: either by

matching a chord itself, or else by being woken by an asynchronous sender.
In either case, a�er executing the body, it must then wake up any other

synchronous senders involved in the chord and inform themof the result (the

other side of rendezvous, lines 16–21). For simplicity, we ignore the possibility

that the chord body raises an exception, but proper handling is easy to add

and is addressed by the benchmarked implementation.

▸ Nowwe consider sending an asynchronous message. Just as before, we

begin by adding and resolving the message to send (lines 25–26). If either

the message was CONSUMED by another thread (in which case that thread is

responsible for �ring the chord) or no pattern is matchable (in which case

the message is le� for another thread to consume later), we immediately exit

(line 28).

On the other hand, if we resolved the message by claiming it and enough

other messages to �re a chord, we proceed by consuming all involved

messages (line 29). If the chord is asynchronous (its pattern involves only

asynchronous channels) we spawn a new thread to execute the chord body

asynchronously (line 32). Otherwise at least one of the messages we just

consumed belongs to a synchronous sender that is now blocked. Although

multiple synchronous callers can be combined in a single chord, exactly one

of them is chosen to execute the chord; a�erwards it will share the result

with (and wake up) all the others (rendezvous). A�er picking a synchronous

sender towake (lines 35–41), we tell it which chord to �rewithwhichmessages

(line 37).

9.5 key optimizations

While the implementation outlined above is alreadymuchmore scalable than

a lock-based implementation, it needs a bit more work to be competitive with

hand-built synchronization constructs. In this section, we describe three key

optimizations whose bene�t is shown experimentally in §9.8.

160 implementing join patterns

9.5.1 Lazy message creation

It is not always necessary to allocate a message or add it to a bag in order

to send it. For example, in the Lock class (Chapter 8), when sending an

Acquiremessage we could �rst check to see whether a corresponding Release

message is available, and if so, immediately claim and consume it without

ever touching the Acquire bag. �is shortcut saves both on allocation and

potentially on interprocessor communication.

To implement such a shortcut in general, we add an optimistic “fast

path” for sending a message that attempts to immediately �nd only the other
messages needed to �re a chord. If no chord can be matched in this way, the

code reverts to the “slow path,” i.e., the regular implementation of sending
messages as described above.�e implementation is straightforward, so we

omit it.13 13 Our reagents implementation in Chap-

ter 11 does give the details of a similar opti-

mization; see §11.5.2.
As an aside, this optimization appears closely connected to the idea of

“dual data structures” described in §2.4.6. Consider sending on a synchronous

channel with this optimization.We can view that action as a kind of operation

that is “partial,” in the sense that it can only be completed if one of the relevant

join patterns is enabled. If so, the operation is carried out immediately by

changing the state of some �ne-grained concurrent data structure. Otherwise,

the request to perform the operation is recorded (in the form of a message on
the synchronous channel), just as it would be in a dual data structure. We

discuss this point further in Chapter 12.

9.5.2 Specialized channel representation

Consider that a void, asynchronous channel (e.g. Lock.Release) is just a

bag of indistinguishable tokens.14 Sophisticated lock-based implementations 14 A void synchronous channel, on the other
hand, is a bag of distinct signals for waiting

senders.
of join patterns typically optimize the representation of such channels to a

simple counter, neatly avoiding the cost of allocation for messages that are

just used as signals.15 We have implemented a similar optimization, adapted 15 Benton et al. (2004); Fournet et al. (2003)
to suit our scalable protocol.

�e main challenge in employing the counter representation is that, in our

protocol, it must be possible to tentatively decrement the counter (the analog
of claiming a message), in such a way that other threads do not incorrectly

assume the message has actually been consumed. Our approach is to rep-

resent void, asynchronous message bags as a word sized pair of half-words,

separately counting claimed and pending messages. Implementations of, for

example, Chan.AddPending and Msg.TryClaim are specialized to atomically

update the shared-state word by CASing in a classic optimistic loop (§2.4.2).

For example, we can claim a “message” as shown in Figure 9.6.

More importantly, Chan.FindPending no longer needs to traverse a data

structure but can merely atomically read the bag’s encoded state once, setting

sawClaimed if the claimed count is non-zero.

key optimizations 161

bool TryClaimToken() {

while (true) {

uint startState = chan.state; // shared channel state

ushort claimed;

ushort pending = Decode(startState, out claimed);

if (pending > 0) {

var nextState = Encode(claimed + 1, pending - 1);

if CAS(ref chan.state, startState, nextState) return true;

} else {

return false;

}

}

}

Figure 9.6: Claiming a “PENDING”
asynchronous message on a void

channel represented using counters

While the counter representation avoids allocation, it does lead to more

contention over the same shared state (compared with a proper bag). It also

introduces the possibility of over�ow, which we ignore here. Nevertheless, we

have found it to be bene�cial in practice (§9.8), especially for non-singleton

resources like Semaphore.Releasemessages.

9.5.3 Message stealing

In the implementation described in §9.4, when an asynchronous sender

matches a synchronous chord, it consumes all the relevantmessages, and then

wakes up one of the synchronous senders to execute the chord body. If the

synchronous sender is actually blocked—so that waking requires a context

switch—signi�cant time may elapse before the chord is actually �red.

Since we do not provide a fairness guarantee, we can instead permit

“stealing”: we can wake up one synchronous caller, but roll back the rest of

the messages to PENDING status, putting them back up for grabs by currently-

active threads—including the thread that just sent the asynchronousmessage.

In low-tra�c cases, messages are unlikely to be stolen; in high-tra�c cases,

stealing is likely to lead to better throughput. �is strategy is similar to

the one taken in Polyphonic C♯,16 as well as the “barging” allowed by the 16 Benton et al. (2004), “Modern
concurrency abstractions for C#”java.util.concurrent synchronizer framework.17
17 Lea (2005), “�e java.util.concurrent

synchronizer framework”
Some care must be taken to ensure our key liveness property still holds:

when an asynchronous message wakes a synchronous sender, it moves from

a safely resolved state (CLAIMED as part of a chord) to an unresolved state

(PENDING).�ere is no guarantee that the woken synchronous sender will be

able to �re a chord involving the original asynchronous message (see Benton

et al. (2004) for an example). Yet AsyncSend simply returns to its caller. We
must somehow ensure that the original asynchronous message is successfully

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1016/j.scico.2005.03.007

162 implementing join patterns

�; ●,∎ Pending; ●,◻ Claimed; ○,◻ Consumed; ●,◻

Woken; ●,◻Woken; ●,∎

Dead; ●,◻

Logically in bag Logically removed

Physically in bag

Figure 9.7: Per-message protocol,
revised to support stealingresolved. �us, when a synchronous sender is woken, we record the asyn-

chronous message that woke it, transferring responsibility for re-resolving

the message.

To track message responsibility, we revise the message status protocol by

introducing a new state, WOKEN; see Figure 9.7. A synchronous message is

marked WOKEN if an asynchronous sender is transferring responsibility, and

CONSUMED if a synchronous sender is going to �re a chord involving it. In both

cases, the signal is set a�er the status is changed; in the latter case, it is set

a�er the chord body has actually executed and the return value is available.

Resolve is revised to return null at any point that themessage is seen at status

WOKEN (as well as CONSUMED).

As the protocol in Figure 9.7 shows, the WOKEN status ensures that a blocked

synchronous caller is woken only once, which is important both to ensure

correct use of the associated Signal, and to ensure that the synchronous

sender will only be responsible for one waking asynchronous message. Only
the thread that created a message (and is blocked waiting for it to enable a

chord) is allowed to clear the WOKEN status: the additional token “∎”, which
the sending thread gains ownership of when it originally creates the message,

must be momentarily given up in order to move from WOKEN to PENDING in the

protocol.

�e new code for an asynchronous sender notifying a synchronous waiter

is shown in Figure 9.8. Most of the paths through the code work as they

did before. However, when the asynchronous message is CLAIMED as part of a

synchronous chord (line 10), that chord is not immediately CONSUMED. Instead
the asynchronous sender chooses one of the synchronous messages in the

chord to wake up. And instead of informing that synchronous sender of the

entire CLAIMED chord, it merely informs18 the sender of the asynchronous 18 Via a new �eld, WakeMsg, of type Msg.

message that woke it up (line 15), transferring responsibility for sending msg.

While the synchronous sender’s message is moved to the WOKEN status, all

of the other CLAIMED messages—including the original msg—are reverted to

key optimizations 163

1 void AsyncSendWithStealing<A>(Chan<A> chan, A a) {

2 Msg msg = chan.AddPending(a); // make our message visible

3 Match mat = Resolve(msg); // and then resolve it

4

5 if (mat == null) { // msg CONSUMED, or no match

6 return; // so our work is done

7 } else if (mat.Chord.IsAsync) { // CLAIMED asynchronous chord:

8 ConsumeAll(mat.Claims); // consume it, and

9 new Thread(mat.Fire).Start(); // fire in a new thread

10 } else { // CLAIMED synchronous chord:

11 bool foundSleeper = false;

12 for (int i = 0; i < mat.Chord.Chans.Length; i++) {

13 if (m.Chord.Chans[i].IsSync && !foundSleeper) {

14 foundSleeper = true; // the first sync sender:

15 m.Claims[i].WakeMsg = msg; // hand over msg

16 m.Claims[i].Status = Stat.WOKEN; // set wakeup type

17 m.Claims[i].Signal.Set(); // wake it up

18 } else {

19 m.Claims[i].Status = Stat.PENDING; // relinquish other claims

20 }

21 }

22 }

23 }

Figure 9.8: Sending an asynchronous
message, as revised to support stealing

PENDING (line 19), which allows them to be stolen before the synchronous

sender wakes up.

Figure 9.9 gives the revised code for sending a synchronousmessage in the

presence of stealing. A synchronous sender loops until its message is resolved

by claiming a chord (exit on line 10), or by another thread consuming it (exit

on line 17). In each iteration of the loop, the sender blocks (line 14); even if its

message has already been CONSUMED as part of a synchronous rendezvous, it

mustwait for the signal to get its return value. In the case that the synchronous

sender is woken by an asynchronous message (lines 19–20), it records the

waking message and ultimately tries once more to resolve its own message.

We perform exponential backo� every time this happens, since continually

being awoken only to �nd messages stolen indicates high tra�c.

A�er every resolution of the synchronous sender’smessage msg, the sender

retries sending the last asynchronous message that woke it, if any (lines

11–12, 29–30). Doing so ful�lls the liveness requirements outlined above:

the synchronous sender takes responsibility for sending the asynchronous

message that woke it. �e RetryAsync method is similar to AsyncSend, but

uses an already-added message rather than adding a new one. It is crucial

to call RetryAsync only when holding no claims on messages—otherwise,

164 implementing join patterns

1 R SyncSendWithStealing<R, A>(Chan<A> chan, A a) {

2 Msg wakeMsg = null; // last async msg to wake us

3 Match mat = null;

4 var backoff = new Backoff(); // accumulate exp. backoff

5

6 Msg msg = chan.AddPending(a); // make our message visible

7 while (true) { // until CLAIMED or CONSUMED

8 mat = Resolve(msg); // (re)resolve msg

9

10 if (mat != null) break; // claimed a chord; exit

11 if (wakeMsg != null) // responsible for async msg?

12 RetryAsync(wakeMsg); // retry sending it

13

14 msg.Signal.Block(); // wait for pattern match

15

16 if (msg.Status == Stat.CONSUMED) { // synchronous rendezvous:

17 return msg.Result; // return body’s result

18 } else { // async wakeup (WOKEN):

19 wakeMsg = msg.WakeMsg; // take responsibility

20 msg.Status = Stat.PENDING; // get ready to retry

21 }

22

23 backoff.Once(); // let others see PENDING msg

24 }

25

26 // we resolved msg by claiming it and the rest of a chord:

27 ConsumeAll(mat.claims); // so consume the chord

28

29 if (wakeMsg != null) // retry last async waker,

30 RetryAsync(wakeMsg); // *after* consuming msg

31

32 var r = mat.Fire(); // execute the chord body

33 // rendezvous with any other sync senders (they will be waiting)

34 for (int i = 0; i < mat.Chord.Chans.Length; i++) {

35 if (mat.Chord.Chans[i].IsSync && mat.Claims[i] != msg) {

36 mat.Claims[i].Result = r; // transfer result to sender

37 mat.Claims[i].Signal.Set(); // and wake it up

38 }

39 }

40 return (R)r;

41 }

Figure 9.9: Sending a synchronous
message while coping with stealing

pragmatics and extensions 165

RetryAsync might loop, forever waiting for those claims to be reverted or

consumed. On the other hand, it is �ne to retry the message even if it has

already been successfully consumed as part of a chord;19 RetryAsync will 19 It will o�en be the case that the asyn-

chronous message is CONSUMED on line 27, for

example.
simply exit in this case.

9.6 pragmatics and extensions

�ere are a few smaller di�erences between the presented code and the actual

implementation, which:

● Avoids boxing (allocation) and downcasts whenever possible.20 20 On .NET, additional polymorphism (be-

yond what the code showed) can help avoid

uses of object.● Does not allocate a fresh message array every time TryClaim is called.�e
implementation stack-allocates an array21 in SyncSend and AsyncSend, and 21 Stack-allocated arrays are not directly pro-

vided by .NET, sowe use a customvalue type

built by polymorphic recursion.
reuses this array for every call to TryClaim.

● Handles nonlinear patterns, in which a single channel appears multiple
times.

An important pragmatic point is that the Signal class �rst performs some

spinwaiting before blocking. Spinning is performed on a memory location

associated with the signal, so each spinning thread will wait on a distinct

memory location whose value will only be changed when the thread should

be woken, an implementation strategy long known to perform well on

cache-coherent architectures (§2.4.6).�e amount of spinning performed is

determined adaptively on a per-thread, per-channel basis.

It should be straightforward to add timeouts and nonblocking attempts

for synchronous sends22 to our implementation, because we can always use 22�at is, a way to send a synchronous mes-

sage only when it is immediately matches a

join pattern.
cas to consume a message we have previously added to a bag to cancel an in-

progress send—which will, of course, fail if the send has already succeeded.

Finally, to add channels with ordering constraints one needs only use a

queue or stack rather than a bag for storing messages. Switching from bags

to fair queues and disabling message stealing yields per-channel fairness for

joins. In Dining Philosophers, for example, queues would guarantee that

requests from waiting philosophers are ful�lled before those of philosophers

that have just eaten. Such guarantees come at the cost of decreased parallelism,

since they entail sequential matching of join patterns. At an extreme, pro-

grammers can enforce a round-robin scheme for matching patterns using an

additional internal channel.23 23 Russo (2008), “Join Patterns for Visual

Basic”

9.7 correctness

�e most appropriate speci�cation for our algorithm is something like the

process-algebraic formulation of the join calculus,24 perhaps treated as a 24 Fournet and Gonthier (1996), “�e

re�exive CHAM and the join-calculus”canonical atomic spec (§3.4). In that speci�cation, multiple messages are

consumed—and a chord is �red—in a single step.We have not yet carried out

a rigorous proof that our implementation satis�es this speci�cation.We have,

http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1145/237721.237805

166 implementing join patterns

however, identi�ed what we believe are the key lemmas—one safety property,

one liveness property—characterizing the Resolvemethod:

Lemma 4 (Resolution Safety). Assume that msg has been inserted into a
channel. If a subsequent call to Resolve(msg) returns, then msg is in a resolved

state; moreover, the return value correctly re�ects how the message was

resolved.

Lemma 5 (Resolution Liveness). Assume that threads are scheduled fairly.
If a sender is attempting to resolve a message, eventually some message is
resolved by its sender.

Recall that there are three ways amessage can be resolved: it and a pattern’s

worth of messages can be marked CLAIMED by the calling thread; it can be

marked CONSUMED by another thread; and it can be in an arbitrary status when

it is determined that there are not enough messages sent prior to it to �re a
chord.

Safety for the �rst two cases is fairly easy to show (Figure 9.1):

● Once a message is CLAIMED by a thread, the next change to its status is by
that thread.

● Once a message is CONSUMED, its status never changes.

�ese factsmean that interference cannot “unresolve” amessage that has been

resolved in those two ways.�e other fact we need to show is that the retry

�ag is only false if, indeed, no pattern ismatched using only themessage and

messages that arrived before it.Hereweuse the assumptions about bags (§9.2),

together with the facts about the status �ags just given.

Now we turn to the liveness property. Notice that a call to Resolve fails

to return only if retry is repeatedly true.�is can only happen as a result

of messages being CLAIMED. We can prove, using the consistent ordering of

channels during the claiming process, that if any thread reaches the claiming

process (lines 19–28 of Figure 9.4), some thread succeeds in claiming a
pattern’s worth of messages. �e argument goes: claiming by one thread

can fail only if claiming/consuming by another thread has succeeded, which

means that the other thread has managed to claim a message on a higher-

ranked channel. Since there are only �nitely-many channels, some thread

must eventually succeed in claiming the last message it needs to match a

pattern.

Using both the safety and liveness property for Resolve, we expect the

following overall liveness property to hold:

Conj 1. Assume that threads are scheduled fairly. If a chord can be �red,
eventually some chord is �red.

�e key point here is that if a chord can be �red, then in particular some

message, together with its predecessors, does match a pattern, which rules
out the possibility that the message is resolved with no pattern matchable.

performance 167

9.8 performance

We close our discussion of join patterns with an experimental study of

our implementation.�e result is clear: the implementation scales well and,

with the optimizations of §9.5, performs competitively with purpose-built

synchronization constructs.

9.8.1 Methodology

Scalable concurrent algorithms are usually evaluated by targettedmicrobench-

marking,with focus on contention e�ects and�ne-grained parallel speedup.25 25Mellor-Crummey and Scott (1991);

Michael and Scott (1996); Herlihy,

Luchangco, Moir, and W.N. N Scherer, III

(2003); William N. Scherer, III and Scott

(2004); Hendler et al. (2004); Fraser and
Tim Harris (2007); Cederman and Tsigas

(2010); Hendler et al. (2010)

To evaluate our implementation, we constructed a series ofmicrobenchmarks

for seven classic coordination problems: dining philosophers, producers/-

consumers, mutual exclusion, semaphores, barriers, rendezvous, and reader-

writer locking.

Our solutions for these problems are fully described in Chapter 8.�ey

cover a spectrum of shapes and sizes of join patterns. In some cases (pro-

ducer/consumer, locks, semaphores, rendezvous) the size and number of join

patterns stays �xed as we increase the number of processors, while in others

a single pattern grows in size (barriers) or there are an increasing number of

�xed-size patterns (philosophers).

Each benchmark follows standard practice for evaluating synchronization

primitives: we repeatedly synchronize, for a total of k synchronizations
between n threads. We use k ≥ 100,000 and average over three trials for all
benchmarks. To test interaction with thread scheduling and preemption, we

let n range up to 96—twice the 48 cores in our benchmarking machine.
Each benchmark has two variants for measuring di�erent aspects of

synchronization:

Parallel speedup In the �rst variant, we simulate doing a small amount
of work between synchronization episodes (and during the critical section,

when appropriate). By performing some work, we can gauge to what

extent a synchronization primitive inhibits or enables parallel speedup. By

keeping the amount of work small, we gauge in particular speedup for �ne-
grained parallelism, which presents the most challenging case for scalable
coordination.

Pure synchronization In the second variant, we synchronize in a

tight loop, yielding the cost of synchronization in the limiting case where

the actual work is negligible. In addition to providing some data on

constant-time overheads, this variant serves as a counterpoint to the

previous one: it ensures that scalability problemswere not hidden by doing

too much work between synchronization episodes. Rather than looking

for speedup, we are checking for slowdown.

To simulate work, we use .NET’s Thread.SpinWait method, which spins in

a tight loop for a speci�ed number of times (and ensures that the spinning

168 implementing join patterns
�

ro
ug

hp
ut
:
it
e
ra
ti
o
n
s/
10

µs
(b
ig
g
e
r
is
b
e
tt
e
r)

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Barrier (with work)

S-Join-Tree
L-Join
.NET
S-Join

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Lock (with work)

S-Join
L-Join
.NET
.NET-spin
S-J w/o C,S

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12
Philosophers (with work)

S-Join
L-Join
Dijkstra
S-J w/o C,L
S-J w/o C,S

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Producer/consumer (with work)

S-Join
L-Join
.NET-queue
.NET-bag
S-J w/o L

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12
Rendezvous (with work)

S-Join
L-Join
Exchanger
S-J w/o L

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
RWLock (50/50, with work)

S-Join
L-Join
.NET
.NET-Slim
S-J w/o C

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
RWLock (75/25, with work)

S-Join
L-Join
.NET
.NET-Slim
S-J w/o C

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

1

2

3

4

5

6

7
Semaphore (with work)

S-Join
L-Join
.NET-Slim
.NET
S-J w/o C

�reads (on 48-core machine)
Figure 9.10: Speedup on simulated
�ne-grained workloads

performance 169
�

ro
ug

hp
ut
:
it
e
ra
ti
o
n
s/
10

µs
(b
ig
g
e
r
is
b
e
tt
e
r)

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12

14

16
Barrier (no work)

S-Join-Tree
L-Join
.NET
S-Join

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

5

10

15

20

25

30

35
Lock (no work)

S-Join
L-Join
.NET
.NET-spin

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

5

10

15

20

25

30

35
Philosophers (no work)

S-Join
L-Join
Dijkstra
S-J w/o C,S

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

0.5

1

1.5

2

2.5

3

3.5
Producer/consumer (no work)

S-Join
L-Join
.NET-queue
.NET-bag
S-J w/o L

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12

14

16

18

20
Rendezvous (no work)

S-Join
L-Join
Exchanger
S-J w/o L

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12
RWLock (50/50, no work)

S-Join
L-Join
.NET
.NET-Slim

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12
RWLock (75/25, no work)

S-Join
L-Join
.NET
.NET-Slim

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

2

4

6

8

10

12

14

16

18
Semaphore (no work)

S-Join
L-Join
.NET-Slim
.NET
S-J w/o C

�reads (on 48-core machine)
Figure 9.11: Pure synchronization
performance

170 implementing join patterns

will not be optimized away). To make the workload a bit more realistic—

and to avoid “lucky” schedules—we randomize the number of spins between

each synchronization, which over 100,000 iterations will yield a normal

distribution of total work with very small standard deviation. We ensure that

the same random seeds are provided across trials and compared algorithms,

so we always compare the same amount of total work.�e mean spin counts

are determined per-benchmark and given in the next section.

For each problem we compare performance between:

● a join-based solution using our fully-optimized implementation (S-Join,

for “scalable joins”),

● a join-based solution using Russo’s library (L-Join, for “lock-based joins”),

● at least one purpose-built solution from the literature or .NET libraries
(label varies), and

● when relevant, our implementation with some or all optimizations re-
moved to demonstrate the e�ect of the optimization (e.g., S-J w/o S,C for

dropping the Stealing and Counter optimizations; S-J w/o L for dropping

the Lazy message creation optimization).

We detail the purpose-built solutions below.

Two benchmarks (rendezvous and barriers) required extending Russo’s

library to support multiple synchronous channels in a pattern; in these cases,

and only in these cases, we use a modi�ed version of the library.

Our benchmarkingmachine has fourAMD“Magny-Cours”Opteron 6100

Series 1.7GHz processors, with 12 cores each (for a total of 48 cores), 32GB

RAM, and runs Windows Server 2008 R2 Datacenter. All benchmarks were

run under the 64-bit CLR.

9.8.2 Benchmarks

�e results for all benchmarks appear in Figure 9.10 (for parallel speedup)

and Figure 9.11 (for pure synchronization).�e axes are consistent across all

graphs: the x-axis measures the number of threads, and the y-axis measures
throughput (as iterations performed every 10µs). Larger y values re�ect better
performance.

For measuring parallel speedup, we used the following mean spin counts

for simulated work:

performance 171

Benchmark In crit. section Out of crit. section

Philosophers 25 5,000

Prod/Cons N/A producer 5,000

consumer 500

Lock 50 200

Semaphore 25 100

Rendezvous N/A 5,000

Barrier N/A 10,000

RWLock 50 200

With too little simulated work, there is no hope of speedup; with too much,

the parallelism becomes coarse-grained and thus insensitive to the perfor-

mance of synchronization. �ese counts were chosen to be high enough

that at least one implementation showed speedup, and low enough to yield

signi�cant performance di�erences.

�e particulars of the benchmarks are as follows, where n is the number
of threads and k the total number of iterations (so each thread performs k/n
iterations):

▸ philosophers Each of the n threads is a philosopher; the threads are
arranged around a table. An iteration consists of acquiring and then releasing

the appropriate chopsticks. We compare against Dijkstra’s original solution,

using a lock per chopstick, acquiring these locks in a �xed order, and releasing

them in the reverse order.

▸ producer/consumer We let n/2 threads be producers and n/2 be
consumers. Producers repeatedly generate trivial output and need not wait

for consumers, while consumers repeatedly take and throw away that output.

We compare against the .NET 4 BlockignCollection class, which transforms

a nonblocking collection into one that blocks when attempting to extract an

element from an empty collection. We wrap the BlockingCollection around

the .NET 4 ConcurrentQueue class (a variant of Michael and Scott’s classic

lock-free queue) and ConcurrentBag.

▸ lock An iteration consists of acquiring and then releasing a single, global

lock. We compare against both the built-in .NET lock (a highly-optimized

part of the CLR implementation itself) and System.Threading.SpinLock

(implemented in .NET).

▸ semaphore We let the initial semaphore count be n/2. An iteration
consists of acquiring and then releasing the semaphore. We compare to two

.NET semaphores: the Semaphore class, which wraps kernel semaphores, and

SemaphoreSlim, a faster, pure .NET implementation of semaphores.

▸ rendezvous �e n threads perform a total of k synchronous exchanges
as quickly as possible. Unfortunately, .NET 4 does not provide a built-in

172 implementing join patterns

library for rendezvous, so we ported Scherer et al.’s exchanger26 from Java; 26William N. Scherer, III et al. (2005),
“A scalable elimination-based exchange

channel”
this is the exchanger included in java.util.concurrent.

▸ barriers An iteration consists of passing through the barrier. We show

results for both the tree and the �at versions of the join-based barrier. We

compare against the .NET 4 Barrier class, a standard sense-reversing barrier.

▸ rwlock An iteration consists of (1) choosing at random whether to be

a reader or writer and (2) acquiring, and then releasing, the appropriate

lock. We give results for 50-50 and 75-25 splits between reader and writers.

We compare against two .NET implementations: the ReaderWriterLock class,

which wraps the kernel RWLocks, and the ReaderWriterLock-Slim class,

which is a pure .NET implementation.

9.8.3 Analysis

�e results of Figure 9.10 demonstrate that our scalable join patterns are

competitive with—and can o�en beat—state of the art custom libraries.

Application-programmers can solve coordination problems in the simple,

declarative style we have presented here, and expect excellent scalability, even

for �ne-grained parallelism.

In evaluating benchmark performance, we aremost interested in the slope

of the throughput graph, whichmeasures scalability with the number of cores

(up to 48) and then scheduler robustness (from 48 to 96). In the parallel

speedup benchmarks, both in terms of scalability (high slope) and absolute

throughput, we see the following breakdown:

S-Join clear winner Producer/consumer,

Semaphore, Barrier

S-Join competitive Philosophers, Lock,

Rendezvous, RWLock 50/50

.NET clear winner RWLock 75/25

�e .NET concurrency library could bene�t from replacing some of its

primitives with ones based on the joins implementation we have shown—the

main exception being locks. With some low-level optimization, it should be

feasible to build an entire scalable synchronization library around joins.

�e performance of our implementation is mostly robust as we oversub-

scribe the machine.�e Barrier benchmark is a notable exception, but this is

due to the structure of the problem: every involved thread must pass through

the barrier at every iteration, so at n > 48 threads, a context switch is required
for every iteration. Context switches are very expensive in comparison to the

small amount of work we are simulating.

Not all is rosy, of course: the pure synchronization benchmarks show that

scalable join patterns su�er from constant-time overheads in some cases,

especially for locks. �e table below approximates the overhead of pure

performance 173

synchronization in our implementation compared to the best .NET solution,

by dividing the scalable join pure synchronization time by the best .NET pure

synchronization time:

Overhead compared to best custom .NET solution

n Phil Pr/Co Lock Sema Rend Barr RWL

6 5.2 0.7 6.5 2.9 0.7 1.5 4.2

12 5.2 0.9 7.4 4.0 1.7 0.3 3.9

24 1.9 0.9 6.6 3.0 1.1 0.2 1.8

48 1.6 1.2 7.4 2.3 1.0 0.2 1.4

(n threads; smaller is better)

Overheads are most pronounced for benchmarks that use .NET’s built-in

locks (Philosophers, Lock). �is is not surprising: .NET locks are mature

and highly engineered, and are not themselves implemented as .NET code.

Notice, too, that in Figure 9.11 the overhead of the spinlock (which is imple-
mented within .NET) is much closer to that of scalable join patterns. In the

philosophers benchmark, we are able to compensate for our higher constant

factors by achieving better parallel speedup, even in the pure-synchronization

version of the benchmark.

One way to decrease overhead, we conjecture, would be to provide com-

piler support for join patterns. Our library-based implementation spends

some of its time traversing data structures representing user-written pat-

terns. In a compiler-based implementation, these runtime traversals could

be unrolled, eliminating a number of memory accesses and conditional

control �ow. Removing that overhead could put scalable joins within striking

distance of the absolute performance of .NET locks. On the other hand, such

an implementation would probably not allow the dynamic construction of

patterns that we use to implement barriers.

In the end, constant overhead is trumped by scalability: for those bench-

marks where the constant overhead is high, our implementation nevertheless

shows strong parallel speedupwhen simulatingwork.�e constant overheads

are dwarfed by even the small amount of work we simulate. Finally, even

for the pure synchronization benchmarks, our implementation provides

competitive scalability, in some cases extracting speedup despite the lack of

simulated work.

▸ effect of optimizations Each of the three optimizations discussed

in §9.5 is important for achieving competitive throughput. Stealing tends

to be most helpful for those problems where threads compete for limited

resources (Philosophers, Locks), because it minimizes the time between

resource release and acquisition, favoring threads that are in the right place

at the right time.27 Lazy message creation improves constant factors across 27�is is essentially the same observation

Doug Lea made about barging for abstract
synchronizers (Lea 2005).

the board, in some cases (Producer/Consumer, Rendezvous) also aiding

scalability. Finally, the counter representation provides a considerable boost

for benchmarks, like Semaphore, in which the relevant channel o�en has

multiple pending messages.

174 implementing join patterns

▸ performance of lock-based joins Russo’s lock-based implementa-

tion of joins is consistently—o�en dramatically—the poorest performer for

both parallel speedup and pure synchronization. On the one hand, this result

is not surprising: the overserialization induced by coarse-grained locking is

a well-known problem (§2.4). On the other hand, Russo’s implementation is

quite sophisticated in the e�ort it makes to shorten critical sections.�e im-

plementation includes all the optimizations proposed for Polyphonic C♯28, 28 Benton et al. (2004), “Modern
concurrency abstractions for C#”including a formof stealing, a counter representation for void-async channels

(simpler than ours, since it is lock-protected), and bitmasks summarizing the

state of messages queues for fast matching. Despite this sophistication, it is

clear that lock-based joins do not scale.

We consider STM-based join implementations in §12.2.2.

http://dx.doi.org/10.1145/1018203.1018205
http://dx.doi.org/10.1145/1018203.1018205

10
Reagents

“Opposites are not contradictory but
complementary.”

—Niels Bohr

▸ Synopsis �is chapter presents the design of reagents, both in terms of

philosophical rationale (§10.1) and asmotivated by a series of examples (§10.2,

§10.5).�e chapter shows in particular how to write all of the algorithms de-

scribed in Chapter 2 concisely and at a higher-than-usual level of abstraction.

It also demonstrates how the join calculus can be faithfully embedded into

the reagent combinators (§10.3).�e full API is given in Appendix E.

10.1 overview

In the preceding two chapters, we saw that message-passing primitives—

in the guise of join patterns—can be used to declaratively express scalable

synchronization. In this chapter, we dig deeper and wider. We show how

join patterns can themselves be built from more fundamental ingredients,

and how, by supplementing those ingredients with shared state, we can

support scalable data structures as well.�e key is to embrace both sides of
several apparent oppositions: isolation versus interaction, disjunction versus

conjunction, and activity versus passivity.�e result is a new abstraction—

reagents—built up through combinators encompassing these dualities.

Reagents are a new instance of an old idea: representing computations

as data. �e computations being represented are scalable concurrent oper-

ations, so a value of type Reagent[A,B] represents a function from A to

B that internally updates shared state, synchronizes with other threads, or

both. Because the computations are data, however, they can be combined in

ways that go beyond simple function composition. Each way of combining

reagents corresponds to a way of combining their internal interactions with

concurrent data structures. Existing reagents—for example, those built by a

concurrency expert—can be composed by library users, without those users

knowing their internal implementation. �is way of balancing abstraction
and composition was pioneered with Concurrent ML,1 and is now associated 1 Reppy (1992), “Higher-order

concurrency”with monads2 and arrows.3 Our contribution is giving a set of combinators
2 Peyton Jones and Wadler (1993),

“Imperative functional programming”

3 Hughes (2000), “Generalising monads to

arrows”

appropriate for expressing and composing scalable concurrent algorithms,

with a clear cost semantics and implementation story (given in Chapter 11).

175

http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://dx.doi.org/10.1145/158511.158524
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

176 reagents

10.1.1 Isolation versus interaction

We begin by revisiting the “warring paradigms” of shared-state and message-

passing concurrency. Chapter 2 argued that there is no semantic di�erence
between the two approaches to concurrent programming, because each can

easily be “programmed up” as syntactic sugar in the other. But there are
di�erences in programming style and implementation pragmatics:

[�e] choice of synchronization and communication mechanisms are the most
important aspects of concurrent language design. . . . Shared-memory languages
rely on the imperative features of the sequential sub-language for interprocess
communication, and provide separate synchronization primitives to control access
to the shared state. Message-passing languages provide a single uni�edmechanism
for both synchronization and communication. Note that the distinction between
shared-memory and message-passing languages has to do with the style of process
interaction; many message-passing languages, including CML, are implemented
in shared address spaces.

—John Reppy, “Concurrent programming in ML”

While there are some problems with taking the above quote as a de�nition
of shared-state and message-passing concurrency,4 it draws attention to an 4 For example, as we mentioned in Chap-

ter 2, traditionally shared-state constructs

like BrinchHansen-stylemonitors and STM

tightly weld synchronization to communica-

tion. On the other hand, in practice chan-

nels o�en o�er asynchronous interfaces

even for receiving, by supporting a “tenta-

tive” receive operation or a callback inter-

face.

important di�erence in the typical programming style associated with the

paradigms. Shared-state concurrent programming is o�en focused on isola-
tion,5 ensuring that updates to shared state appear to take place atomically

5 i.e.,mutual exclusion

(in a non-overlapping fashion; §2.2.4, §3.4). Synchronous message passing is

just the opposite: it demands interaction, requiring that sends and receives do
overlap. Both phenomena have a long history:

In 1965, Dijkstra demonstrated that mutual exclusion of events is a fundamental
programming concept. In 1975, [Hoare] showed that the opposite idea, the coinci-
dence of events, is just as important! �is strikes me as the most profound idea
incorporated in CSP.

—Per Brinch Hansen, “�e invention of concurrent programming”

Chapter 2 also argued that the challenge of concurrent programming is

managing sharing and timing. In our view, isolation and interaction are

both fundamental tools for addressing this challenge—and (given expres-
sivity §2.2.1) there is no reason to make only one of them available to the

exclusion of the other. More than that: although they appear to be opposed,

isolation and interaction can pro�tably be combined. For example, elimina-
tion backo� (§2.4.5) alternates between attempting an isolated update to a

data structure (usually using cas) and interaction with a partner with which

an operation can be eliminated.

�e most primitive reagents provide pure isolated access to shared state

or pure interaction through channels. As we show in §10.2.3, the elimination

stack algorithm can then be elegantly expressed by combining two simpler
reagents: one for performing an atomic update to the stack, and one for

elimination against another thread.�e combination is expressed as a choice,
which we describe next.

http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://oberon2005.oberoncore.ru/paper/bh2002.pdf

overview 177

10.1.2 Disjunction versus conjunction

“Composable concurrency abstractions!” has been the rallying cry of work on
so�ware transactional memory (STM),6 Concurrent ML (CML),7 and many 6 Shavit and Touitou (1995), “So�ware

transactional memory”

7 Reppy (1992), “Higher-order

concurrency”

others. As it happens, though, there is another duality latent in proposals for

composition:

● With STM, programmers can sequencemultiple reads/updates with shared
state into a larger atomic block. STM-style sequencing is a kind of conjunc-
tion, because all of the underlying commands are executed by the resulting
atomic step.

● With CML, programmers can take the choice of multiple “events,” each
encompassing potential interaction through synchronous channels. CML-

style choice is a kind of disjunction, because one of the interactions is
executed by the resulting CML event.

We have, in fact, already seen both forms of composition at work together
with join patterns. Each chord represents a conjunction of interactions across

a collection of channels, while the collection of chords mentioning a given

channel represent a disjunction, since amessagewill participate in exactly one

of them.8 Some STM implementations, most notably Haskell’s,9 also provide 8 Join patterns are, in a sense, written in dis-

junctive normal form (disjunctions of con-

junctions). See §10.3.

9 Tim Harris et al. (2005), “Composable
memory transactions”

a choice operation that can be used to combine atomic transactions.

Choice and sequencing are the basic ways of combining reagents, and

arbitrary such combinations are permitted.10

10�ere are some important caveats when

using certain low-level reagent techniques.

See §10.4 and §10.5.10.1.3 Activity versus passivity

Reagents are much like functions: they are inert values that must be invoked

to be useful. Reagents o�er two means of invocation: active and passive.

In chemistry, a reagent is a participant in a reaction, and reagents are

subdivided into reactants, which are consumed during reaction, and catalysts,
which enable reactions but are not consumed by them. Similarly for us:11 11 Chemical metaphors in concurrent pro-

gramming go back to the Chemical Abstract

Machine (Berry and Boudol 1992), a precur-

sor to the join calculus.
● Invoking a reagent as a reactant is akin to calling it as a function: its internal
operations are performed once, yielding a result or blocking until it is

possible to do so.�is is a single “reaction.”

● Invoking a reagent as a catalyst instead makes it passively available as
a participant in reactions. Because catalysts are not “used up,” they can

participate in many reactions in parallel.

�e distinction is much like the one between sending and receiving messages

in the join calculus: sending a message is an active process, while receiving

messages is done through passive join patterns, which are permanently

present.

http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952

178 reagents

10.2 the high-level combinators

Wenow introduce the basic reagent building blocks as a Scala library, and use

them to build a series of increasingly complex concurrent algorithms. By the

end of the section, we will have seen how to implement all of the algorithms

described in Chapter 2, and several more besides.

// Isolated updates on refs (shared state)

upd: Ref[A] ⇒ (A × B ⇀ A × C) ⇒ Reagent[B,C]

// Interaction on channels (message passing)

swap: Endpoint[A,B] ⇒ Reagent[A,B]

// Composition

+ : Reagent[A,B] × Reagent[A,B] ⇒ Reagent[A,B]

>> : Reagent[A,B] × Reagent[B,C] ⇒ Reagent[A,C]

* : Reagent[A,B] × Reagent[A,C] ⇒ Reagent[A, B × C]

// Lifting pure functions

lift: (A ⇀ B) ⇒ Reagent[A,B]

// Post-commit actions

postCommit: (A ⇒ Unit) ⇒ Reagent[A,A]

// Invoking a reagent:

dissolve: Reagent[Unit,Unit] ⇒ Unit // as a catalyst

react: Reagent[A,B] ⇒ A ⇒ B // as a reactant,

// same as the ! method

Figure 10.1:�e high-level reagent API
(in Scala)

10.2.1 Atomic updates on Refs

r: Ref[A]
f: (A×B)⇀(A×C)

upd
f

rA A

B C

Memory is shared between reagents using the type Ref[A] of atomically-

updatable references.�e upd combinator (Figure 10.1) builds a Reagent[B,C]

that atomically updates a Ref[A]; it takes an update function (of type
A × B ⇀ A × C), which tells how to transform a snapshot of the reference cell

and some input into an updated value for the cell and some output. Using

upd, we can express Treiber’s stack in a readable and concise way, as shown in

Figure 10.2.

Scala has a notion of partial functions (denoted with the arrow⇀) whose
domain be queried via an isDefinedAt predicate. Anonymous partial func-

tions can be written as a series of cases enclosed in braces; the domain is then

the high-level combinators 179

any value matching at least one of the cases. For push and tryPop the case

analysis is exhaustive, so the update functions are in fact total.12 12 Unit is akin to void: it is a type with a

single member, written ().

class TreiberStack[A] {

private val head = new Ref[List[A]](Nil)

val push: Reagent[A, Unit] = upd(head) {

case (xs, x) ⇒ (x::xs, ())

}

val tryPop: Reagent[Unit, Option[A]] = upd(head) {

case (x::xs, ()) ⇒ (xs, Some(x))

case (Nil, ()) ⇒ (Nil, None)

}

}

Figure 10.2: Treiber’s stack, using
reagents

Being reagents, push and tryPop are inert values.�ey can be invoked as re-

actants using the !method, which is pronounced “react.” For a Reagent[A,B]

the !method takes an A and returns a B.13When we invoke these reagents, we 13 Scala permits in�x notation for methods,

so we can use a TreiberStack s by writing

s.push ! 42.
are really executing an optimistic retry loop (as in the “hand-written” version

in §2.4.3) with built-in exponential backo� (§2.4.4); reagents systematize and

internalize common patterns of scalable concurrency. But by exposing push

and tryPop as reagents rather than methods, we enable further composition

and tailoring by clients (using e.g., the combiners in §10.2.3, §10.2.4).
While tryPop’s update function is total—it handles both empty and

nonempty stacks—we can write a variant that drops the empty case:

val pop: Reagent[Unit, A] = upd(head) { case (x::xs, ()) ⇒ (xs, x) }

Now our update function is partial. Et voilà: invoking pop will block the

calling thread unless or until the stack is nonempty.

Along similar lines, it is easy to write a semaphore as a concurrent

counter:14 14 Cf. §2.4.2 and §8.3.

class Counter {

private val c = new Ref[Int](0)

val inc = upd(c) { case (i, ()) ⇒ (i+1, i) }

val dec = upd(c) { case (i, ()) if (i > 0) ⇒ (i-1, i) }

val tryDec = upd(c) {

case (i, ()) if (i == 0) ⇒ (0, None)

case (i, ()) ⇒ (i-1, Some(i))

}

}

�e inc and dec reagents provide the usual mechanism for acquiring and

releasing resources from a semaphore.�e tryDec reagent, on the other hand,

makes it possible to tentatively acquire a resource; the return value indicates

180 reagents

whether onewas available. It’s worth taking amoment to compare the Counter

implementation to the TreiberStack—a�er all, a counter is isomorphic to a

stack containing only unit values. Expressing these data structures at a high

level, using reagents, makes the connection easy to see.

▸ Reagents can fail to react in one of two ways: transiently or persistently.

● Transient failures arise when a reagent loses a race to CAS a location;

they can only be caused by active interference from another thread. A
reagent that has failed transiently will internally retry, rather than block,

following the concurrency patterns laid out in Chapter 2.

● Persistent failures arise when a reagent places requirements on its

environment—such as the requirement, with pop above, that the head

reference yield a nonempty list. Such failures are persistent in the sense

that only activity by another thread can enable the reagent to proceed.

When faced with a persistent failure, a reagent should block until signaled

that the underlying state has changed.15 Blocking and signaling are entirely 15 See §2.2.3.

handled by the reagent implementation; there is therefore no risk of lost

wakeups.

Any reagent that makes visible changes to state (by updating a reference

or communicating on a channel) is subject to transient failures, which will

silently cause a retry.�e possibility and handling of persistent failures varies

based on the combinator, so we describe the blocking behavior of each

combinator as we encounter it.

�e upd(f) reagent fails persistently only for those inputs on which f is

unde�ned; a reaction involving such anupdate is blocked until the underlying

reference changes.

10.2.2 Synchronization: interaction within a reaction

c: Endpoint[A,B]

c

swapA B

c

swap BA

 : Endpoint[B,A]c

With reagents, updates to sharedmemory are isolated, so they cannot be used

for interaction in which the parties are mutually aware. Reagents interact

instead through synchronous swap channels, which consist of two complemen-
tary endpoints.�e function mkChan[A,B] returns a pair of type

Endpoint[A,B] × Endpoint[B,A]

�e combinator for communication is swap (see Figure 10.1), which li�s

an Endpoint[A,B] to a Reagent[A,B]. When two reagents communicate on

opposite endpoints, they provide messages of complementary type (A and

B, for example) and receive each other’s messages. On the other hand, if no

complementary message is available, swapwill block until a reaction can take

place—a persistent failure.

�ere is no deep design principle behind the use of symmetric swap

channels instead of themore common asymmetric channels.�ey are instead

the high-level combinators 181

motivated by the simple observation that an asymmetric—but synchronous—

channelmust already do all of thework that a swap channel does. In particular,

threads blocked trying to receive from the channel must be queued; a swap

channel just enables the queue to carry values as well as thread identities.

Conversely, traditional channels can be recovered by choosing one end of a

swap channel to carry Unit values:

val (sendEP, recvEP) = mkChan[A,Unit]

val send: Reagent[A, Unit] = swap(sendEP)

val recv: Reagent[Unit, A] = swap(recvEP)

As with our version of join patterns, swap channels do not provide

ordering guarantees: they are bags.16 �e motivation is the same as for join 16 In this respect, our channels are two-sided

exchangers (William N. Scherer, III et al.
2005).

patterns: unordered channels provide greater potential for parallelism and

less contention over centralized data.

Neither of these two choices are fundamental to the design of reagents.

10.2.3 Disjunction of reagents: choice

R

S
+

A B
If r and s are two reagents of the same type, their choice r + s will behave

like one of them, nondeterministically, when invoked.�e choice is “mildly”

le�-biased: it will only attempt the right reagent on the le� one failed, but

unlike “truly” le�-biased choice, the right-hand reagent is tried evenwhen the

le�-hand one failed only transiently.17 For the choice itself, failure depends 17�e orElse combinator in Haskell’s STM

is an example of “true” le�-bias (Tim Harris

et al. 2005).
on the underlying reagents. A choice fails persistently only when both of
its underlying reagents have failed persistently. If either fails transiently, the

choice reagent has failed transiently and should therefore retry.

�e most straightforward use of choice is waiting on several signals

simultaneously, but consuming only one of them once one is available. For

example, if c and d are endpoints of the same type, then swap(c) + swap(d)

is a reagent that will accept exactly one message, either from c or from d. If

neither endpoint has a message available, the reagent will block until one of

them does.

Amore interesting use of choice is adding backo� strategies (§2.4.4, §2.4.5).

For example, we can build an elimination backo� stack as follows:

class EliminationStack[A] {

private val s = new TreiberStack[A]

private val (elimPop, elimPush) = mkChan[Unit,A]

val push: Reagent[A,Unit] = s.push + swap(elimPush)

val pop: Reagent[Unit,A] = s.pop + swap(elimPop)

}

�is simple pair of composite reagents give rise to a protocol of surprising

complexity. Here is the chain of events when invoking push:18 18�e pop protocol is nearly symmetric, ex-

cept that pop can block; see below.

182 reagents

1. Because of the mild le�-bias of choice, when push is invoked it will �rst

attempt to push onto the underlying Treiber stack.

2. If the underlying push fails (transiently, due to a lost CAS race), push will

then attempt to synchronize with a concurrent popper:

(a) Following the strategy of lazy message creation (§9.5.1), push will

�rst attempt to locate and consume a message waiting on the elimPop

endpoint.

(b) Failing that, push will create a message on the elimPush endpoint.

3. Because the underlying s.push only transiently failed, push will not block.
It will instead spinwait brie�y for another thread to accept its message
along elimPush; the length of the wait grows exponentially, as part of the

exponential backo� logic. Once thewaiting time is up, the communication

attempt is canceled, and the whole reagent is retried.

�e protocol is a close facsimile of the elimination backo� strategy given

in §2.4.5, but it emerges naturally from the reagent library implementation
elaborated in Chapter 11.

Implementation details aside, we can reason about the blocking behavior

of EliminationStack based on the failure semantics of choice. We deduce

that push never blocks because the underlying s.push can only fail transiently,

never persistently. On the other hand, pop can block because s.pop can fail

persistently (on an empty stack) and swap(elimPop) can fail persistently (if

there are no o�ers from pushers). Conversely, a blocked invocation of pop

can be woken either by a normal push unto the underlying stack or through
elimination.

▸ The elimination stack embodies several aspects of reagents. First

of all, it shows how reagents empower their clients through composition:

as a client of TreiberStack, the EliminationStack is able to add a layer of

additional functionality by using choice. Both semantic details (e.g., blocking
behavior) and implementation details (e.g., backo� strategy) are seamlessly
composed in the client. �e other side of composability is abstraction:

EliminationStack need not know or care about the precise implementation

of TreiberStack. To make this abstraction more apparent (and also more

useful), we can de�ne a generic elimination stack, one that layers elimination
as a mixin on top of any reagent-based stack:

the high-level combinators 183

trait ConcurrentStack[A] {

val push: Reagent[A,Unit]

val pop: Reagent[Unit,A]

}

class WithElimination[A](s: ConcurrentStack[A])

extends ConcurrentStack[A] {

private val (elimPop, elimPush) = mkChan[Unit,A]

val push = s.push + swap(elimPush)

val pop = s.pop + swap(elimPop)

}

Because the result of applying WithElimination is just another stack, it is

possible to layer applications:

new WithElimination(new WithElimination(new TreiberStack[A]))

which approximates the array of elimination backo� channels.19 19 Layering elimination in this way is not

terribly useful in conjunction with our rep-

resentation of channels as concurrent bags,

but it could be with other types of channels.

See §13.2.

Elimination also demonstrates that isolation and interaction, far from

being opposed, are in fact a potent combination.

▸ Choice can be employed in other generic ways as well. For example,

although we do not include it as an “o�cial” combinator, it is easy to

support a reagent for timeout that persistently fails until a certain amount
of time has elapsed. A potentially-blocking reagent can then be (generically)

embedded in a choice with a timeout, limiting the duration of blocking.

Along similar lines, explicit cancellation of a potentially-blocking reagent
can be programmed up by (roughly20) taking a choice with a swap reagent 20 Robust cancellation should inform the

canceler whether the underlying reagent

succeeded prior the cancellation attempt.

�is additional functionality can be pro-

grammed using the postCommit combinator

described in §10.2.6.

for a channel of cancellation events. Both timeouts and cancellations are

important features for industrial-strength libraries like JUC and TBB, where

they sometimes necessitate code duplication. With reagents, it is not even

necessary for such support to be built into a library: a client can layer it on

a�er the fact, tailoring the library to their own needs.

10.2.4 Conjunction of reagents: sequencing and pairing

Choice o�ers a kind of disjunction on reagents.�ere are also two ways of

conjoining two reagents, so that the composed reagent has the e�ect of both
underlying reagents, atomically:

● End-to-end composition, via sequencing: >>A B
R S

R

S
*

A (B×C)B

C

if r: Reagent[A,B] and s: Reagent[B,C] then r >> s: Reagent[A,C].

● Side-by-side composition, via pairing:
if r: Reagent[A,B] and s: Reagent[A,C] then r * s: Reagent[A,B × C].

184 reagents

�ese combinators di�er only in information �ow. Each guarantees that

the atomic actions of both underlying reagents become a single atomic

action for the composition. For example, if s1 and s2 are both stacks, then

s1.pop >> s2.push is a reagent that will atomically transfer an element from

the top of one to the top of the other.�e reagent will block if s1 is empty.

Similarly, s1.pop * s2.pop will pop, in one atomic action, the top elements

of both stacks, or block if either is empty.

Here we again see the bene�ts of the reagent abstraction. Both of the

example combinations just mentioned work regardless of how the underlying
stacks are implemented. If both stacks use elimination backo�, the conjoined
operations will potentially use elimination on both simultaneously. �is

behavior is entirely emergent: it does not require any code on the part of the

stack author, and it does not require the stack client to know anything about

the implementation. Reagents can be composed in unanticipated ways.

Conjunctions provide a solution to the Dining Philosophers problem:21 21 Cf. Chapter 8.
to consume two resources atomically, one simply conjoins two reagents that

each consume a single resource. For example, if c and d are endpoints of type

Unit to A and B respectively, then swap(c) * swap(d) is a reagent that receives

messages on both endpoints simultaneously and atomically.�ere is no risk

of introducing a deadlock through inconsistent acquisition ordering, because

the reagents implementation is responsible for the ultimate acquisition order,

and will ensure that this order is globally consistent.

�e failure behavior of conjunctions is dual to that of disjunctions: if either
conjunct fails persistently, the entire conjunction fails persistently.

�e implementation details for conjunctions are discussed later (Chap-

ter 11), but a key point is that the performance cost is pay as you go. Single
atomic reagents like push and pop execute a single CAS—just like the standard

nonblocking algorithms they are meant to implement—even though these

operations can be combined into larger atomic operations.�e cost of con-

junction is only incurred when a conjoined reagent is actually used.�is is a

crucial di�erence from STM, which generally incurs overheads regardless of

the size of the atomic blocks.22 22 See Chapter 12 for more discussion.

10.2.5 Catalysts: passive reagents

�e ! operator invokes a reagent as a reactant: the invocation lasts for a single

reaction, and any messages the reagent sends are consumed by the reaction.

But sometimes it is useful for invocations to persist beyond a single reaction,

i.e., to act as catalysts. For example, zip creates a catalyst that merges input
from two endpoints and sends the resulting pairs to a third:23 23 Cf. the join pattern for pairing in §8.3.

def zip(in1: Endpoint[Unit, A],

in2: Endpoint[Unit, B],

out: Endpoint[A×B, Unit]) =

dissolve((swap(in1) * swap(in2)) >> swap(out))

the high-level combinators 185

�e dissolve function takes a Reagent[Unit, Unit] and introduces it as

a catalyst.24 Operationally, in this example, that just means sending unit- 24 For simplicity, we have not given a way to

cancel catalysts a�er they have been intro-

duced, but cancellation is easy to add.
carrying messages along in1 and in2 that are marked as “catalyzing,” and

hence are not consumed during reaction.�e upshot is that senders along

in1will see the catalyzing messages, look for messages along in2 to pair with,

and ultimately send messages along out (and symmetrically).

Catalysts are, of course, not limited to message passing.�e zip example

above could be rephrased in terms of arbitrary reagents rather than just

endpoints:

def zipR(in1: Reagent[Unit, A],

in2: Reagent[Unit, B],

out: Reagent[A×B, Unit]) = dissolve((in1 * in2) >> out)

As these examples suggest, one important use of catalysts is directing (in this

case, by “fusing” together) the �ow of information through channels or other

reagents.

Following the same progression we saw in Chapter 8, we can also de�ne a

“dual” to zipR, namely, an arbiter:

def arbiter(in1: Reagent[Unit, A],

in2: Reagent[Unit, B],

out: Reagent[A+B, Unit]) =

dissolve(((in1 >> lift(inl)) + (in2 >> lift(inr))) >> out)

Herewe employ the lift combinator to treat a Scala partial function as a kind

of “pure” reagent that does not access shared state or interact on channels.25 25 Nothing guarantees that the li�ed func-

tion actually is pure in this sense, which
opens the door to side-e�ects that are in-

visible to the reagent library. We will take

advantage of this fact later on (§10.5).

By using >> and lift together, we can wrap arbitrary transformations around

the input or output of a reagent.

When a choice is consumed as a reactant, exactly one of its branches is

used. But as a catalyst, a choice is not consumed, and so both of its branches
may be used repeatedly in reactions with other reagents. Consequently, there

is no semantic reason to dissolve a choice of reagents; dissolving them

individually is equivalent:

def arbiter’(in1: Reagent[Unit, A],

in2: Reagent[Unit, B],

out: Reagent[A+B, Unit]) = {

dissolve(in1 >> lift(inl) >> out)

dissolve(in2 >> lift(inr) >> out)

}

Catalysts could instead be expressed using an active thread that repeatedly
invokes a reagent as a reactant. But allowing direct expression through

dissolve is more e�cient (since it does not tie up a thread) and allows greater

parallelism (since, as with the zip example above, multiple reagents can react

with it in parallel).�e in�uence of the join calculus here is evident.

186 reagents

10.2.6 Post-commit actions

Reagents support “post commit actions”, which comprise code to be run

(for e�ect) a�er a reaction, e.g. code to signal or spawn another thread a�er
an operation completes. �e postCommit combinator (Figure 10.1) takes a

function from A to Unit and produces a Reagent[A,A]. �e post-commit

action will be recorded along with the input of type A, which is passed along

unchanged. Once the reaction completes, the action will be invoked on the

stored input. �e combinator is meant to be used in sequence with other

combinators that will produce the appropriate input. For example, the reagent

pop >> postCommit(println)will print the popped element froma stack a�er

the pop has completed.

10.3 translating join patterns

�roughout the discussion of reagents, we have emphasized connections to

and inspiration from the join calculus (and, in particular, the implementation

in Chapter 9). Now we are in a position to make the connection more clear

by (loosely26) translating join patterns into reagents. 26�ere are a number of technical is-

sues involved in a Russo-style API for

join patterns—e.g., not including parame-
ters from Unit-carrying channels—which

we gloss over here.

�e basic idea is that a join pattern c1(x1) & ⋯ & cn(xn) ▷ b can be
interpreted directly as a catalyst.27 �e join operator & is interpreted as a

27We are using the original notation for join

patterns, in which each pattern channels c i
with names x i for the messages along those
channels, and a body b in which the names
x i are bound (Fournet and Gonthier 1996).

conjunction *, the channel names c i as swap instances, and the body b as a
post-commit action. Altogether, the reagent corresponding to the pattern is

Jc1(x1) & ⋯ & cn(xn)▷ bK
≈ (swap(c1) * ⋯ * swap(cn)) >> postCommit((x1 , . . . , xn)⇒ b)

A set of join patterns governing a set of channels can all be written in this way

and dissolved as catalysts, which is equivalent to dissolving the choice of all

the patterns.

While the above translation captures the general idea, it only works for the

special case in which:

● all the channels in the join pattern are synchronous, and

● none of the channels expect a reply, i.e., their reply types are all Unit.

Asynchronous channels can be coded up using reagents,28 so to include one 28 e.g., TreiberStack (§10.2.1) or
MSQueue (§10.6).in a join pattern it is only necessary to use a reagent for receiving from

such a channel29 in place of swap on a synchronous channel. For a purely 29 e.g., pop (§10.2.1).
asynchronous chord, the body b can be wrapped with a thread spawn.
Handling replies on synchronous channels is, unfortunately,more di�cult.

Probably the best approach is the one outlined in Fournet and Gonthier

(2002), in which a “reply continuation” is passed as an additional component

of messages along synchronous channels.�e body b must then be wrapped
to send its return value along this channel.�at said, many of the circum-

stances that would require a synchronous reply in the pure join calculus can

be handled in a more direct way through reagents.

atomicity guarantees 187

�e translation can be carried out in the setting of a library using implicits

in Scala, or through advanced use of generics30 in C♯.�e broader point here 30 See Russo (2007) for details.

is to show how join patterns can be understood in terms of reagent combina-

tors. It should be noted, however, that not all aspects of the joins implementa-

tion are recovered through this encoding. For example, the message stealing

optimization (§9.5.3) is not included in the reagent implementation, and

would be di�cult to add. On the other hand, lazy message creation (§9.5.1)

is included for reagents (Chapter 11), and the specialization of asynchronous

Unit channels to counters is directly expressible via reagents.

10.4 atomicity guarantees

Because conjunction distributes over disjunction, every reagent built using

the core combinators (Figure 10.1) can be viewed as a disjunction of conjunc-

tions, where each conjunction contains some combination of updates and

swaps. For such a reagent, reactions atomically execute all of the conjuncts

within exactly one of the disjuncts.�is STM-like guarantee works well for

data structures that do not require traversal (§10.2.1) and for pure synchro-

nization (e.g., join patterns). It is, however, too strong for algorithms which
need read (or traverse) shared memory without requiring those reads to be

“visible,” i.e., , to participate in an atomic transaction.�e next section will
introduce computed reagents which allow invisible reads and writes, trading
weaker guarantees for better performance. Nevertheless, the visible reads,
writes, and synchronizations of these reagents are included in the above

atomicity guarantee, and thus even computed reagents are composable.

When reagents attempt to interact through message passing, their atomic-

ity becomes intertwined: they must react together in a single atomic step, or

not.�is requirement raises an important but subtle question: what should

happen when isolation and interaction con�ict? Consider two reagents that

interact over a channel, but also each update the same shared reference.
Atomicity demands that both reagents involved in the reaction commit

together in one step, but isolation for references demands that the updates

be performed in separate atomic steps!

�is is an interesting semantic question for which, at present, we do

not have a satisfying answer. One hopes that with su�cient application-

programming experience using reagents, an answer will emerge.

In the meantime, for both simplicity and performance, we consider such

situations to be illegal, and throw an exception when they arise; luckily, they
are dynamically detectable. In practice, this rules out only compositions

of certain operations within the same data structure, which are much less
common than compositions across data structures. It is also straightforward

to adopt an alternative approach, e.g. the one taken by Communicating
Transactions (discussed in Chapter 12), which treats isolation/interaction

con�icts as transient failures rather than as programming errors.

188 reagents

10.5 low-level and computational combinators

// Low-level shared state combinators

read: Ref[A] ⇒ Reagent[Unit, A]

cas: Ref[A] × A × A ⇒ Reagent[Unit, Unit]

// Computational combinators

computed: (A ⇀ Reagent[Unit, B]) ⇒ Reagent[A,B]

Figure 10.3:�e low-level and
computational combinators

10.5.1 Computed reagents

�e combinators introduced in §10.2 are powerful, but they impose a strict

phase separation: reagents are constructed prior to, and independently from,

the data that �ows through them. Phase separation is useful because it allows

reagent execution to be optimized based on complete knowledge of the

computation to be performed (see Chapter 11). But in many cases the choice

of computation to be performed depends on the input or other dynamic

data.�e computed combinator (Figure 10.3) expresses such cases. It takes a

partial function from A to Reagent[Unit,B] and yields a Reagent[A,B]. When

the reagent computed(f) is invoked, it is given an argument value of type A,

to which it applies the partial function f. If f is not de�ned for that input,

the computed reagent issues a persistent (blocking) failure, similarly to the

upd function. Otherwise, the application of f will yield another, dynamically-

computed reagent, which is then invoked with (), the unit value.

In functional programming terms, the core reagent combinators of §10.2

can be viewed in terms of arrows,31 which are abstract, composable compu- 31 Hughes (2000), “Generalising monads to

arrows”tations whose structure is statically evident. With the addition of computed,

reagents can also be viewed in terms ofmonads,32 which extend arrows with 32 Peyton Jones and Wadler (1993),

“Imperative functional programming”dynamic determination of computational structure.

10.5.2 Shared state: read and cas

Although the upd combinator is convenient, it is sometimes necessary towork

with shared state with a greater degree of control—especially when program-

ming with computed reagents. To this end, we include two combinators, read

and cas (see Figure 10.1), for working directly on Ref values. Together with

the computed combinator described in §10.5.1, read and cas su�ce to build
upd:

● �e read combinator is straightforward: if r has type Ref[A], then read(r)

has type Reagent[Unit, A] and, when invoked, returns a snapshot of r.

http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1145/158511.158524

the michael-scott queue 189

● �e cas combinator takes a Ref[A] and two A arguments, giving the

expected and updated values, respectively. Unlike its counterpart for F µ
cas,

the cas reagent does not yield a boolean result: a failure to CAS is transient
failure of the whole reagent, and therefore results in a retry.

10.5.3 Tentative reagents

Because choice is le�-biased, it can be used together with the remaining

combinators to express tentative reagents: if r is a Reagent[A,B] then r? is

a Reagent[A,Option[B]] de�ned by:

(r >> lift(Some)) + lift(_ ⇒ None)

�e tentative r? �rst tries r (wrapping its output with Some if successful) and,

only on failure, tries lift(_ ⇒ None), which always succeeds.�is allows a

reaction to be attempted, without retrying or blocking it when it fails.

10.6 the michael-scott queue

We close this chapter with a small case study: Michael and Scott (1996)’s

lock-free queue (§4.2). Our implementation strategy readily scales to more

complicated examples, such as concurrent skiplists or the lazy, lock-free

set algorithm.33 In all of these cases, we reap the usual bene�ts: a concise, 33 Herlihy and Shavit (2008), “�e Art of

Multiprocessor Programming”composable and extensible exposition of the algorithm.

Unlike a stack, in which all activity focuses on the head, queues have two

loci of updates.�at means, in particular, that the Refs used by its reagents

may vary depending on the current state of the queue, which requires us to

compute the necessary read, write, and update reagents. In addition, in order
to enqueue a node we may traverse some of the data structure, looking for

the tail—but the whole point of the algorithm is that this traversal does not
need to be part of a large atomic transaction. Rather, once we believe we have

located the tail, a single CAS will both perform our update and ensure that

the node is still the tail.
A key question arises: what happens when reagents that perform invisible

traversals are combined?

�e answer is perhaps the most compelling aspect of reagent composi-

tion. Each invisible traversal produces, as its result, some small but visible
reagent poised to perform an atomic operation—an operation that will both

validate the traversal and enact an update. Sequencing two such traversals

will compute (and sequence) two visible, validating reagents—a very small

atomic transaction compared to, say, what STM would produce with even

one traversal. Forthcoming commodity hardware, e.g., Intel’s Haswell, is

designed to support small transactions directly and e�ciently.

▸ Here is a brief review of theMichael-Scott algorithm.34�e queue 34 See §4.2 for a detailed account.

190 reagents

is represented as amutable linked list, with a sentinel node at the head (front)
of the queue.�e head pointer always points to the current sentinel node;

nodes are dequeued by a CAS to this pointer, just like Treiber stacks (but

lagged by one node).�e true tail of the queue is the unique node, reachable

from the head pointer, with a null next pointer; thanks to the sentinel, such

a node is guaranteed to exist. If the queue is empty, the same node will

be the head (sentinel) and tail. Finally, as an optimization for enqueing,

a “tail” pointer is maintained with the invariant that the true tail node is

always reachable from it.�e “tail” pointer may lag behind the true tail node,

however, which allows the algorithm to work using only single-word CAS

instructions.35 35 Otherwise, it would have to link in a node

and update the tail pointer in one step.

class MSQueue[A] {

private case class Node(data: A, next: Ref[Node])

private val initialSentinel = new Node(null)

private val head = new Ref(initialSentinel)

private val tail = new Ref(initialSentinel)

val tryDeq: Reagent[Unit, Option[A]] = upd(head) {

case (Node(_, Ref(n@Node(x, _))), ()) ⇒ (n, Some(x))

case (emp, ()) ⇒ (emp, None)

}

private def findAndEnq(n: Node): Reagent[Unit,Unit] =

read(tail) ! () match {

case ov@Node(_, r@Ref(null)) ⇒ // found true tail

cas(r, null, n) >> postCommit { cas(tail, ov, n)? ! () }

case ov@Node(_, Ref(nv)) ⇒ // not the true tail

cas(tail, ov, nv)? ! (); findAndEnq(n)

}

val enq: Reagent[A, Unit] = computed {

(x: A) ⇒ findAndEnq(new Node(x, new Ref(null)))

}

}

Figure 10.4:�e Michael-Scott queue,
using reagents

Our reagent-based implementation of the Michael-Scott queue is shown

in Figure 10.4.�e node representation is given as an inner case class. In Scala,
case classes provide two features we take advantage of. First, the parameters

to their constructors (here data and next) are automatically added as �nal

�elds to the class, which are initialized to the constructor argument values.

Second, they extend pattern matching through case so that instances can be

deconstructed. A pattern like case Node(d, n) matches any instance of the

node class, binding d to its data �eld and n to its next �eld.

�e tryDeq reagent is very similar to the tryPop reagent in TreiberStack,

modulo the sentinel node.�e reagent pattern matches on the sentinel node,

the michael-scott queue 191

ignoring its data �eld by using _, the wildcard.�e next �eld is thenmatched

to a nested pattern, Ref(n@Node(x, _)).�is pattern immediately reads the

current value of the reference stored in next, binds that value to n, and then

matches the pattern Node(x,_) against n. If the patternmatches—which it will

any time the next �eld of the sentinel is non-null—the node n becomes the

new head (and hence the new sentinel).

Since the location of the tail node is determined dynamically by the data

in the queue, the enq reagent must itself be determined dynamically. For enq,

we compute a dynamic reagent by �rst taking the given input x, creating a

node with that data, and then calling a private function findAndEnq that will

locate the tail of the queue and yield a reagent to update it to the new node.

Since findAndEnq is private and tail-recursive, Scala will compile it to a loop.

�e findAndEnq function searches for the true tail node (whose next

�eld is null) starting from the tail pointer, which may lag. To perform

the search, findAndEnq must read the tail pointer, which it does using the

read combinator.�ere is a subtle but important point here: this read occurs
while the �nal reagent is being computed. �at means, in particular, that the
read is not part of the computed reagent; it is a side-e�ect of computing the
reagent.�e distinction is important: such a read is e�ectively “invisible” to

the outer reagent being computed, and thus is not guaranteed to happen

atomically with it. As we explained above, invisible reads andwrites are useful

for avoiding compound atomic updates, but must be employed carefully to

ensure that the computed reagent provides appropriate atomicity guarantees.

Once the tail pointer has been read, its value is pattern-matched to

determine whether it points to the true tail. If it does, findAndEnq yields a

cas reagent (§10.5.2) that will update the next �eld of the tail node from

null to the new node. �e attached post-commit action attempts to catch

up the tail pointer through a cas, a�er the fact. Since the cas fails only if

further nodes have been enqueued by other concurrent threads, we perform

it tentatively (§10.5.3); it is not necessary or desirable to retry on failure.

If, on the other hand, the tail pointer is lagging, findAndEnq performs

an invisible cas to update it. Since it may be racing with other enqueuers to
catch up the tail, a failure to CAS is ignored here. Regardless of the outcome of

the cas, the findAndEnq function will restart from a freshly-read tail pointer.

Notice that in this case, an entire iteration of findAndEnq is executed with no

visible impact or record on the �nal computed reagent—there is no extended

redo log or compound atomic transaction. Only the �nal cas produced in the

�rst case of findAndEnq is visible.

11
Implementing reagents

“One of the joys of functional programming
is the way in which apparently-exotic theory
can have a direct and practical application,
and the monadic story is a good example.”

—Simon Peyton Jones, “Tackling the

awkward squad”

▸ Synopsis �is chapter walks through the implementation of reagents (in

Scala) in signi�cant detail, which reveals the extent to which reagents turn

patterns of scalable concurrency into a general algorithmic framework. It

includes benchmarking results comparingmultiple reagent-based collections

to their hand-written counterparts, as well as to lock-based and STM-based

implementations. Reagents perform universally better than the lock- and

STM-based implementations, and are competitive with hand-written lock-

free implementations.

11.1 overview

When invoked, reagents attempt to react, which is conceptually a two-phase
process: �rst, the desired reaction is built up; second, the reaction is atomi-

Persistent failure

Transient failure

Phase 1 Phase 2
Accumulate CASes Attempt k-CAS

STOP

cally committed.We emphasize “conceptually” because reagents are designed

to avoid this kind of overhead in the common case; it is crucial that reagents

used to express scalable concurrent algorithms do not generate tra�c to

sharedmemory beyond what the algorithms require. We �rst discuss the gen-

eral case (which imposes overhead) but return momentarily to the common

(no overhead) case.

An attempt to react can fail during either phase. A failure during the �rst

phase, i.e. a failure to build up the desired reaction, is always a persistent
failure (§10.2.1). Persistent failures indicate that the reagent cannot proceed

given current conditions, and should therefore block until another thread

intervenes and causes conditions to change.1 On the other hand, a failure 1 Cf. §2.2.3.
during the second phase, i.e. a failure to commit, is always a transient
failure (§10.2.1). Transient failures indicate that the reagent should retry, since

the reaction was halted due to active interference from another thread. In

general, an in-progress reaction is represented by an instance of the Reaction

class, and contains three lists: the CASes to be performed, the messages to be

consumed,2 and the actions to be performed a�er committing. A Reaction 2Message consumption ultimately boils

down to additional CASes.thus resembles the redo log used in some STM implementations.3
3 Tim Harris et al. (2010), “Transactional
Memory, 2nd edition”In the common case that a reagent performs only one visible (§10.5) CASor

message swap, those components of the reaction are not necessary and hence

are not used. Instead, the CAS or swap is performed immediately, compress-

ing the two phases of reaction. Aside from avoiding extra allocations, this

key optimization means that in the common case a cas or upd in a reagent

193

http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011

194 implementing reagents

leads to exactly one executed CAS during reaction, with no extra overhead.4 4 An important implication is that the win-

dow of time between taking a snapshot of

shared state and performing a CAS on it is

kept small.

When a reaction encompasses multiple visible CASes or message swaps, a

costlier5 kCAS protocol must be used to ensure atomicity. We discuss the
5 Currently we implement kCAS in so�ware,
but upcoming commodity hardware is de-

signed to support it primitively, at least for

small k.

kCAS protocol in §11.4, and the common case single CAS in §11.5.1.

▸ In the implementation, Reagent[A,B] is an abstract class all of whose sub-

classes are private to the library.�ese private subclasses roughly correspond

to the public combinator functions, which are responsible for instantiating

them; each subclass instance stores the arguments given to the combinator

that created it.6 6�us, reagents are an abstract data type

whose instances are created using “smart

constructors”—a very common idiom in

functional programming.

�e one combinator that doesnot have a corresponding Reagent subclass is
sequencing >>. Instead, the reagent subclasses internally employ continuation-
passing style (CPS): each reagent knows and has control over the reagents
that are sequenced a�er it, which is useful for implementing backtracking

choice.7 �us, instead of representing the sequencing combinator >> with 7 CPS is also needed for message passing:

since a reagent will try to synchronize with

any message it �nds in a channel’s bag, swap

is also a form of backtracking choice.

its own class, each reagent records its own continuation k, which is another

reagent. For example, while the cas combinator produces a reagent of type

Reagent[Unit,Unit], the corresponding CAS class has a continuation parame-

ter k of type Reagent[Unit,R], and CAS extends Reagent[Unit,R] rather than

Reagent[Unit,Unit].�e R stands for (�nal) result.�e combinator functions

are responsible for mapping from the user-facing API, which does not use

continuations, to the internal reagent subclasses, which do. Each reagent

initially begins with the trivial “halt” continuation, Commit, whose behavior

is explained in §11.4.

Each subclass of Reagent[A,B]must implement its abstract methods:

abstract class Reagent[-A, +B] { // the +/- are variance annotations

def >>[C](next: Reagent[B,C]): Reagent[A,C]

def canFail: Boolean // can this reagent fail?

def canSync: Boolean // can this reagent send a message?

def tryReact(a: A, rx: Reaction, offer: Offer[B]): Any

}

�e tryReact method takes the input a (of type A) to the reagent and the

reaction rx built up so far, and either:8 8�e Any type in Scala lies at the top of the

subtyping hierarchy, akin to Object in Java.

Here we are using Any to represent a union

of the type B with the type Failure, to avoid

extra allocation.

● completes the reaction, returning a result (type B), or

● fails, returning a failure (type Failure). �e class Failure has exactly

two singleton instances, Block and Retry, corresponding to persistent and

transient failures respectively.

�e remaining argument, offer, is used for synchronization and communi-

cation between reagents, which we explain next.

offers 195

11.2 offers

Message passing between reagents is synchronous, meaning that both

reagents take part in a single, common reaction. In the implementation, this

works by one reagent placing an o�er to react in a location visible to the
other.9�e reagent making the o�er either spinwaits or blocks until the o�er 9 Cf. messages in Chapter 9.
is ful�lled;10 if it spinwaits, it may later decide to withdraw the o�er. �e 10 It spinwaits i� it encountered a transient

failure at any point during the reaction.reagent accepting the o�er sequences the accumulated Reactions of both

reagents, and attempts to commit them together. Ful�lling the o�er means,

in particular, providing a �nal “answer” value that should be returned by the

reagent that made the o�er.11 Each o�er includes a status �eld, which is either 11�e �nal answer will be the value passed

the o�er would have passed to its own

Commit continuation.
Pending, Rescinded, or a �nal answer. Hence, the Offer class is parameterized

by the answer type; a Reagent[A,B]will use Offer[B].When ful�lling an o�er,

a reagent CASes its status from Pending to the desired �nal answer.

O�ers follow a very simple protocol (Chapter 4):

�; ● Pending; ○

Rescinded; ●

Ful�lled; ○

Due to the use of tokens, only the thread that originally created an o�er can

rescind it.

In addition to providing a basic means of synchronization, the o�er

data structure is used to resolve external choices. For example, the reagent

swap(ep1) + swap(ep2) may resolve its choices internally by ful�lling an

existing o�er on ep1 or ep2; but if no o�ers are available, the reagent will post

a single o�er to both endpoints, allowing the choice to be resolved externally.
Reagents attempting to consume that o�er will race to change a single, shared

status �eld, thereby ensuring that such choices are resolved atomically.

O�ers are made as part of the same tryReact process that builds and

commits reactions.�e offer argument to tryReact is nullwhen the reaction

is �rst attempted; reagents make o�ers lazily, just as join patterns create

messages lazily (§9.5.1), as we will see below.

11.3 the entry point: reacting

�e code for performing a reaction is given in the ! method de�nition for

Reagent[A,B], shown in Figure 11.1.�is method provides two generalized

versions of the optimistic retry loops we described in Chapter 2.�e retry

loops arewritten as local, tail-recursive functions, which Scala compiles down

to loops.

�e �rst retry loop, withoutOffer, attempts to perform the reaction

without making visible o�ers to other reagents. It may, however, �nd and

consume o�ers from other reagents as necessary for message passing.12 To 12 Cf. §9.5.1.
initiate the reaction, withoutOffer calls the abstract tryReact method with

196 implementing reagents

def !(a: A): B = {

val backoff = new Backoff

def withoutOffer(): B =

tryReact(a, empty, null) match {

case Block ⇒ withOffer()

case Retry ⇒
backoff.once()

if (canSync) withOffer() else withoutOffer()

case ans ⇒ ans.asInstanceOf[B]

}

def withOffer(): B = {

val offer = new Offer[B]

tryReact(a, empty, offer) match {

case (f: Failure) ⇒
if (f == Block) park() else backoff.once(offer)

if (offer.rescind) withOffer() else offer.answer

case ans ⇒ ans.asInstanceOf[B]

}

}

withoutOffer()

}

Figure 11.1:�e !method, de�ned in
Reagent[A,B]

the input a, an empty reaction to start with, and no o�er. If the reaction

fails in the �rst phase (a persistent failure, represented by Block), the next

attemptmust bemade with an o�er, to set up the blocking/signaling protocol.

If the reaction fails in the second phase (a transient failure, represented by

Retry), there is likely contention over shared data. To reduce the contention,

withoutOffer performs one cycle of exponential backo� before retrying. If

the reagent includes communication attempts, the retry is performed with

an o�er, since doing so increases chances of elimination (§10.2.3) without

further contention. Finally, if both phases of the reaction succeed, the �nal

answer ans is returned.

�e second retry loop, withOffer, is similar, but begins by allocating an

Offer object to make visible to other reagents. Once the o�er has been made,

the reagent can actually block when faced with a persistent failure; the o�er

will ensure that the attempted reaction is visible to other reagents, whichmay

complete it, ful�lling the o�er and waking up the blocked reagent. Blocking

is performed by the parkmethod provided by Java’s LockSupport class.13 On 13�e park/unpark methods work similarly

to the signals we used in Chapter 9, but they

are associated with each thread and may

su�er from spurious wakeups.

a transient failure, the reagent spinwaits, checking the o�er’s status. In either

case, once the reagent has �nished waiting it attempts to rescind the o�er,

which will fail if another reagent has ful�lled the o�er.14 14 Even if the reagent had blocked, it is still

necessary to check the status of its o�er,

because park allows spurious wakeups.
Initially, the reaction is attempted using withoutOffer, representing opti-

mism that the reaction can be completed without making a visible o�er.

the exit point: committing 197

11.4 the exit point: committing

As mentioned in §11.2, the initial (outermost) continuation for reagents is an

instance of Commit, which represents an “empty” reagent:

class Commit[A] extends Reagent[A,A] {

def >>[B](next: Reagent[A,B]) = next

def canFail = false

def canSync = false

def tryReact(a: A, rx: Reaction, offer: Offer[A]) =

if (offer != null && !offer.rescind) offer.answer

else if (rx.commit) a

else Retry

}

�e emptiness of Commit is re�ected in the �rst three methods it de�nes: it

is an identity for sequencing, and it does not introduce any failures or syn-
chronizations. Any failure or synchronization must be due to some reagent

sequenced prior to the Commit reagent, which always comes last.

�e tryReactmethod of Commitmakes the phase-transition from building

up a Reaction object to actually committing it. If the reagent has made an

o�er, but has also completed the �rst phase of reaction, the o�er must be

rescinded before the commit phase is attempted—otherwise, the reaction

could complete twice. As with the !method, the attempt to rescind the o�er is

in a race with other reagents that may be completing the o�er. If Commit loses

the race, it returns the answer provided by the o�er. Otherwise, it attempts to

commit the reaction, and if successful simply returns its input, which is the

�nal answer for the reaction.

Committing a reaction requires a kCAS operation: k compare and sets
must be performed atomically.�is operation, which forms the basis of STM,

is in general expensive and not available inmost hardware.15�ere are several 15�ough, as we have noted several times,

hardware support is coming and may even-

tually be commonplace.
so�ware implementations that provide nonblocking progress guarantees.16

16 Fraser and Tim Harris (2007); Luchangco

et al. (2003); Attiya and Hillel (2008)

Reagents that perform a multiword CAS will inherit the progress properties

of the chosen implementation.

For our prototype implementation, we have opted to use an extremely

simple implementation that replaces each location to be CASed with a

sentinel value, essentially locking the location. As the Reaction object is

assembled, locations are kept in a consistent global order and hence avoids

dead- and live-lock within the kCAS implementation.�e advantage of this
implementation, other than its simplicity, is that is has no impact on the

performance of single-word CASes to references, which we expect to be the

common case; such CASes can be performed directly, without any awareness

of the kCAS protocol. Our experimental results in §2.4 indicate that even
this simple kCAS implementation provides reasonable performance—much

198 implementing reagents

better than STM or coarse-grained locking—but a more sophisticated kCAS
would likely do even better.

11.5 the combinators

11.5.1 Shared state

Reads are implemented by the nearly trivial Read class:

class Read[A,R](ref: Ref[A], k: Reagent[A,R])

extends Reagent[Unit,R] {

def >>[S](next: Reagent[R,S]) = new Read[A,S](ref, k >> next)

def canFail = k.canFail

def canSync = k.canSync

def tryReact(u: Unit, rx: Reaction, offer: Offer[R]) = {

if (offer != null) ref.addOffer(offer)

k.tryReact(ref.get(), rx, offer)

}

}

A read introduces neither failures nor synchronization, but its continuation

might, so canFail and canSync defer to the values in k.�e role of reading

in tryReact is fairly straightforward: absent an o�er, we simply perform the

read and pass its result to the continuation k, with an unchanged reaction

argument rx. However, if an o�er is present, it is recorded in a bag of o�ers

associated with the reference (via addOffer). Although the read itself cannot

block, the value it reads could be the proximal cause of blocking in the

continuation k.�us, if the continuation is preparing to block (as evidenced

by the non-null o�er), logging the o�er with the read reference will ensure

that the entire reagent is woken up if the reference changes. Once the o�er

is rescinded or ful�lled, it is considered “logically removed” from the bag of

o�ers stored with ref, and will be physically removed when convenient.17 17�is is essentially the same approach we

used to remove messages in Chapter 9.While the Read class is private to the reagent library, the corresponding

read combinator is exported:

def read[A](ref: Ref[A]): Reagent[Unit, A] =

new Read[A,A](ref, new Commit[A])

All of the primitive reagent combinators are de�ned in this style, using the

Commit reagent as the (empty) continuation. �e result type R of the Read

reagent is thus initially set at A when reading a Ref[A].

�e implementation of the cas combinator is given by the CAS class, shown

in Figure 11.2. Its tryReact method is fairly simple, but it illustrates a key

optimization we have mentioned several times: if the reaction so far has no

CASes, and the continuation is guaranteed to succeed, then the entire reagent

the combinators 199

class CAS[A,R](ref: Ref[A], ov: A, nv: A, k: Reagent[Unit,R])

extends Reagent[Unit,R] {

def >>[S](next: Reagent[R,S]) = new CAS[A,S](ref, ov, nv, k >> next)

def canFail = true

def canSync = k.canSync

def tryReact(u: Unit, rx: Reaction, offer: Offer[R]) =

if (!rx.hasCAS && !k.canFail) // can we commit immediately?

if (ref.cas(ov, nv)) // try to commit

k.tryReact((), rx, offer) // successful; k MUST succeed

else Retry

else // otherwise must record CAS to reaction log, commit in k

k.tryReact((), rx.withCAS(ref, ov, nv), offer)

}

Figure 11.2:�e CAS class

is performing a single CAS and can thus attempt the CAS immediately.�is

optimization eliminates the overhead of creating a new Reaction object and

employing the kCAS protocol, and it means that lock-free algorithms like
TreiberStack and MSQueue behave just like their hand-written counterparts.

If, on the other hand, the reagentmay perform a kCAS, then the current cas is
recorded into a new Reaction object,18 which is passed to the continuation k. 18�e withCAS method performs a func-

tional update, i.e., returns a new Reaction

object. It is important not to mutate the

reaction objects: reagents use backtracking

choice (§11.5.3), and at various points in

the branches of such a choice reaction ob-

jects may be used to advertise synchroniza-

tions (§11.5.2).

In either case, the continuation is invoked with the unit value as its argument.

11.5.2 Message passing

We represent each endpoint of a channel as a lock-free bag.19 �e lock-
19 It is possible to build the bag itself using

non-blocking reagents, thereby bootstrap-

ping the library.

freedom allows multiple reagents to interact with the bag in parallel; the fact

that it is a bag rather than a queue trades a weaker ordering guarantee for

increased parallelism, but any lock-free collection would su�ce.20 20�e tradeo�s here are essentially the same

as in Chapter 9.�e endpoint bags store messages, which contain o�ers along with addi-

tional data from the sender:

case class Message[A,B,R](

payload: A, // sender’s actual message

senderRx: Reaction, // sender’s checkpointed reaction

senderK: Reagent[B,R], // sender’s continuation

offer: Offer[R] // sender’s offer

)

Each message is essentially a checkpoint of a reaction in progress, where the

reaction is blocked until the payload (of type A) can be swapped for a dual

payload (of type B). Hence the stored sender continuation takes a B for input;

200 implementing reagents

it returns a value of type R, whichmatches the �nal answer type of the sender’s

o�er.

�e core implementation of swap is shown in the Swap class in Figure 11.3.

If an o�er is being made, it must be posted in a newmessage on the endpoint

before any attempt is made to react with existing o�ers.�is ordering guaran-

tees that there are no lost wakeups: each reagent is responsible only for those

messages posted prior to it posting its own message.21 On the other hand, if 21�e design rationale and key safety/live-

ness properties here are exactly the same as

those in Chapter 9.
there is no o�er, Swap attempts to complete by consuming a message on the

dual endpoint without ever creating (or publishing) its ownmessage—exactly

like the lazy message creation of §9.5.1.

Once the o�er (if any) is posted, tryReact peruses messages on the dual

endpoint using the tail-recursive loop, tryFrom.�e loop navigates through

the dual endpoint’s bag using a simple cursor, which will reveal at least those

messages present prior to the reagent’s own message being posted to its

endpoint. If a dual message is found, tryFrom attempts to complete a reaction

involving it. To do this, it must merge the in-progress reaction of the dual
message with its own in-progress reaction:

● �e ++ operation on a pair of Reaction produces a new reaction with all of

their CASes and post-commit actions.

● �e SwapK inner class is used to construct a new continuation for the dual

message.�is new continuation uses the withFulfillmethod of Reaction

to record a ful�llment22 of the dual message’s o�er with the �nal result of 22 Ful�llment includes waking the reagent if

it is blocked on the o�er.the reagent in which that dual message was embedded.

● When SwapK is invoked as part of a reaction, it invokes the original

continuation k with the payload of the dual message.

● If the reaction is successful, the �nal result is returned (and the result for
the other reagent is separately written to its o�er status). Recall that, in

this case, the Commit reagent will �rst rescind the offer of Swap.tryReact,
if any.�us, if Swap had earlier advertised itself through its own message,

it removes that advertisement before instead consuming an advertised

message on the dual endpoint.23 Just as in Chapter 9 consuming amessage 23 Swap may fail to rescind its message, but

only if some other thread has ful�lled its of-

fer; in this case, Commit aborts the attempt to

consume amessage on the dual channel and

simply returns the result from the ful�lling

thread.

logically removed it, here rescinding or ful�lling the o�er associated with

a message logically removes the message from the bag.

● If the reaction fails, tryFrom continues to look for other messages. If
no messages remain, swap behaves as if it were a disjunction: it fails

persistently only if all messages it encountered led to persistent failures.
�e failure logic here closely resembles that of the retry �ag in §9.3.

the combinators 201

class Swap[A,B,R](ep: Endpoint[A,B], k: Reagent[B, R])

extends Reagent[A,R] {

def >>[S](next: Reagent[R,S]) = new Swap[A,S](ep, k >> next)

def canFail = true

def canSync = true

// NB: this code glosses over some important details

// discussed in the text

def tryReact(a: A, rx: Reaction, offer: Offer[R]) = {

if (offer != null) // send message if so requested

ep.put(new Message(a, rx, k, offer))

def tryFrom(cur: Cursor, failMode: Failure): Any = {

cur.getNext match {

case Some(msg, next) ⇒
val merged =

msg.senderK // complete sender’s continuation

>> new SwapK(msg.payload, // then complete our continuation

msg.offer)

merged.tryReact(a, rx ++ msg.senderRx, offer) match {

case Retry ⇒ tryFrom(next, Retry)

case Block ⇒ tryFrom(next, failMode)

case ans ⇒ ans

}

case None ⇒ failMode

}

}

tryFrom(ep.dual.cursor, Block) // attempt reaction

}

// lift our continuation to a continuation for the dual sender

class SwapK[S](dualPayload: B, dualOffer: Offer[S])

extends Reagent[S,R] {

def >>[T](next: Reagent[R,T]) = throw Impossible // unreachable

def canFail = true

def canSync = k.canSync

def tryReact(s: S, rx: Reaction, myOffer: Offer[S]) = {

k.tryReact(dualPayload, rx.withFulfill(dualOffer, s), myOffer)

}

}

}

Figure 11.3:�e Swap class

202 implementing reagents

�e code we have given for Swap glosses over some corner cases that a full

implementation must deal with. For example, it is possible for a reagent to

attempt to swap onboth sides of a channel, but it should avoid ful�lling its own

o�er in this case. Similarly, if a reagent swaps on the same channel multiple

times, the implementation should avoid trying to consume the samemessage

on that channel multiple times.

11.5.3 Disjunction: choice

�e implementation of choice is pleasantly simple:

class Choice[A,B](r1: Reagent[A,B], r2: Reagent[A,B])

extends Reagent[A,B] {

def >>[C](next: Reagent[B,C]) =

new Choice[A,C](r1 >> next, r2 >> next)

def canFail = r1.canFail || r2.canFail

def canSync = r1.canSync || r2.canSync

def tryReact(a: A, rx: Reaction, offer: Offer[B]) =

r1.tryReact(a, rx, offer) match {

case Retry ⇒ r2.tryReact(a, rx, offer) match {

case (_: Failure) ⇒ Retry // must retry r1

case ans ⇒ ans

}

case Block ⇒ r2.tryReact(a, rx, offer)

case ans ⇒ ans

}

}

Choice attempts a reaction with either of its arms, trying them in le� to right

order. As explained in §10.2.3, a persistent failure of choice can only result

from a persistent failure of both arms.24�e right arm is tried even if the le� 24�e accumulation of the “Retry” signal

here is reminiscent of the retry �ag in §9.3.arm has only failed transiently.

11.5.4 Conjunction: pairing and sequencing

To implement the pairing combinator *, we �rst implement combinators

first and second that li� reagents into product types; see Figure 11.4.�ese

combinators are associated with arrows25 in Haskell, and are useful for 25 Hughes (2000), “Generalising monads to

arrows”building up complex wiring diagrams.

def first[A,B,C] (r: Reagent[A,B]): Reagent[A×C, B×C] =

new First(r, new Commit[B×C])

def second[A,B,C](r: Reagent[A,B]): Reagent[C×A, C×B] =

new Second(r, new Commit[C×B])

http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

the combinators 203

class First[A,B,C,R](r: Reagent[A,B], k: Reagent[B×C,R])

extends Reagent[A×C,R] {

def >>[S](next: Reagent[R,S]) = new First[A,B,C,S](r, k >> next)

def canFail = r.canFail || k.canFail

def canSync = r.canSync || k.canSync

def tryReact(both: A×C, rx: Reaction, offer: Offer[R]) =

(r >> Lift(b ⇒ (b, both._2)) >> k).tryReact(both._1, rx, offer)

}

// Second is defined symmetrically

Figure 11.4: Arrow-style li�ing into
product types

With them in hand, we can de�ne a pair combinator26 quite easily. �e *
26�is combinator would be called &&&, or

“fanout”, in Haskell’s arrow terminology.method on reagents is just an alias for the pair combinator, to support in�x

syntax.

def pair[A,B,C](r1: Reagent[A,B], r2: Reagent[A,C]): Reagent[A,B×C] =

lift(a ⇒ (a, a)) >> first(r1) >> second(r2)

11.5.5 Computational reagents

�e lift combinator, de�ned in Figure 11.5 by the Lift class, is the simplest

reagent: it blocks when the function to li� is unde�ned, and otherwise applies

the function and passes the result to its continuation.

class Lift[A,B,R](f: A ⇀ B, k: Reagent[B,R])

extends Reagent[A,R] {

def >>[S](next: Reagent[R,S]) = new Lift[A,B,S](c, k >> next)

def canFail = k.canFail

def canSync = k.canSync

def tryReact(a: A, rx: Reaction, offer: Offer[R]) =

if (f.isDefinedAt(a)) k.tryReact(f(a), rx, offer)

else Block

}

Figure 11.5:�e Lift class

�e implementation of computed reagents (Figure 11.6) is exactly as de-

scribed in §10.5: attempt to execute the stored computation c on the argument

a to the reagent, and invoke the resulting reagent with a unit value. If c

is not de�ned at a, the computed reagent issues a persistent failure. �e

implementation makes clear that the reads and writes performed within the

computation c are invisible: they do not even have access to the Reaction

object, and so they cannot enlarge the atomic update performed when it is

committed.

204 implementing reagents

class Computed[A,B,R](c: A ⇀ Reagent[Unit,B], k: Reagent[B,R])

extends Reagent[A,R] {

def >>[S](next: Reagent[R,S]) = new Computed[A,B,S](c, k >> next)

def canFail = true // must be conservative

def canSync = true // must be conservative

def tryReact(a: A, rx: Reaction, offer: Offer[R]) =

if (c.isDefinedAt(a)) (c(a) >> k).tryReact((), rx, offer)

else Block

}

Figure 11.6:�e Computed class

11.6 catalysis

�us far, our survey of the reagent implementation has focused wholly on

reactants. What about catalysts?

It turns out that very little needs to be done to add support for the dissolve

operation. Catalysts are introduced by invoking tryReactwith an instance of

a special subclass of Offer.�is “catalyzing” subclass treats “ful�llment” as a

no-op—and because it is never considered ful�lled, the catalyst is never used

up. Because ful�llment is a no-op, multiple threads can react with the catalyst

in parallel.

11.7 performance

11.7.1 Methodology and benchmarks

Aswementioned inChapter 9, scalable concurrent data structures are usually

evaluated by targetted microbenchmarking, with focus on contention e�ects

and �ne-grained parallel speedup.27 In addition to those basic aims, we wish 27Mellor-Crummey and Scott 1991; Michael

and Scott 1996; Herlihy, Luchangco, Moir,

and W.N. N Scherer, III 2003; William N.

Scherer, III and Scott 2004; Hendler et al.
2004; Fraser and Tim Harris 2007; Ceder-

man and Tsigas 2010; Hendler et al. 2010

to evaluate (1) the extent to which reagent-based algorithms can compete

with their hand-built counterparts and (2) whether reagent composition is

a plausible approach for scalable atomic transfers.

To this end, we designed a series of benchmarks focusing on simple lock-

free collections, where overhead from reagents is easy to gauge. Each bench-

mark consists of n threads running a loop, where in each iteration they apply
one ormore atomic operations on a shared data structure and then simulate a

workload by spinning for a short time. For a high contention simulation, the

spinning lasts for 0.25µs on average, while for a low contention simulation,
we spin for 2.5µs.
In the “PushPop” benchmark, all of the threads alternate pushing and

popping data to a single, shared stack. In the “StackTransfer” benchmark,

there are two shared stacks, and each thread pushes to one stack, atomically

transfers an element from that stack to the other stack, and then pops

performance 205
�

ro
ug

hp
ut
:
it
e
ra
ti
o
n
s/
µs

(b
ig
g
e
r
is
b
e
tt
e
r)

� � �� ��

�

�

�

�

������������������������

� � �� ��

��

���

���

�����������������������

� � �� ��

�

�

�

�

�

������������������������������

� � �� ��

��

���

���

���

���

�����������������������������

�reads (on 16-way machine)

Figure 11.7: Benchmark results for
stacks

an element from the second stack; the direction of movement is chosen

randomly.�e stack benchmarks compare our reagent-based TreiberStack

to (1) a hand-built Treiber stack, (2) amutable stack protected by a single lock,

and (3) a stack using STM.

�e “EnqDeq” and “QueueTransfer” benchmarks are analogous, but work

with queues instead. �e queue benchmarks compare our reagent-based

MSQueue to (1) a hand-built Michael-Scott queue, (2) a mutable queue pro-

tected by a lock, and (3) a queue using STM.

For the transfer benchmarks, the hand-built data structures are dropped,

since they do not support atomic transfer; for the lock-based data structures,

we acquire both locks in a �xed order before performing the transfer.

We used the Multiverse STM, a sophisticated open-source implementa-

tion of Transaction Locking II28 which is distributed as part of the Akka 28 Dave Dice et al. (2006), “Transactional
locking II”package for Scala. Our benchmarks were run on a 3.46Ghz Intel Xeon X5677

(Westmere) with 32GB RAM and 12MB of shared L3 cache.�e machine has

two physical processors with four hyperthreaded cores each, for a total of 16

hardware threads. L1 and L2 caches are per-core.�e so�ware environment

includes Ubuntu 10.04.3 and the Hotspot JVM 6u27.

http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14

206 implementing reagents
�

ro
ug

hp
ut
:
it
e
ra
ti
o
n
s/
µs

(b
ig
g
e
r
is
b
e
tt
e
r)

� � �� ��

�

�

�

�����������������������

� � �� ��

��

���

���

����������������������

� � �� ��

�

�

�

������������������������������

� � �� ��

��

��

���

�����������������������������

�reads (on 16-way machine)

Figure 11.8: Benchmark results for
queues

11.7.2 Analysis

�e results are shown in Figures 11.7 and 11.8; the x-axes show thread counts,

while the y-axes show throughput (so larger numbers are better).�e results

show that reagents can plausibly compete with hand-built concurrent data

structures, while providing scalable composed operations that are rarely

provided for such data structures.

Just as with our join pattern benchmarks (§9.8), we are mainly interested

in the slopes of these graphs, which provide an indicator of scalability. One

immediately noticeable feature of the slope on most of the graphs is a

smaller incline (or even momentary plateau) at 8 threads, visible for the

faster implementations but not so for the slower ones.�e likely culprit is

hyperthreading: the machine only has 8 actual cores, each of which attempts

to share processing resources between two hardware threads. In addition,

at 8 or more threads the pigeonhole principle kicks in: at least one thread

is competing to be preemptively scheduled onto a single core with either

another worker thread, or with OS services.

Aside from the changes at 8 threads, the benchmarks tell a consistent story:

the reagent-based data structures perform universally better than the lock-

performance 207

or STM-based data structures.�ey scale comparably with hand-built �ne-

grained data structures at low contention. For high contention, scalability is

comparable for the queue, but for the stack reagents do not scale as well as the

hand-written algorithm. Since the algorithm being used is identical for the

reagent-based and hand-built stack, the reason for the di�erencemust be due

to the interpretive overhead in executing the reagent. Interpretive overhead

occurs in our Scala implementation in the use of dynamic dispatch during

reagent execution. While the HotSpot compiler is generally good at inlining

or caching dynamic dispatched in hot loops, the functional programming

idioms we use in our Scala code can sometimes thwart these optimizations.29 29With the forthcoming introduction of

lambda expressions for Java, the HotSpot

JIT’s ability to optimize functional program-

ming idioms is likely to improve.

On the other hand, as soon as the algorithm becomes more complex (e.g., for
the queue), these overheads are dwarfed by other costs.

12
Related work: expressing concurrency

“Don’t worry about people stealing your ideas.
If your ideas are any good, you’ll have to ram
them down people’s throats.”

—Howard Aiken

Join patterns and reagents are just two points in a large design space,

both in terms of design and implementation strategy. �is chapter brie�y

surveys the closest neighbors along three axes: composable concurrency

constructs (§12.1), implementations of join patterns (§12.2), and scalable

synchronization (§12.3).

12.1 composable concurrency

12.1.1 Concurrent ML

12.1.1.1▸ Design

ConcurrentML1 (CML)was designed to resolve an apparent tension between 1 Reppy (1991), “CML: A higher concurrent

language”abstraction and choice: a synchronization protocol can be encapsulated as a

function, but doing so makes it impossible to e.g., take the external choice
between two such protocols. �e solution is higher-order concurrency, a
code-as-data approach in which synchronous message-passing protocols are

represented as events—an abstract data type. CML’s events are built up from
combinators, including a choice combinator, communication combinators,

and combinators for arbitrary computations not involving communication.

Reagents are clearly in�uenced by the design of CML’s events, and include

variants of CML’s core event combinators (communication and choice). But

where CML is aimed squarely at capturing synchronous communication

protocols, reagents are designed for writing and tailoring �ne-grained con-

current data structures and synchronization primitives. �is di�erence in

motivation led us to include a number of additional combinators for dealing

with shared state and expressing join patterns.

12.1.1.2▸ Implementation

Our implementation of join patterns and reagents both draw some inspira-

tion from Reppy, Russo and Xiao’s Parallel CML (PCML), a scalable imple-

mentation of CML.2�e di�culty in implementing CML is, in a sense, dual 2 Reppy et al. (2009), “Parallel concurrent
ML”to that of the join calculus: disjunctions of events (rather than conjunctions

of messages) must be resolved atomically. PCML implements disjunction

(choice) by adding a single, shared event to the queue of each involved chan-
nel. Events have a “state” similar to our message statuses; event “resolution” is

performed by an optimistic protocol that uses CAS to claim events.

209

http://dx.doi.org/10.1145/113445.113470
http://dx.doi.org/10.1145/113445.113470
http://books.google.com/books?vid=ISSN03621340
http://books.google.com/books?vid=ISSN03621340

210 related work: expressing concurrency

�e PCML protocol is, however, much simpler than the protocol we have

presented for join patterns: in PCML, events are resolved while holding a

channel lock. In particular, if an event is o�ering a choice between sending

on channel A and receiving on channel B, the resolution code will �rst lock
channel Awhile looking for partners, then (if no partners are found) unlock
A and lock channel B. �ese channel locks prevent concurrent changes
to channel queues, allowing the implementation to avoid subtle questions

about when it is safe to stop running the protocol—exactly the questions we

address in Chapter 9.�e tradeo� for this simplicity is, in principle, reduced

scalability under high contention due to reduced concurrency. Although we

have not performed a head-to-head comparison of PCML against a �ner-

grained implementation, our experimental results for the highly optimized

lock-based joins suggest that locking will be a scalability bottleneck for

contended channels in PCML.

12.1.2 So�ware transactional memory

So�ware transactional memory (STM) was originally intended “to provide a

general highly concurrentmethod for translating sequential object implemen-

tations into non-blocking ones”.3�is ambitious goal has led to a remarkable 3 Shavit and Touitou (1997), “So�ware

transactional memory”research literature, which has been summarized in textbook form.4 Much
4 Tim Harris et al. (2010), “Transactional
Memory, 2nd edition”

of the research is devoted to achieving scalability on multiprocessors or

multicores, sometimes by relaxing consistency guarantees or only providing

obstruction-freedom rather than lock-freedom.5 5 Herlihy, Luchangco, Moir, and

W.N. N Scherer, III (2003), “So�ware

transactional memory for dynamic-sized

data structures”12.1.2.1▸ Join patterns and STM

In some ways, the join calculus resembles STM: it allows a programmer

to write a kind of “atomic section” of unbounded complexity. But where

STM allows arbitrary shared-state computation to be declared atomic, the

join calculus only permits highly-structured join patterns. By reducing ex-

pressiveness relative to STM, our joins library admits a relatively simple

implementation with robust performance and scalability. It is not too hard

to see the vestiges of an STM implementation in our joins algorithm, e.g., in
its use of a kind of undo log. But there are many aspects of the algorithm that

take speci�c advantage of its restricted scope to go beyond a generic STM, e.g.,
the retry/search strategy it uses, or its lazy message creation.

12.1.2.2▸ Reagents and STM

Both join patterns and STM provide fully “declarative” atomicity: the pro-

grammer simply asks that (respectively) certain channel interactions or

certain state interactions be performed atomically—full stop. Reagents, by

contrast, are aimed at a less ambitious goal: enabling the concise expression,

user tailoring, and composition of scalable concurrent algorithms. �at is,

unlike STM, reagents do not attempt to provide a universal algorithm. In-

http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087

composable concurrency 211

stead, they assist in writing and combining speci�c algorithms, carving out a
middle ground between completely hand-written algorithms and completely

automatic atomic blocks.

Consider, for example, implementing a concurrent queue:

● Using STM, one would simply wrap a sequential queue implementation
in an atomic block, which requires no algorithmic insight or concurrency

expertise. To implement a transfer from one queue to another, it again suf-

�ces to write some sequential code and wrap with atomic. Unfortunately,

even with a very clever STM, such an implementation is unlikely to scale

as well as e.g., the Michael-Scott queue (§11.7).

● Using reagents, a concurrency expert could instead directly express an

implementation like the Michael-Scott queue, which requires algorithmic

insight but in return provides much greater scalability. Reagents provide

a higher-than-usual level of abstraction for writing such implementations,

but their main bene�t is that nonexpert users can combine and tailor such

implementations using additional reagent combinators. �us reagents

provide some of the composability and declarative nature of STM, while
leaving room for experts to write specialized algorithms.

A key point is that, when used in isolation, reagents are guaranteed to
perform only the CASes that the corresponding hand-written algorithm

would.6 Such a clear cost model is essential for maximizing scalability, and 6 See Chapter 11 for more detail.

we know of no STM that provides similar guarantees. But there is an inherent

tradeo�: the cost model depends on giving experts an “escape hatch” by

which they can perform “invisible” read orwrite operations, but such invisible

operations can render certain reagent compositions unsafe. �e technical
details are covered in §10.5, but the takeaway is that reagents trade some safety

in return for the ability to write expert-level algorithms.

Haskell’s STM7 demonstrated that transactions can be represented via 7 Tim Harris et al. (2005), “Composable
memory transactions”monads,8 explicitly composed, and combined with blocking and choice
8 Peyton Jones and Wadler (1993),

“Imperative functional programming”
operators; its approach is in many respects reminiscent of CML. Reagents

also form a monad, but we have chosen an interface closer to arrows,Hughes
2000 to encourage static reagent layout wherever possible (§10.5.1). Like

orElse in Haskell’s STM, our choice operator is le�-biased. But unlike orElse,

our choice operator will attempt the right-hand side even when the le�-

hand side has only failed transiently (rather than permanently).9 While the 9 Note that retry in Haskell’s STM signals a

permanent failure, rather than an optimistic
retry.

distinction appears technical, it is crucial for examples like the elimination

backo� stack (§10.2.3).

12.1.3 Transactions that communicate

A central tenet of transactions is isolation: transactions should not be aware of
the concurrent execution of other transactions. But sometimes it is desirable

for concurrent transactions to coordinate or otherwise communicate while

http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/158511.158524

212 related work: expressing concurrency

executing. Recent papers have proposed mechanisms for incorporating com-

munication with STM, in the form of Communicating Transactions,10 Trans- 10 Lesani and Palsberg (2011),

“Communicating memory transactions”action Communicators,11 and Transactions with Isolation and Cooperation
11 Luchangco and Marathe (2011),

“Transaction communicators: enabling

cooperation among concurrent

transactions”

(TIC).12 A key question in this line of work is how the expected isolation of

12 Smaragdakis et al. (2007), “Transactions
with isolation and cooperation”

shared memory can safely coexist with concurrent communication:

● Communicating Transactions use explicit, asynchronous message passing
to communicate; the mechanism is entirely separate from shared memory,

which retains isolation. When there is a con�ict between isolation and

interaction, the transaction is aborted and retried.

● On the other hand, Transaction Communicators and TIC allow shared
memory isolation to be weakened in a controlled way.

Our mixture of message-passing and shared-state combinators most closely

resembles Communicating Transactions. Of course, the most important

di�erence is that we do not build on top of an STM, but rather provide a

lower-level programming interface as described above. We also believe that

synchronous communication is better for expressing patterns like elimina-
tion (§10.2.3), which rely on mutual awareness between participants.

�ere has also been work treating pure message-passing in a transactional

way. Transactional Events13 combines CML with an atomic sequencing oper- 13 Donnelly and Fluet (2008),

“Transactional events”ator. Previously, Transactional Events were implemented on top of Haskell’s

STM, relied on search threads14 for matching communications, and used 14�e implementation can be made to work

with a single search thread at the cost of lost

parallelism.
an STM-based representation of channels. However, Transactional Events

are expressible using reagents, through the combination of swap and the

conjunction combinators. Doing so yields a new implementation that does

not require search threads, performs parallel matching for communication,

and represents channels as lock-free bags. We are not in a position to do a

head-to-head comparison, but based on the results in §11.7, we expect the

reagent-based implementation to scale better on �ne-grained workloads.

Of course, the join calculus is another example of message passing with a

transactional �avor.

12.1.4 Composing scalable concurrent data structures

Most of the literature on scalable concurrent data structures is focused on

“within-object” atomicity, for example developing algorithms for inserting or

removing elements into a collection atomically. Recently, though, Cederman

and Tsigas (2010) proposed a method for deriving atomic transfer operations

between lock-free data structures. �e basic approach relies on a kCAS
operation in much the same way that reagent sequencing does. However, the

transfermethodsmust bewrittenmanually, in advance, andwith access to the

internals of the relevant data structures. Reagents, by contrast, allow clients
to de�ne arbitrary new compositions, without manually implementing them,

and without access to the code or internals of the involved data structures.

Nevertheless, reagent sequencing yields an algorithm very similar to the

http://dx.doi.org/10.1145/1941553.1941577
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1297027.1297042
http://dx.doi.org/10.1145/1297027.1297042
http://dx.doi.org/10.1017/S0956796808006916

join calculus implementations 213

manually-written transfermethods.On the other hand, Cederman andTsigas

(2010) provide a generic proof of correctness for their transfer methodology,

while we have provided no such proof for reagent composition. Chapter 13

discusses possible avenues for doing so.

It is also possible to go in the other direction: start from STM, which

provides composition, and add an “escape hatch” forwriting arbitrary scalable

concurrent algorithms within the scope of a transaction.�e escape hatch

can be provided through unlogged reads and/or writes to memory locations

being used by transactions, as in early release15 or elastic transactions.16 Aswe 15 Herlihy, Luchangco, Moir, and

W.N. N Scherer, III (2003), “So�ware

transactional memory for dynamic-sized

data structures”
16 Felber et al. (2009), “Elastic transactions”

discussed above (§12.1.2.2), we favor an approach where the focus is foremost

on writing scalable algorithms, with guarantees about the performance and
shared-memory semantics of those algorithms. Providing such guarantees via

an escape hatch mechanismmay be di�cult or impossible, depending on the

details of the STM implementation. As we showed in §10.2, it is also very

useful to have combinators for choice, message-passing, and blocking, if one

wishes to capture the full range of scalable concurrent algorithms.

12.2 join calculus implementations

Fournet and Gonthier originally proposed the join calculus as an asyn-

chronous process algebra designed for e�cient implementation in a dis-

tributed setting.17 It was positioned as a more practical alternative toMilner’s 17 Fournet andGonthier (1996); Fournet and

Gonthier (2002)π-calculus.

12.2.1 Lock-based implementations

�e join calculus has been implemented many times, and in many contexts.

�e earliest implementations include Fournet et al.’s JoCaml18 and Odersky’s 18 Fournet et al. (2003), “JoCaml: A
Language for Concurrent Distributed

and Mobile Programming”
Funnel19 (the precursor to Scala), which are both functional languages sup-

19 Odersky (2002), “An Overview of

Functional Nets”

porting declarative join patterns. JoCaml’s runtime is single-threaded so the

constructswere promoted for concurrency control, not parallelism.�ough it

is possible to run several communicating JoCaml processes in parallel, pattern
matching will always be sequential. Funnel targeted the Java VM, which can

exploit parallelism, but we could �nd no evaluation of its performance on

parallel hardware. Benton et al. (2004) proposed an object-oriented version of
join patterns for C♯ called Polyphonic C♯; around the same time, Von Itzstein

and Kearney (2001) independently described JoinJava, a similar extension of

Java.�e advent of generics in C♯ 2.0 led Russo to encapsulate join pattern

constructs in the Joins library,20 which served as the basis for our library. 20 Russo (2007), “�e Joins Concurrency

Library”�ere are also implementations for Erlang, C++, and VB.21
21 Plociniczak and Eisenbach (2010); Liu

(2009); Russo (2008), respectively.
All of the above implementations use coarse-grained locking to achieve

the atomicity present in the join calculus semantics. In some cases (e.g.
Polyphonic C♯, Russo’s library) signi�cant e�ort is made to minimize the

http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://books.google.com/books?vid=ISBN1581137087
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1007/978-3-540-69611-7_17

214 related work: expressing concurrency

critical section, but as we have shown (§9.8) coarse-grained locking remains

an impediment to scalability.

12.2.2 STM-based implementations

2 6 10 14 18 22 26 30 34 38 42 46
0

0.01

0.1

1

10

100

1000
Producer/consumer (no work)

Sulzmann
Singh
S-Join

Threads

Th
ro

ug
hp

ut
 (i

te
r/

m
s)

2 6 10 14 18 22 26 30 34 38 42 46
0.01

0.1

1

10

100

1000
Lock (no work)

Sulzmann
Singh
S-Join

Threads
Th

ro
ug

hp
ut

 (i
te

r/
m

s)

Figure 12.1: Comparison with Haskell-
STM implementations on 48-core

machine. Note log scale.

We are aware of two join-calculus implementations that do not employ

a coarse-grained locking strategy, instead using Haskell’s STM. Singh’s im-

plementation builds directly on the STM library, using transacted channels

and atomic blocks to provide atomicity;22 the goal is to provide a simple 22 Singh (2006), “Higher-Order

combinators for join patterns using STM”implementation, and no performance results are given. In unpublished work,

Sulzmann and Lam suggest a hybrid approach, saying that “an entirely
STM-based implementation su�ers from poor performance”.23�eir hybrid 23 Sulzmann and Lam (2009), “Parallel Join

Patterns with Guards and Propagation”approach uses a nonblocking collection to store messages, and then relies

on STM for the analog to our message resolution process. In addition to

basic join patterns, Sulzmann and Lam allow guards and propagated clauses
in patterns, and to handle these features they spawn a thread per message;
Haskell threads are lightweight enough tomake such an approach viable.�e

manuscript provides someperformance data, but only on a four coremachine,

and does not provide comparisons against direct solutions to the problems

they consider.

�e simplest—but perhaps most important—advantage of our implemen-

tation over STM-based implementations is that we do not require STM,

making our approach more portable. STM is an active area of research, and

state-of-the-art implementations require signi�cant e�ort.

�e other advantage over STM is the speci�city of our algorithm. An STM

implementation must provide a general mechanism for declarative atomicity,

con�ict-resolution and contention management. Since we are attacking a

more constrained problem, we can employ a more specialized (and likely

more e�cient and scalable) solution. For example, in our implementation

one thread can be traversing a bag looking for PENDINGmessages, determine

https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf

join calculus implementations 215

that none are available, and exit message resolution all while another thread

is adding a new PENDING message to the bag. Or worse: two threads might

both add messages to the same bag. It is not clear how to achieve the same

degree of concurrency with STM: depending on the implementation, such

transactions would probably be considered con�icting, and one aborted and

retried.While such spurious retriesmight be avoidable bymaking STMaware

of the semantics of bags, or by carefully designing the data structures to play

well with the STM implementation, the e�ort involved is likely to exceed that

of the relatively simple algorithm we have presented.

To test our suspicions about the STM-based join implementations, we

replicated the pure synchronization benchmarks for producer/consumer and

locks, on top of both Singh and Sulzmann’s implementations. Figure 12.1 gives

the results on the same 48-core benchmarkingmachinewe used for §9.8.Note

that, to avoid losing too much detail, we plot the throughput in these graphs

using a log scale.�e comparison is, of course, a loose one: we are comparing
across two very di�erent languages and runtime systems, and Sulzmann’s

implementation provides more than just join patterns. However, it seems

clear that the STM implementations su�er from both drastically increased

constant overheads, aswell asmuchpoorer scalability. Surprisingly, of the two

STM implementations, Singh’s much simpler implementation was the better

performer.

Given these results, and the earlier results for lock-based implementations,

our Joins implementation is the only one we know to scale when used for �ne-

grained parallelism.

12.2.3 Languages versus libraries

By implementing joins as a library, we forgo some expressivity. JoCaml, for

example, supports restricted polymorphic sends: the type of a channel can be

generalized in those type variables that do not appear in the types of other,

conjoined channels.24 Since our channels are monomorphic C♯ delegates, we 24 Fournet et al. (1997), “Implicit Typing à
la ML for the Join-Calculus”are, unfortunately, unable to provide that level of polymorphism. Neverthe-

less, one can still express a wide range of useful generic abstractions (e.g.

Buffer<T>, Swap<A,B>). Another di�erence is that our rendezvous patterns are

more restrictive than JoCaml’s. Our implementation only allows us to return

a single value to all synchronous channels, instead of returning separately

typed values to each synchronous channel. In e�ect, we strike a compromise

between the power of JoCaml and limitations of Polyphonic C♯ (which

allowed at most one synchronous channel per pattern). As a consequence,

our coding of swap channels is clumsier than JoCaml’s, requiring wrapper

methods to extract the relevant half of the common return value. JoCaml

instead supports (the equivalent of) selective return statements, allowing one

to write, e.g.,

return b to Left; return a to Right;

http://dx.doi.org/10.1007/3-540-63141-0_14
http://dx.doi.org/10.1007/3-540-63141-0_14

216 related work: expressing concurrency

within the same chord.�e static semantics of selective returns are di�cult to

capture in a library, so we have avoided them.Note that forcing all channels to

wait on a single return statement, as we do, also sacri�ces some concurrency.

12.3 scalable synchronization

12.3.1 Coordination in java.util.concurrent

�e java.util.concurrent library contains a class called AbstractQueuedSynchro-

nizer that provides basic functionality for queue-based, blocking synchroniz-

ers.25 Internally, it represents the state of the synchronizer as a single 32-bit 25 Lea (2005), “�e java.util.concurrent

synchronizer framework”integer, and requires subclasses to implement tryAcquire and tryRelease

methods in terms of atomic operations on that integer. It is used as the

base class for at least six synchronizers in the java.util.concurrent package,

thereby avoiding substantial code duplication. In a sense, our Joins library is a

generalization of the abstract synchronizer framework: we support arbitrary

internal state (represented by asynchronous messages), n-way rendezvous,
and the exchange of messages at the time of synchronization. Reagents then

generalize further by incorporating updates to shared memory.

12.3.2 Dual data structures

Another interesting aspect of java.util.concurrent is its use of dual data struc-
tures,26 in which blocking calls to a data structure (such as Pop on an empty 26William N. Scherer, III and Scott (2004),

“Nonblocking Concurrent Data Structures

with Condition Synchronization”
stack) insert a “reservation” in a nonblockingmanner; they can then spinwait

to see whether that reservation is quickly ful�lled, and otherwise block.

Reservations provide an analog to the conditions used in monitors, but apply
to nonblocking data structures.

Both join patterns and reagents o�er alternative perspectives on reserva-

tions:

● With join patterns, one generally treats methods (like Pop) as syn-

chronous channels. Calling a method is then tantamount to sending a

message. Butwith lazymessage creation (§9.5.1), the callerwill �rst attempt

to �nd some current enabled pattern and immediately �re it—just as,

with a dual data structure, a caller �rst attempts to perform the operation

normally. Only if no pattern is enabled (i.e., the method call should block)
is a message actually created and added to a bag—just as, with a dual data

structure, a reservation would be created and enqueued. So something

like dual data structures “fall out” as a natural consequence of the joins

implementation, including not just reservations but the spinwaiting and

blocking strategies as well.

● Reagents likewise naturally support dual data structures as coded

through join patterns, since the reagent implementation includes lazy

message creation. But the shared state combinators provide an alternative

http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1007/978-3-540-30186-8_13

scalable synchronization 217

avenue for blocking.When a reagent fails permanently in a way that could

depend on the value read from a reference, the blocking protocol will

automatically add an appropriate continuation to a bag of waiting reagents

associated with the reference.

Neither the joins- nor reagents-based blocking reservations work exactly the
same way as those in hand-built dual data structures, which take advantage

of speci�c representation details to store either real data or reservations, but

never both. On the other hand, joins and reagents provide amore general and

automatic technique for adding blocking to a scalable data structure.

Part IV

EPILOGUE

13
Conclusion

“I may not have gone where I intended to go,
but I think I have ended up where I needed to
be.”

—Douglas Adams

13.1 looking back

�is dissertation demonstrates two claims:

a. Scalable algorithms can be understood through linked protocols govern-
ing each part of their state, which enables veri�cation that is local in space,

time, and thread execution.

b. Scalable algorithms can be expressed through a mixture of shared-state
and message-passing combinators, which enables extension by clients

without imposing prohibitive overhead.

�e support for these claims takes the form of three distinct research artifacts:

● A logic for local reasoning about scalable concurrency using standalone,

visual protocols.�e approach enables direct re�nement proofs via Hoare-

style reasoning, and scales to high-level languages (with higher-order

functions and recursive and abstract types) and sophisticated algorithms

(employing role-playing, cooperation and internal nondeterminism).

● A library for declarative and scalable synchronization based on the join

calculus. Users of the library can write down arbitrary synchronization

constraints as join patterns (roughly, disjunctions of conjunctions), and

the library will automatically derive a reasonably scalable solution to them.

● An abstraction—reagents—for expressing and composing scalable con-

current algorithms and data structures through a blend of message-

passing and shared-state primitives. Reagents serve the needs of two dis-

tinct groups: concurrency experts and concurrency users. Using reagents,

experts can write libraries more easily, because common patterns are

expressible as abstractions and many are built-in. Users can then extend,

tailor and compose the resulting library without detailed knowledge of the

algorithms involved.

Taken together, these contributions make a signi�cant step forward in our

ability to understand and express scalable concurrency. But much remains to

be done.

221

222 conclusion

13.2 looking ahead

13.2.1 Understanding scalable concurrency

For the sake of simplicity, the logic of Chapter 5 only goes part of the way

to a full-�edged “logic for logical relations”: it is not powerful enough to

de�ne our logical relation, and so instead treats it as a built-in assertion. In
particular, the assertions of the logic donot allow second-order quanti�cation

or recursion. By adding these constructions, we could treat both value- and

expression-level re�nement as sugar for more basic logical formulas, in the
spirit of Plotkin and Abadi (1993).

Likewise, while we have given a substantial sketch of a proof theory for

the logic, there are several gaps—most importantly in our treatment of spec

resources and their interaction with speculation, which we reason about

entirely “in the model.”�ere is a duality between implementation reasoning

(in which one must consider all executions) and speci�cation reasoning (in
which one must discover some execution), elegantly expressed in the two
modalities of dynamic logic.1 It would be interesting to reformulate our atomic 1 Harel et al. (2000), “Dynamic logic”
Hoare triples along the lines of dynamic logic, allowing them to be used for

spec reasoning as well—and to study the interaction with speculation as well.

One somewhat irritating aspect of the re�nement approach, at least as

we have presented it, is that speci�cations tend to be overly concrete. Our

“canonical atomic specs” (Chapter 3) use a physical lock to guarantee mutual

exclusion, and our specs for data structures like queues (Chapter ??) must
concretely represent the current value of the queue. Ideally, specs would be

given even more abstractly, in terms of some “atomic” keyword and arbitrary

“mathematical” data types. However, as we discussed in §3.4, an “atomic”

keyword is problematic: it gives toomuch power to the context. Sowe leave as

an open question how to write more abstract atomic specs in a higher-order

re�nement framework.

�ere are at least two interesting questions about the completeness of our
logic. First, is it complete for the traditional scope of linearizability, i.e., �rst-
order modules that share no state with their clients? Second, are local proto-

cols “complete” for Views,2 i.e., can one express any monoid instantiation of 2 Dinsdale-Young et al. (2013), “Views:
Compositional Reasoning for Concurrent

Programs”
the Views framework in terms of an STS with tokens?

Despite the fact that our logic scales to higher-order programs, we have

only explored very simple uses of this capability, namely, in reasoning about

simple “modules” which export a tuple of functions. It remains to be seen how

suitable the logic is for reasoning about more fundamentally higher-order

code like Herlihy’s universal construction3 or the �at combining algorithm.4 3 Herlihy and Shavit (2008), “�e Art of

Multiprocessor Programming”

4 Hendler et al. (2010), “Flat combining and
the synchronization-parallelism tradeo�”

Likewise, we have focused on atomic speci�cations, but many data structures

provide more complex forms of interaction (e.g., iteration in a concurrent
collection) or weaker guarantees (e.g., RCU-based algorithms in the Linux
kernel). Canwe give these data structures clean specs and correctness proofs?

Finally, there are a number of extensions of our logic to explore:

http://mitpress.mit.edu/books/dynamic-logic
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540

looking ahead 223

● Can the logic be extended to reason about liveness as well as safety?5 It 5 See §2.5.

is unclear to what extent a step-indexed model such as ours can capture

liveness properties; presumably, at the very least, one would need to work

with a more complex ordinal than ω.

● Is it possible, moreover, to reason thread-locally about liveness? Tradition-
ally liveness properties are proved using a global, well-founded measure,

but nonblocking progress properties (which do not rely on fair scheduling)

are likely amenable to protocol-based, thread-local reasoning.

● We have assumed sequential consistency, which is not unreasonable (see
§3.2), but in the long run will prevent application of the logic to algorithms

that use reference cells with weaker guarantees. A major open question

is whether something like our local protocols—which rely on a global
notion of “current state”—can be adapted to work in the context of a weak

memory model.

13.2.2 Expressing scalable concurrency

�ere is signi�cant remaining work for elucidating both the theory and

practice of reagents:

● On the theoretical side, developing a formal operational semantics

would help to clarify the interactions possible between shared state and

message passing, as well as the atomicity guarantees that reagents pro-

vide. A reasonable starting point would be the operational semantics for

Haskell’s STM.6 6 Tim Harris et al. (2005), “Composable
memory transactions”

● On the practical side, developing a serious concurrency library using

reagents would go a long way toward demonstrating their usability. We

have begun work along these lines by building an implementation of

reagents, called Caper,7 for the Racket programming language. Racket’s 7 Concurrent and parallel extensions to

Racket.runtime system is undergoing an incremental parallelization process,8 and
8 Swaine et al. (2010), “Back to the futures:
incremental parallelization of existing

sequential runtime systems”

currently the language is equipped with very few scalable concurrent data

structures. Since Racket also includes a sophisticated macro system, we

plan to explore compiler support for reagents in Caper.

Beyond these immediate steps, a major open question for reagents (and

similar composable concurrency abstractions) is how to integrate lock-based
algorithms. Many scalable concurrent algorithms use �ne-grained locking,

and are thereby outside of the current scope of reagents.�e key problem is

that, in a monadic setting, it is not possible for the reagent library to know or

enforce lock ordering up front. Ideally, reagents would allow free composition

of lock-based and lock-free algorithms, thereby enabling a gradual transition

from one to the other in the spirit of “script to program evolution.”9 9 Tobin-Hochstadt (2010), “Typed Scheme:

From Scripts to Programs”

http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507

224 conclusion

13.2.3 Crossing the streams

Ultimately, the two parts of this dissertation should have more to say to each

other:

a. It should be possible to use our logic to prove the correctness of our join

pattern and reagents implementations.

b. It should also be possible to use something like our logic of local protocols

to reason about reagent-based algorithms. �is reasoning should be ab-

stract, in that it should use only somehigh-level speci�cation of the reagent

API without divulging its implementation details.

Item A is already feasible for the joins library, although giving a modular

proof would require doing some of the work outlined above, e.g., cleanly
specifying concurrent iterators. Applying it to reagents would entail, at the

very least, giving an operational semantics for the reagent API.

Item B would likely require some new ideas in the logic, in order to specify

and perform client-side reasoning aboutmonadicAPIs at an appropriate level

of abstraction.

In the long run, of course, items A and B should plug together: it should be

possible to compose a correctness proof of the reagents library implementa-

tion with a correctness proof of a reagent-based algorithm.

References
Abadi, Martín and Leslie Lamport (1991).

�e existence of re�nement mappings. �eoretical Computer Science,
82(2):253–284 (cited on pages 60, 75, 138).

Abadi, Martín and Leslie Lamport (1993).

Composing speci�cations. ACM Transactions on Programming Languages
and Systems (TOPLAS), 15(1):73–132 (cited on page 82).

Abadi, Martín and Leslie Lamport (1995).

Conjoining speci�cations. ACM Transactions on Programming Languages
and Systems (TOPLAS), 17(3):507–535 (cited on page 82).

Abelson, Harold and Gerald Jay Sussman (1996).

Structure and Interpretation of Computer Programs. MIT Press. url: http:
//mitpress.mit.edu/sicp/ (cited on pages 17, 21).

Abramsky, Samson (1990).

�e lazy lambda calculus. Research topics in functional programming,
pages 65–116. url: http://moscova.inria.fr/~levy/courses/X/M1/

lambda/bib/90abramskylazy.pdf (cited on page 57).

Adve, Sarita V. and Kourosh Gharachorloo (1996).

Shared memory consistency models: a tutorial. Computer, 29(12):66–76
(cited on page 26).

Agarwal, A and M Cherian (1989).

Adaptive backo� synchronization techniques. In proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA). New York, New York,
USA: ACM Press, pages 396–406 (cited on page 36).

Ahmed, Amal (2004).

Semantics of Types for Mutable State. PhD thesis. Princeton University.

url: http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf (cited on

page 82).

Ahmed, Amal (2006).

Step-Indexed Syntactic Logical Relations for Recursive and Quanti�ed

Types. In proceedings of the European Symposium on Programming (ESOP).
Springer, pages 69–83 (cited on pages 47, 57).

Ahmed, Amal, Derek Dreyer, and Andreas Rossberg (2009).

State-dependent representation independence. In proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM Press (cited on pages 57, 128, 129).

225

http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1145/151646.151649
http://dx.doi.org/10.1145/203095.201069
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://moscova.inria.fr/~levy/courses/X/M1/lambda/bib/90abramskylazy.pdf
http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/10.1145/74925.74970
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1145/1480881.1480925

226 references

Alpern, Bowen and Fred B. Schneider (1985).

De�ning liveness. Information Processing Letters, 21(4):181–185 (cited on
page 39).

Amdahl, Gene M. (1967).

Validity of the single processor approach to achieving large scale comput-

ing capabilities.AFIPS Conference Proceedings. NewYork, NewYork, USA:
ACM Press, pages 483–485 (cited on pages 32, 33).

Appel, AndrewW. and David McAllester (2001).

An indexedmodel of recursive types for foundational proof-carrying code.

ACM Transactions on Programming Languages and Systems (TOPLAS),
23(5):657–683 (cited on page 82).

Appel, AndrewW., Paul-AndréMelliès, Christopher D. Richards, and Jérôme

Vouillon (2007).

A very modal model of a modern, major, general type system. In pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). New York, New York, USA: ACM Press,
pages 109–122 (cited on pages 90, 129).

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali (1989).

I-structures: data structures for parallel computing. ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(4):598–632 (cited on
page 18).

Attiya, Hagit, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.

Michael, and Martin Vechev (2011).

Laws of order. In proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). New York, New York,
USA: ACM Press, pages 487–498 (cited on page 13).

Attiya, Hagit and Eshcar Hillel (2008).

Highly-concurrent multi-word synchronization. In proceedings of Dis-
tributed Computing and Networking (ICDCN). Springer Berlin Heidelberg,
pages 112–123 (cited on page 197).

Batty, Mark, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber

(2011).

Mathematizing C++ concurrency. In proceedings of the ACM SIGPLAN-
SIGACT SymposiumonPrinciples of Programming Languages (POPL). New
York, New York, USA: ACM Press, pages 55–66 (cited on page 12).

Benton, Nick (2003).

Jingle Bells: Solving the Santa Claus Problem in Polyphonic C#. url: http:

//research.microsoft.com/~nick/santa.pdf (cited on page 148).

Benton, Nick, Luca Cardelli, and Cédric Fournet (2004).

Modern concurrency abstractions for C#. ACM Transactions on Program-

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/1190216.1190235
http://dx.doi.org/10.1145/69558.69562
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1007/978-3-540-77444-0_9
http://dx.doi.org/10.1145/1926385.1926394
http://research.microsoft.com/~nick/santa.pdf
http://research.microsoft.com/~nick/santa.pdf
http://research.microsoft.com/~nick/santa.pdf
http://dx.doi.org/10.1145/1018203.1018205

references 227

ming Languages and Systems (TOPLAS), 26(5):769–804 (cited on pages 142,
143, 147, 149, 150, 160, 161, 174, 213).

Berry, Gérard and Gérard Boudol (1992).

�e chemical abstract machine. �eoretical computer science, 96(1):217–
248 (cited on page 177).

Birkedal, Lars, Filip Sieczkowski, and Jacob�amsborg (2012).

A concurrent logical relation. In proceedings of Computer Science Logic
(CSL). url: http://itu.dk/people/fisi/pub/relconc_conf.pdf (cited
on pages 55, 129).

Blelloch, Guy E. (1996).

Programming parallel algorithms. Communications of the ACM, 39(3):85–
97 (cited on page 12).

Blelloch, Guy E., Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun

(2012).

Internally deterministic parallel algorithms can be fast. In proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP). New York, New York, USA: ACMPress, pages 181–192
(cited on page 13).

Bloom, Bard, Sorin Istrail, and Albert R Meyer (1995).

Bisimulation can’t be traced. Journal of the ACM, 42(1):232–268 (cited on
page 138).

Blumofe, Robert D., Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou (1996).

Cilk: An e�cient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69 (cited on page 13).

Blundell, Colin, E. Christopher Lewis, and Milo M. K. Martin (2006).

Subtleties of Transactional Memory Atomicity Semantics. IEEE Computer
Architecture Letters, 5(2):17 (cited on page 55).

Boehm, Hans J. and Sarita V. Adve (2008).

Foundations of the C++ concurrencymemorymodel. In proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). New York, New York, USA: ACM Press, pages 68–78
(cited on page 12).

Brinch Hansen, Per (1973).

Operating system principles. Prentice Hall. url: http : / / dl . acm . org /
citation.cfm?id=540365 (cited on pages 11, 23, 31).

Brinch Hansen, Per (2001).

�e invention of concurrent programming.�e Origin of Concurrent Pro-
gramming: From Semaphores to Remote Procedure Calls. Springer-Verlag.

http://dx.doi.org/10.1016/0304-3975(92)90185-I
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://itu.dk/people/fisi/pub/relconc_conf.pdf
http://dx.doi.org/10.1145/227234.227246
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1145/1375581.1375591
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365
http://dl.acm.org/citation.cfm?id=540365
http://oberon2005.oberoncore.ru/paper/bh2002.pdf

228 references

url: http://oberon2005.oberoncore.ru/paper/bh2002.pdf (cited on

page 176).

Brookes, Stephen (1996).

Full Abstraction for a Shared-Variable Parallel Language. Information and
Computation, 127(2):145–163 (cited on page 131).

Brookes, Stephen (2002).

Traces, Pomsets, Fairness and Full Abstraction for Communicating Pro-

cesses. In proceedings of Concurrency �eory (CONCUR), pages 466–482
(cited on page 15).

Brooks, Jr., Frederick P. (1987).

No Silver Bullet: Essence and Accidents of So�ware Engineering. Com-
puter, 20(4):10–19 (cited on page 15).

Calcagno, Cristiano, Peter W. O’Hearn, and Hongseok Yang (2007).

Local Action and Abstract Separation Logic. In proceedings of the IEEE
Symposium on Logic in Computer Science (LICS). IEEE, pages 366–378
(cited on page 114).

Cederman, Daniel and Philippas Tsigas (2010).

Supporting lock-free composition of concurrent data objects. In proceed-
ings of the ACM International Conference on Computing Frontiers (CF),
pages 53–62 (cited on pages 167, 204, 212, 213).

Dice, Dave, Ori Shalev, and Nir Shavit (2006).

Transactional locking II. In proceedings of Distributed Computing (DISC).
Springer, pages 194–208 (cited on page 205).

Dice, David and Oleksandr Otenko (2011).

Brief announcement: MultiLane - a concurrent blocking multiset. In pro-
ceedings of the ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). New York, New York, USA: ACMPress, pages 313–314 (cited
on page 150).

Dijkstra, Edsger W.

EWD952: Science �ction and science reality in computing. url: http://

www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html (cited

on page 149).

Dijkstra, Edsger W. (1965).

EWD123: Cooperating Sequential Processes. Technical report. url: http:

//www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html (cited

on pages 23, 30, 145).

Dijkstra, Edsger W. (1971).

Hierarchical ordering of sequential processes. Acta Informatica, 1(2):115–
138 (cited on page 141).

http://oberon2005.oberoncore.ru/paper/bh2002.pdf
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/LICS.2007.30
http://dx.doi.org/10.1145/1787275.1787286
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1989493.1989545
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD952.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

references 229

Dijkstra, Edsger W. (1976).

A Discipline of Programming. Prentice Hall (cited on page 101).

Dijkstra, Edsger W. (2000).

EWD 1303: My recollections of operating system design. url: http://www.

cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html (cited on

page 11).

Dinsdale-Young,�omas, Lars Birkedal, Philippa Gardner, Matthew Parkin-

son, and Hongseok Yang (2013).

Views: Compositional Reasoning forConcurrent Programs. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (cited on pages 133, 222).

Dinsdale-Young,�omas, Mike Dodds, Philippa Gardner, Matthew Parkin-

son, and Viktor Vafeiadis (2010).

Concurrent Abstract Predicates. ECOOP. Springer, pages 504–528. url:
http://www.springerlink.com/index/184241T463712776.pdf (cited on

pages 62, 132).

Dodds, Mike, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis (2009).

Deny-guarantee reasoning. In proceedings of the European Symposium on
Programming (ESOP). 736. Springer, pages 363–377 (cited on page 134).

Donnelly, Kevin and Matthew Fluet (2008).

Transactional events. Journal of Functional Programming (JFP), 18(5 &
6):649–706 (cited on page 212).

Drepper, Ulrich (2007).

What every programmer should know about memory. url: http://ftp.

linux.org.ua/pub/docs/developer/general/cpumemory.pdf (cited on

pages 26, 29).

Dreyer, Derek, Amal Ahmed, and Lars Birkedal (2009).

Logical Step-Indexed Logical Relations. Logical Methods in Computer
Science, 7(2:16):71–80 (cited on pages 90, 129).

Dreyer, Derek, Georg Neis, and Lars Birkedal (2010).

�e impact of higher-order state and control e�ects on local relational

reasoning. In proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP). New York, New York, USA: ACM
Press, pages 143–156 (cited on pages 57, 60–62, 66, 82, 85, 128, 130).

Dreyer, Derek, Georg Neis, and Lars Birkedal (2012).

�e impact of higher-order state and control e�ects on local relational rea-

soning. Journal of Functional Programming (JFP), 22(4-5):477–528 (cited
on page 129).

http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
http://dx.doi.org/10.1145/2429069.2429104
http://www.springerlink.com/index/184241T463712776.pdf
http://www.springerlink.com/index/184241T463712776.pdf
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1017/S0956796808006916
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://dx.doi.org/10.1109/LICS.2009.34
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1017/S095679681200024X

230 references

Dreyer, Derek, Georg Neis, Andreas Rossberg, and Lars Birkedal (2010).

A relational modal logic for higher-order stateful ADTs. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). New York, New York, USA: ACM Press (cited on

pages 79, 82, 90, 129).

Elmas, Tayfun, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran

(2010).

Simplifying Linearizability ProofswithReduction andAbstraction.TACAS.
Springer, pages 296–311 (cited on page 136).

Elmas, Tayfun, Shaz Qadeer, and Serdar Tasiran (2009).

A calculus of atomic actions. In proceedings of the ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) (cited on
page 136).

Felber, Pascal, Vincent Gramoli, and R. Guerraoui (2009).

Elastic transactions. In proceedings of Distributed Computing (DISC) (cited
on page 213).

Felleisen, Matthias (1991).

On the expressive power of programming languages. Science of Computer
Programming, 17(1-3):35–75 (cited on page 14).

Feng, Xinyu (2009).

Local rely-guarantee reasoning. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).
ACM, pages 315–327 (cited on page 134).

Feng, Xinyu, Rodrigo Ferreira, and Zhong Shao (2007).

On the Relationship Between Concurrent Separation Logic and Assume-

Guarantee Reasoning. In proceedings of the European Symposium on Pro-
gramming (ESOP) (cited on page 134).

Filipović, Ivana, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang (2010).

Abstraction for Concurrent Objects.�eoretical Computer Science, 411(51-
52):4379–4398 (cited on pages 56, 130).

Fournet, Cédric and Georges Gonthier (1996).

�e re�exive CHAM and the join-calculus. In proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 372–385 (cited on pages 6, 141, 142, 150, 165, 186, 213).

Fournet, Cédric and Georges Gonthier (2002).

�e JoinCalculus: A Language forDistributedMobile Programming. Inter-
national Summer School on Applied Semantics (APPSEM). LNCS. Springer-
Verlag, pages 268–332 (cited on pages 142, 186, 213).

http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1007/978-3-642-12002-2_25
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://dx.doi.org/10.1145/1594834.1480922
http://dx.doi.org/10.1007/978-3-540-71316-6_13
http://dx.doi.org/10.1007/978-3-540-71316-6_13
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1007/3-540-45699-6_6

references 231

Fournet, Cédric, Fabrice Le Fessant, LucMaranget, and Alan Schmitt (2003).

JoCaml: A Language for Concurrent Distributed and Mobile Program-

ming. International School on Advanced Functional Programming (AFP).
LNCS (cited on pages 160, 213).

Fournet, Cédric, Luc Maranget, Cosimo Laneve, and Didier Rémy (1997).

Implicit Typing à la ML for the Join-Calculus. In proceedings of Concur-
rency�eory (CONCUR) (cited on page 215).

Fraser, Keir and Tim Harris (2007).

Concurrent programming without locks. ACM Transactions on Computer
Systems, 25(2) (cited on pages 63, 120, 167, 197, 204).

Glabbeek, R J Van (1990).

�e linear time-branching time spectrum. CONCUR’90 �eories of Con-
currency: Uni�cation and Extension():278–297 (cited on page 137).

Gotsman, Alexey and Hongseok Yang (2012).

Linearizability with Ownership Transfer. In proceedings of Concurrency
�eory (CONCUR) (cited on page 130).

Groves, Lindsay and Robert Colvin (2009).

Trace-based derivation of a scalable lock-free stack algorithm. Formal
Aspects of Computing, 21(1-2):187–223 (cited on page 135).

Harel, David, Dexter Kozen, and Jerzy Tiuryn (2000).

Dynamic logic. MIT Press. url: http : / / mitpress . mit . edu / books /
dynamic-logic (cited on page 222).

Harper, Robert (2011).

Parallelism is not concurrency. url: http://existentialtype.wordpress.

com/2011/03/17/parallelism-is-not-concurrency/ (cited on pages 11,

12, 18).

Harris, Tim, James Larus, and Ravi Rajwar (2010).

Transactional Memory, 2nd edition. Morgan and Claypool (cited on
pages 193, 210).

Harris, Tim, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy

(2005).

Composable memory transactions. In proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
ACM, pages 48–60 (cited on pages 177, 181, 211, 223).

Harris, Timo, Keir Fraser, and Ian A. Pratt (2002).

A practical multi-word compare-and-swap operation. In proceedings of
Distributed Computing (DISC), pages 265–279. url: http://www.cl.cam.
ac.uk/research/srg/netos/papers/2002-casn.pdf (cited on page 120).

http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/978-3-540-44833-4_5
http://dx.doi.org/10.1007/3-540-63141-0_14
http://dx.doi.org/10.1145/1233307.1233309
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1007/s00165-008-0092-5
http://mitpress.mit.edu/books/dynamic-logic
http://mitpress.mit.edu/books/dynamic-logic
http://mitpress.mit.edu/books/dynamic-logic
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.1145/1065944.1065952
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf

232 references

Heller, Steve, Maurice Herlihy, Victor Luchangco, Mark Moir, William N.

Scherer, III, and Nir Shavit (2006).

A lazy concurrent list-based set algorithm. In proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC). Springer,
pages 3–16 (cited on page 36).

Hendler, Danny, Itai Incze, Nir Shavit, and Moran Tzafrir (2010).

Flat combining and the synchronization-parallelism tradeo�. In proceed-
ings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 355–364 (cited on pages 42, 45, 130, 167, 204, 222).

Hendler, Danny, Nir Shavit, and Lena Yerushalmi (2004).

A scalable lock-free stack algorithm. In proceedings of the ACMSymposium
on Parallelism in Algorithms and Architectures (SPAA). New York, New
York, USA: ACM Press, pages 206–215 (cited on pages 37, 71, 167, 204).

Herlihy, Maurice (1991).

Wait-free synchronization.ACMTransactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149 (cited on pages 30, 45).

Herlihy, Maurice, Victor Luchangco, and Mark Moir (2003).

Obstruction-free synchronization: double-ended queues as an example.

In proceedings of the International Conference on Distributed Computing
Systems (ICDCS). IEEE, pages 522–529 (cited on page 42).

Herlihy, Maurice, Victor Luchangco, Mark Moir, and W.N. N Scherer, III

(2003).

So�ware transactional memory for dynamic-sized data structures. In pro-
ceedings of the ACM Symposium on Principles of Distributed Computing
(PODC) (cited on pages 167, 204, 210, 213).

Herlihy, Maurice and Nir Shavit (2008).

�e Art of Multiprocessor Programming. Morgan Kaufmann (cited on
pages 13, 24, 32, 40, 41, 130, 146, 189, 222).

Herlihy, Maurice and Jeannette M. Wing (1990).

Linearizability: a correctness condition for concurrent objects.ACMTrans-
actions on Programming Languages and Systems (TOPLAS), 12(3):463–492
(cited on pages 40, 75, 130, 138).

Hoare, C.A.R. (1972).

Proof of correctness of data representations. Acta {I}nformatica, 1(4):271–
281. url: http://www.springerlink.com/index/W7446683830J348H.pdf

(cited on page 60).

Hughes, John (2000).

Generalising monads to arrows. Science of computer programming, 37(1-
3):67–111 (cited on pages 175, 188, 202, 211).

http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://books.google.com/books?vid=ISBN1581137087
http://dx.doi.org/10.1145/78969.78972
http://www.springerlink.com/index/W7446683830J348H.pdf
http://www.springerlink.com/index/W7446683830J348H.pdf
http://dx.doi.org/10.1016/S0167-6423(99)00023-4

references 233

Hur, Chung-Kil, Derek Dreyer, Georg Neis, and Viktor Vafeiadis (2012).

�e marriage of bisimulations and Kripke logical relations. In proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). New York, New York, USA: ACM Press, pages 59–72
(cited on page 86).

Jensen, Jonas Braband and Lars Birkedal (2012).

Fictional Separation Logic. In proceedings of the European Symposium on
Programming (ESOP) (cited on page 133).

Jerger, Natalie D. Enright (2008).

Chip Multiprocessor Coherence and Interconnect System Design. PhD

thesis. University of Wisconsin-Madison (cited on page 26).

Jones, Cli� B. (1983).

Tentative steps toward a development method for interfering programs.

ACM Transactions on Programming Languages and Systems (TOPLAS),
5(4):596–619 (cited on pages 61, 134).

Kahn, Gilles (1974).

�e semantics of a simple language for parallel programming. Information
processing, pages 471–475. url: http://www.citeulike.org/group/872/
article/349829 (cited on page 18).

Kennedy, Andrew and Claudio V. Russo (2005).

Generalized algebraic data types and object-oriented programming. In
proceedings of the ACM SIGPLAN Conference on Object-oriented Program-
ming Systems, Languages, and Applications (OOPSLA). New York, New
York, USA: ACM Press, pages 21–40 (cited on page 153).

Knuth, Donald E. (1977).

Notes on the van Emde Boas construction of priority deques: An instruc-

tive use of recursion (cited on page 101).

Knuth, Donald E. (1997).

�e Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison Wesley (cited on page 31).

Knuth, Donald E. (2003).

Bottom-up education. Proceedings of the 8th annual conference on Inno-
vation and technology in computer science education (ITiCSE). New York,
New York, USA: ACM Press (cited on page 25).

Koutavas, Vasileios and Mitchell Wand (2006).

Small bisimulations for reasoning about higher-order imperative pro-

grams. In proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pages 141–152 (cited on pages 57,
129).

http://dx.doi.org/10.1145/2103656.2103666
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://books.google.com/books?vid=ISSN0164-0925
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://www.citeulike.org/group/872/article/349829
http://dx.doi.org/10.1145/1094811.1094814
http://dx.doi.org/10.1145/961511.961514
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050

234 references

Krishnaswami, Neelakantan R., Aaron Turon, Derek Dreyer, and Deepak

Garg (2012).

Super�cially substructural types. In proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP) (cited on
page 134).

Kuper, Lindsey and Ryan R. Newton (2012).

A Lattice-Based Approach to Deterministic Parallelism with Shared State

(cited on page 18).

Lauer, Hugh C. and Roger M. Needham (1979).

On the duality of operating system structures. ACM SIGOPS Operating
Systems Review, 13(2):3–19 (cited on page 14).

Le Fessant, Fabrice and Luc Maranget (1998).

Compiling Join Patterns. In proceedings of the International Workshop on
High-Level Concurrent Languages (HLCL) (cited on page 149).

Lea, Doug.

Concurrency JSR-166 Interest Site. url: http://gee.cs.oswego.edu/dl/

concurrency-interest/ (cited on page 4).

Lea, Doug (2000).

A Java fork/join framework. In proceedings of the ACM 2000 Conference on
Java Grande (JAVA). New York, New York, USA: ACM Press, pages 36–43
(cited on page 4).

Lea, Doug (2005).

�e java.util.concurrent synchronizer framework. Science of Computer
Programming, 58(3):293–309 (cited on pages 4, 161, 173, 216).

Leitner, Felix von (2009).

Source Code Optimization. url: http://www.linux-kongress.org/2009/

slides/compiler_survey_felix_von_leitner.pdf (cited on page 5).

Lesani, Mohsen and Jens Palsberg (2011).

Communicating memory transactions. In proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP) (cited on page 212).

Ley-Wild, Ruy and Aleksandar Nanevski (2013).

Subjective Auxiliary State for Coarse-Grained Concurrency. In proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (cited on pages 75, 133).

Liang, Hongjin and Xinyu Feng (2013).

Modular Veri�cation of Linearizability with Non-Fixed Linearization

Points (cited on pages 131, 135).

http://dx.doi.org/10.1145/2364527.2364536
http://dx.doi.org/10.1145/850657.850658
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://dx.doi.org/10.1145/337449.337465
http://dx.doi.org/10.1016/j.scico.2005.03.007
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf
http://dx.doi.org/10.1145/1941553.1941577
http://dx.doi.org/10.1145/2429069.2429134

references 235

Liang, Hongjin, Xinyu Feng, and Ming Fu (2012).

A rely-guarantee-based simulation for verifying concurrent program

transformations. In proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL) (cited on page 131).

Lipton, Richard J (1975).

Reduction: a method of proving properties of parallel programs. Commu-
nications of the ACM (CACM), 18(12):717–721 (cited on page 135).

Liu, Yigong (2009).

Asynchronous Message Coordination and Concurrency Library. url:

http://channel.sourceforge.net/ (cited on page 213).

Lucassen, J M and D K Gi�ord (1988).

Polymorphic e�ect systems. In proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 47–57
(cited on page 129).

Luchangco, Victor and V.J. J Marathe (2011).

Transaction communicators: enabling cooperation among concurrent

transactions. In proceedings of theACMSIGPLANSymposiumonPrinciples
and Practice of Parallel Programming (PPoPP) (cited on page 212).

Luchangco, Victor, Mark Moir, and Nir Shavit (2003).

Nonblocking k-compare-single-swap. In proceedings of the ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA) (cited on
page 197).

Lynch, Nancy and Frits Vaandrager (1995).

Forward and Backward Simulations: Part I: Untimed Systems. Information
and Computation, 121(2):214–233. url: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf (cited on

pages 74, 138).

Manolios, Panagiotis (2003).

A compositional theory of re�nement for branching time. In proceedings
of the Advanced ResearchWorking Conference on Correct Hardware Design
and Veri�cation Methods (CHARME), pages 304–318 (cited on page 75).

Manolios, Panagiotis and Richard Tre�er (2003).

A lattice-theoretic characterization of safety and liveness. In proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC). New
York, New York, USA: ACM Press, pages 325–333 (cited on page 39).

Manson, Jeremy, William Pugh, and Sarita V. Adve (2005).

�e Java memory model. In proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). New York,
New York, USA: ACM Press, pages 378–391 (cited on page 12).

http://dx.doi.org/10.1145/2103656.2103711
http://dx.doi.org/10.1145/2103656.2103711
http://channel.sourceforge.net/
http://channel.sourceforge.net/
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1941553.1941578
http://dx.doi.org/10.1145/1941553.1941578
http://books.google.com/books?vid=ISSN1432-4350
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3241&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-39724-3_28
http://dx.doi.org/10.1145/872035.872083
http://dx.doi.org/10.1145/1040305.1040336

236 references

Martin, Milo M. K., Mark D. Hill, and Daniel J. Sorin (2012).

Why on-chip cache coherence is here to stay.Communications of the ACM,
55(7):78–89 (cited on page 27).

McKenney, Paul E., Dipankar Sarma, and Maneesh Soni (2004).

Scaling dcache with RCU. url: http://www.linuxjournal.com/article/

7124 (cited on page 13).

McKenney, Paul E. and John D. Slingwine (1998).

Read-copy update:Using execution history to solve concurrency problems.

Parallel and Distributed Computing and Systems, pages 509–518. url: http:
//www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

(cited on pages 35, 51).

Mellor-Crummey, John M. and Michael L. Scott (1991).

Algorithms for scalable synchronization on shared-memory multiproces-

sors.ACMTransactions onComputer Systems, 9(1):21–65 (cited onpages 38,
39, 167, 204).

Meyer, A. R. and K. Sieber (1988).

Towards fully abstract semantics for local variables. In proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (cited on page 19).

Michael, Maged M. (2004).

Hazard pointers: safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 15(6):491–504
(cited on page 35).

Michael, Maged M. and Michael L. Scott (1996).

Simple, fast, and practical non-blocking and blocking concurrent queue

algorithms. In proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC). ACM, pages 267–275 (cited on pages 167, 189,
204).

Michael, Maged M. and Michael L. Scott (1998).

Nonblocking Algorithms and Preemption-Safe Locking on Multipro-

grammed Shared Memory Multiprocessors. Journal of Parallel and Dis-
tributed Computing, 51(1):1–26 (cited on pages 64, 150).

Milner, R (1982).

A Calculus of Communicating Systems. Springer-Verlag New York, Inc.
(cited on page 17).

Milner, Robin (1977).

Fully abstractmodels of the lambda calculus.�eoretical Computer Science,
4(1):1–22. url: http : / / ieeexplore . ieee . org / xpls / abs _ all . jsp ?

arnumber=21953 (cited on page 56).

http://dx.doi.org/10.1145/2209249.2209269
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://www2.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/73560.73577
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1006/jpdc.1998.1446
http://dx.doi.org/10.1006/jpdc.1998.1446
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=21953

references 237

Milner, Robin (1993).

Elements of interaction: Turing award lecture. Communications of the
ACM, 36(1):78–89 (cited on page 17).

Mitchell, John C. (1986).

Representation independence and data abstraction. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). New York, New York, USA: ACM Press, pages 263–276
(cited on pages 20, 127).

Molka, Daniel, Daniel Hackenberg, Robert Schone, and Matthias S. Muller

(2009).

Memory Performance and Cache Coherency E�ects on an Intel Ne-

halem Multiprocessor System. In proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT). IEEE,
pages 261–270 (cited on page 28).

Moore, Katherine F. and Dan Grossman (2008).

High-level small-step operational semantics for transactions. In proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL). New York, New York, USA: ACMPress, pages 51–
62 (cited on page 55).

Morris Jr., James H (1973).

Protection in programming languages. Communications of the ACM
(CACM), 16(1):15–21 (cited on page 59).

Nain, Sumit and Moshe Y. Vardi (2007).

Branching vs. Linear Time: Semantical Perspective.Automated Technology
for Veri�cation and Analysis (ATVA) (cited on page 138).

Odersky, Martin (2002).

An Overview of Functional Nets. APPSEM Summer School, Caminha,
Portugal, September 2000 (cited on page 213).

O’Hearn, Peter W. (2007).

Resources, concurrency, and local reasoning. �eoretical Computer Sci-
ence, 375(1-3):271–307 (cited on page 70).

O’Hearn, Peter W. and David J. Pym (1999).

�e logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–244.
url: http://www.jstor.org/stable/10.2307/421090 (cited on page 90).

O’Hearn, Peter W., Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta

Yorsh (2010).

Verifying linearizability with hindsight. In proceedings of the ACM Sympo-
sium on Principles of Distributed Computing (PODC) (cited on page 131).

http://dx.doi.org/10.1145/151233.151240
http://dx.doi.org/10.1145/512644.512669
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1145/1328438.1328448
http://dx.doi.org/10.1145/361932.361937
http://dx.doi.org/10.1007/978-3-540-75596-8_4
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://www.jstor.org/stable/10.2307/421090
http://www.jstor.org/stable/10.2307/421090
http://dx.doi.org/10.1145/1835698.1835722

238 references

Parkinson, Matthew and Gavin Bierman (2005).

Separation logic and abstraction. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
40(1):247–258 (cited on page 132).

Perlis, Alan J. (1982).

Epigrams on programming. ACM SIGPLAN Notices, 17(9):7–13 (cited on
page 3).

Peyton Jones, Simon (2001).

Tackling the awkward squad. Engineering theories of so�ware construction,
pages 47–96. url: http://research.microsoft.com/en-us/um/people/

simonpj/papers/marktoberdorf/ (cited on page 193).

Peyton Jones, Simon, Andrew Gordon, and Sigbjorn Finne (1996).

Concurrent Haskell. In proceedings of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). New York, New
York, USA: ACM Press, pages 295–308 (cited on page 15).

Peyton Jones, Simon and Philip Wadler (1993).

Imperative functional programming. In proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL)
(cited on pages 175, 188, 211).

Pike, Rob (2012).

Concurrency is not Parallelism (it’s better). url: http://concur.rspace.

googlecode.com/hg/talk/concur.html (cited on page 11).

Pitts, Andrew M. (2002).

Operational Semantics and Program Equivalence. Applied Semantics, Ad-
vanced Lectures. Edited by G Barthe, P Dybjer, and J Saraiva. Volume 2395.
Lecture Notes in Computer Science, Tutorial. Springer-Verlag, pages 378–

412. url: http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-

lncs.pdf (cited on page 128).

Pitts, Andrew M. (2005).

TypedOperational Reasoning.Advanced Topics in Types and Programming
Languages. Edited by B C Pierce.�eMIT Press. Chapter 7, pages 245–289
(cited on page 128).

Pitts, Andrew M. and Ian Stark (1998).

Operational reasoning for functions with local state. Higher order opera-
tional techniques in semantics, pages 227–274. url: http://www.cl.cam.ac.
uk/~amp12/papers/operfl/operfl.pdf (cited on pages 57, 61, 100, 128).

Plociniczak, Hubert and Susan Eisenbach (2010).

JErlang: Erlang with Joins. Coordination Models and Languages. Vol-
ume 6116. Lecture Notes in Computer Science, pages 61–75 (cited on

page 213).

http://dx.doi.org/10.1145/1047659.1040326
http://dx.doi.org/10.1145/947955.1083808
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/
http://dx.doi.org/10.1145/237721.237794
http://dx.doi.org/10.1145/158511.158524
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://www.cl.cam.ac.uk/~amp12/papers/opespe/opespe-lncs.pdf
http://books.google.com/books?vid=ISBN0-262-16228-8
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://www.cl.cam.ac.uk/~amp12/papers/operfl/operfl.pdf
http://dx.doi.org/10.1007/978-3-642-13414-2_5

references 239

Plotkin, Gordon D. and Martín Abadi (1993).

A logic for parametric polymorphism. International Conference on Typed
LambdaCalculi andApplications (TLCA), pages 361–375 (cited on pages 90,
129, 222).

Reppy, John (1991).

CML: A higher concurrent language. In proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 293–305 (cited on page 209).

Reppy, John (1992).

Higher-order concurrency. PhD thesis. Cornell University. url: http://

people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz (cited on

pages 11, 15, 175, 177).

Reppy, John (2007).

Concurrent programming in ML. Cambridge University Press. url: http:
//books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&

pg = PP1 & dq = Concurrent + programming + in + ML & ots = 6i8BTg1UXK & sig =

xKpYlrdadlTv2rfQs-JAoowJ2hs (cited on page 176).

Reppy, John, Claudio V. Russo, and Yingqi Xiao (2009).

Parallel concurrentML. In proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP). ACM, pages 257–268
(cited on page 209).

Reynolds, John C. (1983).

Types, abstraction and parametric polymorphism. Information processing.
url: http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

(cited on pages 20, 52, 83, 127, 130).

Reynolds, John C. (2002).

Separation logic: a logic for shared mutable data structures. In proceedings
of the IEEE Symposium on Logic in Computer Science (LICS). IEEE Com-
puter Society, pages 55–74 (cited on pages 60, 68, 95).

Russo, Claudio V. (2007).

�e Joins Concurrency Library. In proceedings of Practical Aspects of
Declarative Languages (PADL). Springer-Verlag, pages 260–274 (cited on
pages 8, 141, 150, 187, 213).

Russo, Claudio V. (2008).

Join Patterns for Visual Basic. In proceedings of the ACM SIGPLAN Con-
ference on Object-oriented Programming Systems, Languages, and Applica-
tions (OOPSLA) (cited on pages 148, 165, 213).

Sangiorgi, Davide, Naoki Kobayashi, and Eijiro Sumii (2007).

Environmental Bisimulations for Higher-Order Languages. In proceedings

http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/113445.113470
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://people.cs.uchicago.edu/~jhr/papers/1992/phd-thesis.ps.gz
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?hl=en&lr=&id=V_0CCK8wcJUC&oi=fnd&pg=PP1&dq=Concurrent+programming+in+ML&ots=6i8BTg1UXK&sig=xKpYlrdadlTv2rfQs-JAoowJ2hs
http://books.google.com/books?vid=ISSN03621340
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://dx.doi.org/10.1007/978-3-540-69611-7_17
http://dx.doi.org/10.1145/1449955.1449770
http://dx.doi.org/10.1109/LICS.2007.17

240 references

of the IEEE Symposium on Logic in Computer Science (LICS). Volume 33. 1,
pages 293–302 (cited on pages 57, 129).

Scherer, III, William N., Doug Lea, and Michael L. Scott (2005).

A scalable elimination-based exchange channel. In proceedings of theWork-
shop on Synchronization and Concurrency in Object Oriented Languages
(SCOOL). Citeseer (cited on pages 4, 146, 172, 181).

Scherer, III, William N., Doug Lea, and Michael L. Scott (2006).

Scalable synchronous queues. In proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP). Vol-
ume 52. 5. New York, New York, USA: ACM Press, pages 147–156 (cited on

page 4).

Scherer, III, William N. and Michael L. Scott (2004).

Nonblocking Concurrent Data Structures with Condition Synchroniza-

tion. In proceedings of Distributed Computing (DISC). Springer, pages 174–
187 (cited on pages 39, 167, 204, 216).

Shavit, Nir and Dan Touitou (1995).

So�ware transactional memory. In proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). New York, New York, USA:
ACM Press, pages 204–213 (cited on pages 6, 149, 177).

Shavit, Nir and Dan Touitou (1997).

So�ware transactional memory. In proceedings of Distributed Computing
(DISC), 10(2):99–116 (cited on page 210).

Singh, Satnam (2006).

Higher-Order combinators for join patterns using STM. In proceedings of
the TRANSACT workshop. url: https://urresearch.rochester.edu/
fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=

5278 (cited on page 214).

Smaragdakis, Yannis, Anthony Kay, Reimer Behrends, and Michal Young

(2007).

Transactions with isolation and cooperation. In proceedings of the ACM
SIGPLANConference onObject-oriented Programming Systems, Languages,
and Applications (OOPSLA) (cited on page 212).

Sulzmann, Martin and Edmund S L Lam (2009).

Parallel Join Patterns with Guards and Propagation. url: http : / /

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&

amp;rep=rep1&type=pdf (cited on page 214).

Sumii, Eijiro and Benjamin C. Pierce (2005).

A bisimulation for type abstraction and recursion. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). Volume 40. 1, pages 63–74 (cited on pages 57, 129).

http://dx.doi.org/10.1145/1122971.1122994
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1007/978-3-540-30186-8_13
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1007/s004460050028
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=3699&itemFileId=5278
http://dx.doi.org/10.1145/1297027.1297042
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.1104&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1047659.1040311

references 241

Sundell, Hå kan, Anders Gidenstam, Marina Papatrianta�lou, and Philippas

Tsigas (2011).

A lock-free algorithm for concurrent bags. In proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). New
York, New York, USA: ACM Press, pages 335–344 (cited on page 150).

Sutherland, Ivan E. and Jo Ebergen (2002).

Computers without Clocks. Scienti�c American, 287(2):62–69 (cited on
page 17).

Svendsen, Kasper, Lars Birkedal, and Matthew Parkinson (2013).

Modular Reasoning about Separation of Concurrent Data Structures. In
proceedings of the European Symposium on Programming (ESOP). url:
http://www.itu.dk/people/kasv/hocap-ext.pdf (cited on page 132).

Swaine, James, Kevin Tew, Peter Dinda, Robert Bruce Findler, and Matthew

Flatt (2010).

Back to the futures: incremental parallelization of existing sequential run-

time systems. In proceedings of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA).
New York, New York, USA: ACM Press (cited on page 223).

Tobin-Hochstadt, Sam (2010).

Typed Scheme: From Scripts to Programs. PhD thesis. Northeastern Uni-

versity (cited on page 223).

Treiber, R. K. (1986).

Systems programming: Coping with parallelism. Technical report. IBM

Almaden Research Center (cited on page 34).

Turon, Aaron (2012).

Reagents (cited on page 10).

Turon, Aaron and Claudio V. Russo (2011).

Scalable Join Patterns. In proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA) (cited on page 10).

Turon, Aaron, Jacob �amsborg, Amal Ahmed, Lars Birkedal, and Derek

Dreyer (2013).

Logical relations for �ne-grained concurrency (cited on page 10).

Turon, Aaron and Mitchell Wand (2011).

A separation logic for re�ning concurrent objects. In proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL) (cited on pages 10, 131).

http://dx.doi.org/10.1145/1989493.1989550
http://dx.doi.org/10.1038/scientificamerican0802-62
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://www.itu.dk/people/kasv/hocap-ext.pdf
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/1869459.1869507
http://dx.doi.org/10.1145/2254064.2254084
http://dx.doi.org/10.1145/2048066.2048111
http://dx.doi.org/10.1145/2429069.2429111
http://dx.doi.org/10.1145/1926385.1926415

242 references

Vafeiadis, Viktor (2008).

Modular �ne-grained concurrency veri�cation. PhD thesis. University of

Cambridge (cited on page 134).

Vafeiadis, Viktor and Matthew Parkinson (2007).

A Marriage of Rely/Guarantee and Separation Logic. In proceedings of
Concurrency�eory (CONCUR) (cited on page 134).

Van Roy, Peter and Seif Haridi (2004).

Concepts, Techniques, and Models of Computer Programming. url: http:
//www.info.ucl.ac.be/~pvr/book.html (cited on pages 15, 16, 18).

Von Itzstein, G. Stewart and David Kearney (2001).

Join Java: An alternative concurrency semantics for Java. Technical report

ACRC-01-001. University of South Australia (cited on page 213).

http://dx.doi.org/10.1145/1360443.1360452
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html
http://www.info.ucl.ac.be/~pvr/book.html

Part V

TECHNICAL APPENDIX

A
Reference: the Fµcas calculus

Values v ∶∶= () Unit value

∣ true Boolean value

∣ false Boolean value

∣ n Number value

∣ (v , v) Pair value

∣ rec f (x).e Recursive function

∣ Λ.e Type abstraction

∣ ℓ Heap location

∣ null Null optional reference

∣ x Variable

Expressions e ∶∶= v Value

∣ if e then e else e Conditional

∣ e + e Addition

∣ (e , e) Pair introduction

∣ let (x , y) = e ine Pair elimination

∣ e e Function application

∣ e _ Type application

∣ case(e , null⇒ e , x ⇒ e) Optional reference elimination

∣ inji e Tagged union injection

∣ case(e , inj1 x ⇒ e , inj2 y⇒ e) Tagged union elimination

∣ new e Mutable tuple allocation

∣ get(e[i]) Mutable tuple dereference

∣ e[i] ∶= e Mutable tuple assignment

∣ cas(e[i], e , e) Mutable tuple atomic update

∣ fork e Process forking

Figure A.1: Syntax of values and
expressions

245

246 reference: the f
µ
cas calculus

Comparable types σ ∶∶= unit Unit (i.e., nullary tuple)
∣ bool Boolean

∣ nat Natural number

∣ τ + τ Tagged union

∣ ref(τ) Mutable tuple reference

∣ ref?(τ) Optional reference

∣ µα.σ Recursive comparable type

Types τ ∶∶= σ Comparable type

∣ α Type variable

∣ τ × τ Immutable pair type

∣ µα.τ Recursive type

∣ ∀α.τ Polymorphic type

∣ τ → τ Function type

Type variable contexts ∆ ∶∶= ⋅ ∣ ∆, α
Term variable contexts Γ ∶∶= ⋅ ∣ Γ, x ∶ τ
Combined contexts Ω ∶∶= ∆; Γ

Figure A.2: Syntax of types

▸ Well-typed terms ∆; Γ ⊢ e ∶ τ

Ω ⊢ () ∶ unit Ω ⊢ true ∶ bool Ω ⊢ false ∶ bool Ω ⊢ n ∶ nat Ω, x ∶ τ ⊢ x ∶ τ

Ω ⊢ e ∶ bool Ω ⊢ e i ∶ τ
Ω ⊢ if e then e1 else e2 ∶ τ

Ω ⊢ e1 ∶ τ1 Ω ⊢ e2 ∶ τ2
Ω ⊢ (e1 , e2) ∶ τ1 × τ2

Ω ⊢ e ∶ τ1 × τ2 Ω, x ∶ τ1 , y ∶ τ2 ⊢ e′ ∶ τ
Ω ⊢ let (x , y) = e in e′ ∶ τ

Ω, f ∶ τ′ → τ, x ∶ τ′ ⊢ e ∶ τ
Ω ⊢ rec f (x).e ∶ τ′ → τ

Ω ⊢ e ∶ τ′ → τ Ω ⊢ e′ ∶ τ′

Ω ⊢ e e′ ∶ τ
Ω ⊢ null ∶ ref?(τ)

Ω ⊢ e ∶ ref(τ)
Ω ⊢ e ∶ ref?(τ)

Ω ⊢ e ∶ ref?(τ) Ω ⊢ e1 ∶ τ Ω, x ∶ ref(τ) ⊢ e2 ∶ τ
Ω ⊢ case(e , null⇒ e1 , x ⇒ e2) ∶ τ

Ω ⊢ e ∶ τ i
Ω ⊢ inji e ∶ τ1 + τ2

Ω ⊢ e ∶ τ1 + τ2 Ω, x ∶ τ i ⊢ e i ∶ τ
Ω ⊢ case(e , inj1 x ⇒ e1 , inj2 x ⇒ e2) ∶ τ

Ω, α ⊢ e ∶ τ
Ω ⊢ Λ.e ∶ ∀α.τ

Ω ⊢ e ∶ ∀α.τ
Ω ⊢ e _ ∶ τ[τ′/α]

Ω ⊢ e i ∶ τ i
Ω ⊢ new (e) ∶ ref(τ)

Ω ⊢ e ∶ ref(τ)
Ω ⊢ get(e[i]) ∶ τ i

Ω ⊢ e ∶ ref(τ) Ω ⊢ e′ ∶ τ i
Ω ⊢ e[i] ∶= e′ ∶ unit

Ω ⊢ e ∶ ref(τ) τ i = σ Ω ⊢ eo ∶ σ Ω ⊢ en ∶ σ
Ω ⊢ cas(e[i], eo , en) ∶ bool

Ω ⊢ e ∶ unit

Ω ⊢ fork e ∶ unit

Ω ⊢ e ∶ µα.τ
Ω ⊢ e ∶ τ[µα.τ/α]

Ω ⊢ e ∶ τ[µα.τ/α]
Ω ⊢ e ∶ µα.τ

Figure A.3: Typing rules

reference: the f
µ
cas calculus 247

Heap-stored values u ∶∶= (v) ∣ inji v
Heaps h ∈ Heap ≜ Loc⇀ HeapVal

Thread pools T ∈ �readPool ≜ N fin⇀ Expression
Configurations ς ∶∶= h;T

Evaluation contexts K ∶∶= [] ∣ if K then e else e ∣ K + e ∣ v + K ∣ (K , e) ∣ (v ,K)
∣ let (x , y) = K in e ∣ K e ∣ v K ∣ inji K ∣ K _
∣ case(K , inj1 x ⇒ e , inj2 x ⇒ e) ∣ case(K , null⇒ e , x ⇒ e)
∣ new (v ,K , e) ∣ get(K[i]) ∣ K[i] ∶= e ∣ v[i] ∶= K
∣ cas(K[i], e , e) ∣ cas(v[i],K , e) ∣ cas(v[i], v ,K)

Figure A.4: Execution syntax

▸ Primitive reductions h; e ↪ h′; e′

h; n +m ↪ h; k when k = n +m
h;get(ℓ[i]) ↪ h; v i when h(ℓ) = (v)
h; ℓ[i] ∶= v ↪ h[ℓ[i] = v]; () when ℓ ∈ dom(h)

h; cas(ℓ[i], vo , vn) ↪ h[ℓ[i] = vn]; true when h(ℓ)[i] = vo
h; cas(ℓ[i], vo , vn) ↪ h; false when h(ℓ)[i] ≠ vo

h; case(ℓ, inj1 x ⇒ e1 , inj2 x ⇒ e2) ↪ h; e i[v/x] when h(ℓ) = inji v

h; if true then e1 else e2 ↪ h; e1
h; if false then e1 else e2 ↪ h; e1

h; case(null, null⇒ e1 , x ⇒ e2) ↪ h; e1
h; case(ℓ, null⇒ e1 , x ⇒ e2) ↪ h; e2[ℓ/x]

h; let (x , y) = (v1 , v2) in e ↪ h; e[v1/x , v2/y]
h; rec f (x).e v ↪ h; e[rec f (x).e/ f , v/x]

h; inji v ↪ h ⊎ [ℓ ↦ inji v]; ℓ
h; Λ.e _ ↪ h; e

h;new (v) ↪ h ⊎ [ℓ ↦ (v)]; ℓ

▸ General reduction h;T → h′;T ′

h; e ↪ h′; e′

h;T ⊎ [i ↦ K[e]]→ h′;T ⊎ [i ↦ K[e′]]
h;T ⊎ [i ↦ K[fork e]]→ h;T ⊎ [i ↦ K[()]] ⊎ [j ↦ e]

Figure A.5:Operational semantics

248 reference: the f
µ
cas calculus

▸ Pure reductions e
pure↪ e′

n +m
pure↪ k when k = n +m

if true then e1 else e2
pure↪ e1

if false then e1 else e2
pure↪ e1

case(null, null⇒ e1 , x ⇒ e2)
pure↪ e1

case(ℓ, null⇒ e1 , x ⇒ e2)
pure↪ e2[ℓ/x]

let (x , y) = (v1 , v2) in e
pure↪ e[v1/x , v2/y]

rec f (x).e v pure↪ e[rec f (x).e/ f , v/x]
Λ.e _

pure↪ e

Figure A.6: Pure reductions

If Ω ⊢ ei ∶ τ and Ω ⊢ es ∶ τ, we say ei contextually re�nes es, written
Ω ⊧ ei ⪯ es ∶ τ, if:

for every i , j and C ∶ (Ω, τ)↝ (∅, nat) we have
∀n.∀Ti . ∅; [i ↦ C[ei]] →∗ hi; [i ↦ n] ⊎ Ti
Ô⇒ ∃Ts . ∅; [j ↦ C[es]]→∗ hs; [j ↦ n] ⊎ Ts

Figure A.7: Contextual re�nement

λx .e ≜ rec _(x).e
let x = e in e′ ≜ (λ_.e′) e

e; e′ ≜ let _ = e in e′

acq ≜ rec f (x). if cas(x , false, true) then () else f (x)
rel ≜ λx . x ∶= false

withLock(lock, e) ≜ λx . acq(lock); let r = e(x) in rel(lock); r
mkAtomic(e1 , . . . , en) ≜ let lock = new (false) in

(withLock(lock, e1), . . . , withLock(lock, en))

Figure A.8:Derived forms

B
Reference: the logic of local protocols

Assertions P ∶∶= v = v Equality of values

∣ emp Empty resource

(ℓ ∶∶= ℓ ∣ x) ∣ ℓ ↦i u Singleton implementation heap

∣ ℓ ↦s u Singleton speci�cation heap

(i ∶∶= i ∣ x) ∣ i ↣s e Singleton speci�cation thread

∣ i ↦ ι Island assertion

∣ P ∗ P Separating conjunction

∣ P⇒ P Implication

∣ P ∧ P Conjunction

∣ P ∨ P Disjunction

∣ ∃x .P Existential quanti�cation

∣ ∀x .P Universal quanti�cation

∣ P ⊕ P Speculative disjunction

∣ φ Pure code assertion

∣ ▷P Later modality

∣ T@m {x . P} �readpool simulation

Pure code assertions φ ∶∶= {P} e {x . Q} Hoare triple

∣ v ⪯V v ∶ τ Value re�nement

∣ Ω ⊢ e ⪯E e ∶ τ Expression re�nement

Island descriptions ι ∶∶= (θ , I, s,A)
where I ∈ θ .S → Assert, State interpretation

s ∈ θ .S , Current state (rely-lower-bound)

A ⊆ θ .A, Owned tokens

A#θ .F(s) (which must not be free)

State transition systems θ ∶∶= (S ,A,↝, F)
where S a set, States

A a set, Tokens

↝ ⊆ S × S , Transition relation

F ∈ S → ℘(A) Free tokens

Main thread indicators m ∶∶= i ID of main thread

∣ none No main thread

Figure B.1: Syntax of assertions

249

250 reference: the logic of local protocols

▸ Domains

StateSet ≜ { Σ ⊆ Heap ×�readPool ∣ Σ �nite, nonempty }
Resource ≜ { η ∈ Heap × StateSet }

Islandn ≜
⎧⎪⎪⎨⎪⎪⎩

ι = (θ , J , s,A)
RRRRRRRRRRRR

θ ∈ STS, s ∈ θ .S , J ∈ θ .S → UWorldn
mon→ ℘(Resource),

A ⊆ θ .A, A#θ .F(s), J(s) ≠ ∅

⎫⎪⎪⎬⎪⎪⎭
Worldn ≜ { W = (k,ω) ∣ k < n, ω ∈ N fin⇀ Islandk }

UWorldn ≜ { U ∈Worldn ∣ U = ∣U ∣ }
VReln ≜ { V ∈ UWorldn

mon→ ℘(Val ×Val) }

▸ Island and world operations

∣(θ , J , s,A)∣ ≜ (θ , J , s,∅)
∣(k,ω)∣ ≜ (k, λi .∣ω(i)∣)

frame(θ , J , s,A) ≜ (θ , J , s, θ .A− θ .F(s) − A)
frame(k,ω) ≜ (k, λi .frame(ω(i)))

⌊(θ , J , s0 ,A)⌋k ≜ (θ , λs.I(s) ↾ UWorldk , s0 ,A)
▷(k + 1,ω) ≜ (k, λi .⌊ω(i)⌋k)

interp(θ , J , s,A) ≜ J(s)

▸ Composition

State sets Σ1 ⊗ Σ2 ≜ { h1 ⊎ h2;T1 ⊎ T2 ∣ h i ;Ti ∈ Σ i } when all compositions are de�ned
Resources (h1 , Σ1) ⊗ (h2 , Σ2) ≜ (h1 ⊎ h2 , Σ1 ⊗ Σ2)
Islands (θ , J , s,A) ⊗ (θ′ , J′ , s′ ,A′) ≜ (θ , J , s,A⊎ A′) when θ = θ′ , s = s′ , J = J′

Worlds (k,ω) ⊗ (k′ ,ω′) ≜ (k, λi .ω(i)⊗ ω′(i)) when k = k′ , dom(ω) = dom(ω′)

▸ Protocol conformance

Protocol step θ ⊢ (s,A) ↝ (s′ ,A′) ≜ s ↝θ s′ , θ .F(s) ⊎ A = θ .F(s′) ⊎ A′

Island guarantee move (θ , J , s,A)
guar

⊑ (θ′ , J′ , s′ ,A′) ≜ θ = θ′ , J = J′ , θ ⊢ (s,A)↝∗ (s′ ,A′)

Island rely move ι
rely

⊑ ι′ ≜ frame(ι)
guar

⊑ frame(ι′)

World guarantee move (k,ω)
guar

⊑ (k′ ,ω′) ≜ k ≥ k′ , ∀i ∈ dom(ω). ⌊ω(i)⌋k′
guar

⊑ ω′(i)

World rely move W
rely

⊑ W ′ ≜ frame(W)
guar

⊑ frame(W ′)

▸ World satisfaction

η ∶W , η′ ≜ W .k > 0 Ô⇒ η = η′ ⊗ η i , ∀i ∈ dom(W .ω). η i ∈ interp(W .ω(i))(▷∣W ∣)

Figure B.2: Semantic structures and
operations on them

reference: the logic of local protocols 251

▸ The semantics of resource and protocol assertions, and the connectives.

R W , η ⊧ρ R i�

φ ∣W ∣ ⊧ρ φ

v1 = v2 v1 = v2
emp W = ∣W ∣, η = (∅, {∅;∅})

P ∧ Q W , η ⊧ρ P andW , η ⊧ρ Q

P ∨ Q W , η ⊧ρ P orW , η ⊧ρ Q

∀x .P ∀v .W , η ⊧ρ P[v/x]

∃x .P ∃v .W , η ⊧ρ P[v/x]

▷P W .k > 0 Ô⇒ ▷W , η ⊧ρ P

R W , η ⊧ρ R i�

P⇒ Q ∀W ′
rely

⊒ W .W ′ , η ⊧ρ P Ô⇒ W ′ , η ⊧ρ Q

ℓ ↦i u η = ([ℓ ↦ u], {∅;∅})

ℓ ↦s u η = (∅, {[ℓ ↦ u];∅})

i ↣s e η = (∅, {∅; [i ↦ e]})

i ↦ (θ , I, s,A) W .ω(i)
rely

⊒ (θ , JIK, s,A)

where JIK ≜ λs.λU .{η ∣ U , η ⊧ρ I(s)}

P1 ∗ P2 W =W1 ⊗W2 , η = η1 ⊗ η2 , Wi , η i ⊧ρ Pi
P1 ⊕ P2 η.Σ = Σ1 ∪ Σ2 , W , (η.h, Σ i) ⊧ρ Pi

▸ The semantics of value refinement.

τ0 vi vs U ⊧ρ vi ⪯V vs ∶ τ0 i�

τb v v ⊢ v ∶ τb for τb ∈ {unit, bool, nat}
α vi vs (vi , vs) ∈ ρ(α)(U)

τ1 × τ2 (vi1 , vi2) (vs1 , vs2) U ⊧ρ
▷(vi1 ⪯V vs1 ∶ τ1 ∧ vi2 ⪯V vs2 ∶ τ2)

τ → τ′ rec f x .ei rec f x .es U ⊧ρ
▷(x ∶ τ ⊢ ei[vi/ f] ⪯E es[vs/ f] ∶ τ′)

∀α.τ Λ.ei Λ.es U ⊧ρ
▷(α ⊢ ei ⪯E es ∶ τ)

µα.τ vi vs U ⊧ρ vi ⪯V vs ∶ τ[µα.τ/α]
ref?(τ) null null always

ℓi ℓs U ⊧ρ
▷ℓi ⪯V ℓs ∶ ref(τ)

ref(τ) ℓi ℓs U ⊧ρ inv(∃x , y. ⋀ x ⪯V y ∶ τ ∧ ℓi ↦i (x) ∗ ℓs ↦s (y))
τ1 + τ2 ℓi ℓs ∃i . U ⊧ρ ∃x , y. ▷x ⪯V y ∶ τ i ∧ inv(vi ↦i inji x ∗ vs ↦s inji y)

where inv(P) ≜ (({dummy},∅,∅, λ_.∅), λ_.P, dummy,∅)
▸ The semantics of expression refinement.

Ω U ⊧ρ Ω ⊢ ei ⪯E es ∶ τ i�

⋅ ∀K , j. U ⊧ρ { j ↣s K[es]} ei {x . ∃y. x ⪯V y ∶ τ ∧ j ↣s K[y]}
x ∶τ′ , Ω′ ∀vi , vs . U ⊧ρ vi ⪯V vs ∶ τ′ ⇒ Ω′ ⊢ ei[vi/x] ⪯E es[vs/x] ∶ τ

α, Ω′ ∀V . U ⊧ρ[α↦V] Ω′ ⊢ ei ⪯E es ∶ τ

▸ The semantics ofHoare triples.

U ⊧ρ {P} e {x . Q} ≜ ∀i . U ⊧ρ P⇒ [i ↦ e]@i {x . Q}

▸ The semantics of threadpool simulation.

W0 , η ⊧ρ T@m {x . Q} ≜ ∀W
rely

⊒ W0 , ηF#η. ifW .k > 0 and h, Σ ∶W , η ⊗ ηF then:

h;T → h′;T ′ Ô⇒ ∃Σ′ , η′ ,W ′
guar

⊒1 W . Σ ⇉ Σ′ , h′ , Σ′ ∶W ′ , η′ ⊗ ηF , W ′ , η′ ⊧ρ T ′@m {x . Q}

T = T0 ⊎ [m ↦ v] Ô⇒ ∃Σ′ , η′ ,W ′
guar

⊒0 W . Σ ⇉ Σ′ , h, Σ′ ∶W ′ , η′ ⊗ ηF , W ′ , η′ ⊧ρ Q[v/x] ∗ T0@none {x . tt}

where W ′
guar

⊒n W ≜ W ′
guar

⊒ W ∧ W .k =W ′ .k + n
Σ ⇉ Σ′ ≜ ∀ς′ ∈ Σ′ . ∃ς ∈ Σ. ς →∗ ς′

252 reference: the logic of local protocols

▸ Laws of intuitionistic first-order logic.

P ∈ P
P ⊢ P

P ⊢ P[v/x] P ⊢ v = v′

P ⊢ P[v′/x]
P ⊢ P P ⊢ Q

P ⊢ P ∧ Q
P ⊢ P ∧ Q
P ⊢ P

P ⊢ P ∧ Q
P ⊢ Q

P ⊢ P ∨ Q P , P ⊢ R P ,Q ⊢ R
P ⊢ R

P ⊢ P
P ⊢ P ∨ Q

P ⊢ Q
P ⊢ P ∨ Q

P , P ⊢ Q
P ⊢ P⇒ Q

P ⊢ P⇒ Q P ⊢ P
P ⊢ Q

P ⊢ P[y/x] y fresh
P ⊢ ∀x .P

P ⊢ ∀x .P
P ⊢ P[v/x]

P ⊢ ∃x .P P , P[y/x] ⊢ Q y fresh
P ⊢ Q

P ⊢ P[v/x]
P ⊢ ∃x .P

▸ Axioms from the logic of bunched implications.

P ∗ Q ⇐⇒ Q ∗ P
(P ∗ Q) ∗ R ⇐⇒ P ∗ (Q ∗ R)

P ∗ emp ⇐⇒ P

(P ∨ Q) ∗ R ⇐⇒ (P ∗ R) ∨ (Q ∗ R)
(P ∧ Q) ∗ R Ô⇒ (P ∗ R) ∧ (Q ∗ R)
(∃x . P) ∗ Q ⇐⇒ ∃x . (P ∗ Q)
(∀x . P) ∗ Q Ô⇒ ∀x . (P ∗ Q)

P , P1 ⊢ Q1 P , P2 ⊢ Q2
P , P1 ∗ P2 ⊢ Q1 ∗ Q2

▸ Laws for the “later” modality.

Mono

P ⊢ P
P ⊢ ▷P

Löb

P ,▷P ⊢ P
P ⊢ P

▷(P ∧ Q) ⇐⇒ ▷P ∧▷Q
▷(P ∨ Q) ⇐⇒ ▷P ∨▷Q

▷∀x .P ⇐⇒ ∀x .▷P
▷∃x .P ⇐⇒ ∃x .▷P

▷(P ∗ Q) ⇐⇒ ▷P ∗▷Q

▸ Reasoning about refinement.

Φ ⊢ () ⪯V () ∶ unit Φ ⊢ true ⪯V true ∶ bool Φ ⊢ false ⪯V false ∶ bool Φ ⊢ n ⪯V n ∶ nat

Φ ⊢ ▷vi1 ⪯V vs1 ∶ τ1 Φ ⊢ ▷vi2 ⪯V vs2 ∶ τ2
Φ ⊢ (vi1 , vi2) ⪯V (vs1 , vs2) ∶ τ1 × τ2

vi = rec f (xi).ei vs = rec f (xs).es
Φ, xi ⪯V xs ∶ τ ⊢ ▷ei[vi/ f] ⪯E es[vs/ f] ∶ τ′

Φ ⊢ vi ⪯V vs ∶ τ → τ′

Φ ⊢ ▷ei ⪯E es ∶ τ
Φ ⊢ Λ.ei ⪯V Λ.es ∶ ∀α.τ

Φ ⊢ vi ⪯V vs ∶ τ[µα.τ/α]
Φ ⊢ vi ⪯V vs ∶ µα.τ

Φ ⊢ null ⪯V null ∶ ref?(τ)
Φ ⊢ ▷vi ⪯V vs ∶ ref(τ)
Φ ⊢ vi ⪯V vs ∶ ref?(τ)

Φ ⊢ inv (∃x , y. ⋀ x ⪯V y ∶ τ ∧ vi ↦i (x) ∗ vs ↦s (y))

Φ ⊢ vi ⪯V vs ∶ ref(τ)
Φ ⊢ ∃x , y. ▷x ⪯V y ∶ τ i ∧ inv(vi ↦i inji x ∗ vs ↦s inji y)

Φ ⊢ vi ⪯V vs ∶ τ1 + τ2

reference: the logic of local protocols 253

▸ “Glue” (logical and structural) rules for concurrentHoare logic.

Bind

{P} e {x . Q} ∀x . {Q} K[x] {y. R}
{P} K[e] {y. R}

Return

{emp} v {x . x = v ∧ emp}

Consequence

P ⊢ P′ {P′} e {x . Q′} Q′ ⊢ Q
{P} e {x . Q}

Disjunction

{P1} e {x . Q} {P2} e {x . Q}
{P1 ∨ P2} e {x . Q}

Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hypo

Φ ⊢ P {P ∧ Q} e {x . R}
Φ ⊢ {Q} e {x . R}

HypoOut

P pure Φ, P ⊢ {Q} e {x . R}
Φ ⊢ {P ∧ Q} e {x . R}

▸ Primitive rules for concurrentHoare logic.

Pure

e
pure↪ e′ {P} e′ {Q}

{▷P} e {Q}

Private

LPM a Lx . QM

{▷P} a {x . Q}

Shared

∀ι
rely

⊒ ι0 . ∃ι′
guar

⊒ ι. ∃Q . Lι.I(ι.s) ∗ PM a Lx . ▷ι′ .I(ι′ .s) ∗ QM ∧ (i ↦ ι′ ∗ Q) ⊢ R
{i ↦ ι0 ∗▷P} a {x . R}

NewIsland

{P} e {x . Q ∗▷ι.I(ι.s)}
{P} e {x . Q ∗ ι}

PrivateSumElim

i ∈ {1, 2} {ℓ ↦i inji x ∗ P} e i {ret. Q}
{ℓ ↦i inji x ∗▷P} case(ℓ, inj1 x ⇒ e1 , inj2 x ⇒ e2) {ret. Q}

ExecSpec

{P} e {x . Q} Q ⇉ R
{P} e {x . R}

▸ Reasoning about atomic expressions.

Inject

LempM inji v Lret. ret↦i inji vM
Alloc

LempM new v Lret. ret↦i (v)M
Deref

Lv ↦i (v)M get(v[i]) Lret. ret = v i ∧ v ↦i (v)M

Assign

Lv ↦i (v1 , . . . , vn)M v[i] ∶= v′i Lret. ret = () ∧ v ↦i (v1 , . . . , v i−1 , v′i , v i+1 , . . . , vn)M

CASTrue

Lv ↦i (v1 , . . . , vn)M cas(v[i], v i , v′i) Lret. ret = true ∧ v ↦i (v1 , . . . , v i−1 , v′i , v i+1 , . . . , vn)M

CASFalse

Lv ↦i (v) ∧ vo ≠ v iM cas(v[i], vo , v′i) Lret. ret = false ∧ v ↦i (v)M

▸ Logical and structural rules.

AConsequence

P ⊢ P′ LP′M a Lx . Q′M Q′ ⊢ Q
LPM a Lx . QM

AFrame

LPM a Lx . QM

LP ∗ RM a Lx . Q ∗ RM

ADisjunction

LP1M a Lx . QM LP2M a Lx . QM

LP1 ∨ P2M a Lx . QM

AExecSpec

LPM a Lx . QM Q ⇉ R
LPM a Lx . RM

254 reference: the logic of local protocols

▸ Derived rules.

Φ ⊢ {P} e {x . ▷Q} Φ ⊢ ∀x . {Q} e′ {y. R}
Φ ⊢ {P} let x = e in e′ {y. R}

Φ ⊢ {P} e {x . (x = true ∧▷Q1) ∨ (x = false ∧▷Q2)} Φ ⊢ {Q1} e1 {ret. R} Φ ⊢ {Q2} e2 {ret. R}
Φ ⊢ {P} if e then e1 else e2 {ret. R}

Φ ⊢ {P} e {x . (x = null ∧▷Q1) ∨ (∃ℓ. x = ℓ ∧▷Q2)}
Φ ⊢ {Q1} e1 {ret. R} Φ ⊢ ∀ℓ. {Q2[ℓ/x]} e2 {ret. R}

Φ ⊢ {P} case(e , null⇒ e1 , x ⇒ e2) {ret. R}

UnfoldRec

Φ ⊢ ∀ f , x . {P ∧ ∀x . {P} f x {ret. Q}} e {ret. Q}
Φ ⊢ ∀x . {P} e[rec f (x).e/ f] {ret. Q}

C
Metatheory for the logic of local
protocols

C.1 basic properties of the logic of local protocols

Lemma 6 (Rely-guarantee Preorders). �e relations
rely

⊑ and
guar

⊑ are pre-

orders.

Lemma 7 (Rely-closure of Assertions). W , η ⊧ρ P and W ′
rely

⊒ W implies

W ′ , η ⊧ρ P.

Lemma 8. ∣W ∣⊗W =W .

Lemma 9. IfW
rely

⊑ W ′ then ∣W ∣
rely

⊑ ∣W ′∣.

Lemma 10 (Rely Decomposition). IfW1 ⊗W2

rely

⊑ W ′ then there areW ′

1 and

W ′

2 withW ′ =W ′

1 ⊗W ′

2 ,W1

rely

⊑ W ′

1 andW2

rely

⊑ W ′

2 .

Lemma 11 (Token Framing). If W
guar

⊑ W ′ and W ⊗ Wf is de�ned then

there exists someW ′

f
rely

⊒ Wf such thatW ′ ⊗W ′

f is de�ned andW ⊗Wf
guar

⊑
W ′ ⊗W ′

f .

Lemma 12. If h, Σ ∶W , η then h, Σ ∶W ⊗W ′ , η.

Lemma 13. If h, Σ ∶W ⊗W ′ , η then h, Σ ∶W , η.

Lemma 14. IfW .k > 0 then▷W
guar

⊒ W and▷W
rely

⊒ W .

Lemma 15. IfW .k > 0 then ∣▷W ∣ = ▷∣W ∣.

Lemma 16 (Later Satisfaction). IfW .k > 0 and h, Σ ∶W , η then h, Σ ∶ ▷W , η.

Lemma 17. ⇉ is transitive.

255

256 metatheory for the logic of local protocols

C.2 soundness of hoare-style reasoning

C.2.1 Constructions with�readpool Triples

Lemma 18 (Framing). W , η ⊧ρ T@m {x . Q} andWf , η f ⊧ρ R withW#Wf ,

η#η f gives

W ⊗Wf , η ⊗ η f ⊧ρ T@m {x . Q ∗ R}.

Proof. �e proof proceeds by induction onW .k.

Case W .k = 0

1. (W ⊗Wf).k =W .k = 0.

Case W .k > 0

2. LetW ′
rely

⊒ W ⊗Wf , η′f #η ⊗ η f .

3. WriteW ′ =W ′

1 ⊗W ′

2 withW ′

1

rely

⊒ W ,W ′

2

rely

⊒ Wf by Lem. 10.

4. Suppose (W ′

1 ⊗W ′

2).k > 0.
5. W ′

1 .k = (W ′

1 ⊗W ′

2).k > 0.
6. Suppose h, Σ ∶W ′

1 ⊗W ′

2 , η ⊗ η f ⊗ η′f .
7. h, Σ ∶W ′

1 , η ⊗ η f ⊗ η′f by Lem. 13.

Case h;T → h′;T ′

8. Pick Σ′ , η′ , andW ′′

1 with

W ′′

1

guar

⊒ W ′

1 ,

Σ ⇉ Σ′ ,
h′ , Σ′ ∶W ′′

1 , η′ ⊗ η f ⊗ η′f ,
W ′′

1 .k =W ′

1 .k − 1,
W ′′

1 , η′ ⊧ρ T ′@m {x . Q}

by assumption.

9. PickW ′′

2

rely

⊒ W ′

2 withW ′′

1 ⊗W ′′

2

guar

⊒ W ′

1 ⊗W ′

2 by Lem. 11.

10. h′ , Σ′ ∶W ′′

1 ⊗W ′′

2 , η′ ⊗ η f ⊗ η′f by Lem. 12.

11. (W ′′

1 ⊗W ′′

2).k =W ′′

1 .k =W ′

1 .k − 1 = (W ′

1 ⊗W ′

2).k − 1.
12. W ′′

2 , η f ⊧ρ R.
13. W ′′

1 ⊗W ′′

2 , η′ ⊗ η f ⊧ρ T ′@m {x . Q ∗ R} by induction hypothesis.

soundness of hoare-style reasoning 257

Case m = i and T = T0 ⊎ [i ↦ v]

14. Pick Σ′ , η′ , andW ′′

1 with

W ′′

1

guar

⊒ W ′

1 ,

Σ ⇉ Σ′ ,
h, Σ′ ∶W ′′

1 , η′ ⊗ η f ⊗ η′f ,
W ′′

1 .k =W ′

1 .k,
W ′′

1 , η′ ⊧ρ Q[v/x] ∗ T0@none {x . tt}

by assumption.

15. PickW ′′

2

rely

⊒ W ′

2 withW ′′

1 ⊗W ′′

2

guar

⊒ W ′

1 ⊗W ′

2 by Lem. 11.

16. h′ , Σ′ ∶W ′′

1 ⊗W ′′

2 , η′ ⊗ η f ⊗ η′f by Lem. 12.

17. (W ′′

1 ⊗W ′′

2).k =W ′′

1 .k =W ′

1 .k = (W ′

1 ⊗W ′

2).k.
18. W ′′

2 , η f ⊧ρ R.
19. W ′′

1 ⊗W ′′

2 , η′ ⊗ η f ⊧ρ Q[v/x] ∗ R ∗ T0@none {x . tt}.

Corollary 1 (PreconditionExtension). W , η ⊧ρ T@m {x1 . ∃x2 . x1 ⪯V x2 ∶ τ ∧ j ↣s K[x2]}
togetherwithWf #W givesW⊗Wf , η ⊧ρ T@m {x1 . ∃x2 . x1 ⪯V x2 ∶ τ ∧ j ↣s K[x2]}.

For the proofs below, we add an additional syntactic assertion, ⋅
rely

⊒ U ,
with

U ⊧ρ ⋅
rely

⊒ U0 ≜ U
rely

⊒ U0

Corollary 2 (Postcondition Strengthening). If we haveW , η ⊧ρ T@m {x . Q}

thenW , η ⊧ρ T@m {x . Q ∧ ⋅
rely

⊒ ∣W ∣} holds too.

258 metatheory for the logic of local protocols

Lemma 19 (Parallel Composition). If we haveW1 , η1 ⊧ρ T1@m1 {x . Q1} and
W2 , η2 ⊧ρ T2@m2 {x . Q2} with W1#W2, η1#η2, T1#T2 and m1 ≠ none ⇒
m1 ∈ dom(T1) then we also have

W1 ⊗W2 , η1 ⊗ η2 ⊧ρ T1 ⊎ T2@m1 {x . Q1}.

Proof. By induction on the measureM(W1 ,m1) de�ned by

M(W ,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W .k m = none

W .k + 1 m ≠ none.

Case M(W1 ,m1) = 0

1. (W1 ⊗W2).k =W1 .k = 0.

Case M(W1 ,m1) > 0

2. LetW ′
rely

⊒ W1 ⊗W2 , η f #η1 ⊗ η2 .

3. WriteW ′ =W ′

1 ⊗W ′

2 withW ′

1

rely

⊒ W1 ,W ′

2

rely

⊒ W2 by Lem. 10.

4. Suppose (W ′

1 ⊗W ′

2).k > 0.
5. W ′

1 .k = (W ′

1 ⊗W ′

2).k > 0.
6. Suppose h, Σ ∶W ′

1 ⊗W ′

2 , η1 ⊗ η2 ⊗ η f .

7. h, Σ ∶W ′

1 , η1 ⊗ η2 ⊗ η f by Lem. 13.

Case h;T1 ⊎ T2 → h′;T ′

8. Write T ′ = T ′1 ⊎ T2WLOG.
9. h;T1 → h′;T ′1 by nondeterminism of fork.

10. Pick Σ′ , η′1 , andW ′′

1 with

W ′′

1

guar

⊒ W ′

1 ,

Σ ⇉ Σ′ ,
W ′′

1 .k =W ′

1 .k − 1,
h′ , Σ′ ∶W ′′

1 , η′1 ⊗ η2 ⊗ η f ,

W ′′

1 , η′1 ⊧ρ T ′1@m1 {x1 . Q1}

by assumption.

11. PickW ′′

2

rely

⊒ W ′

2 withW ′′

1 ⊗W ′′

2

guar

⊒ W ′

1 ⊗W ′

2 by Lem. 11.

12. (W ′′

1 ⊗W ′′

2).k =W ′′

1 .k =W ′

1 .k − 1 = (W ′

1 ⊗W ′

2).k − 1.
13. h′ , Σ′ ∶W ′′

1 ⊗W ′′

2 , η′1 ⊗ η2 ⊗ η f by Lem. 12.

14. W ′′

2 , η2 ⊧ρ T2@m2 {x2 . Q2} by assumption.

15. W ′′

1 ⊗W ′′

2 , η′1 ⊗ η2 ⊧ρ T ′1 ⊎ T2@m1 {x1 . Q1} by induction hypothesis.

soundness of hoare-style reasoning 259

Case T1 ∗ T2 = T0 ⊎ [m1 ↦ v1]

16. m1 ∈ dom(T1) by assumption.

17. Write T1 = T ′1 ⊎ [m1 ↦ v1].
18. Pick Σ′ , η′1 , andW ′′

1 with

W ′′

1

guar

⊒ W ′

1 ,

Σ ⇉ Σ′ ,
W ′′

1 .k =W ′

1 .k,
h, Σ′ ∶W ′′

1 , η′1 ⊗ η2 ⊗ η f ,

W ′′

1 , η′1 ⊧ρ Q1[v1/x1] ∗ T ′1@none {x1 . tt}

by assumption.

19. PickW ′′

2

rely

⊒ W ′

2 withW ′′

1 ∗W ′′

2

guar

⊒ W ′

1 ∗W ′

2 by Lem. 11.

20. (W ′′

1 ∗W ′′

2).k =W ′′

1 .k =W ′

1 .k = (W ′

1 ∗W ′

2).k.
21. h, Σ′ ∶W ′′

1 ∗W ′′

2 , η′1 ∗ η2 ∗ η f by Lem. 12.

22. W ′′

2 , η2 ⊧ρ T2@m2 {x2 . Q2}. by assumption.

23. W ′′

1 ∗W ′′

2 , η′1 ∗ η2 ⊧ρ Q[v1/x1] ∗ T ′1 ⊎ T2@none {x1 . tt}.
by induction hypothesis.

260 metatheory for the logic of local protocols

Lemma20 (Sequential Composition). If we haveW , η ⊧ρ [i ↦ e] ⊎ T@i {x . Q}
and for all v and any W ′ , η′ with W ′ , η′ ⊧ Q[v/x] we have W ′ , η′ ⊧ρ

[i ↦ K[v]]@i {x . R} then

W , η ⊧ρ [i ↦ K[e]] ⊎ T@i {x . R}.

Proof. �e proof proceeds by induction onW .k; the caseW .k = 0 is trivial so we assumeW .k > 0. We branch on the
structure of e:

1. LetW ′
rely

⊒ W , η f #η.

2. SupposeW ′ .k > 0.
3. Suppose h, Σ ∶W ′ , η ⊗ η f .

Case e = v

4. Pick Σ′ , η′ , andW ′′ with

W ′′
guar

⊒ W ′ ,

Σ ⇉ Σ′ ,
h, Σ′ ∶W ′′ , η′ ⊗ η f ,

W ′′ .k =W ′ .k,
W ′′ , η′ ⊧ρ Q[v/x] ∗ T@none {x . tt}

by assumption.

5. WriteW ′′ =W ′′

1 ⊗W ′′

2 and η′ = η′1 ⊗ η′2 . with
W ′′

1 , η′1 ⊧ρ Q[v/x],
W ′′

2 , η′2 ⊧ρ T@none {x . tt}.
6. W ′′

1 , η′1 ⊧ρ [i ↦ K[v]]@i {x . R} by assumption.

7. W ′′ , η′ ⊧ρ [i ↦ K[v]] ⊎ T@i {x . R} by Lem. 19.

Case K[v] = v′

8. Pick Σ′′ , η′′ , andW ′′′ with

W ′′′
guar

⊒ W ′′ ,

Σ′ ⇉ Σ′′ ,
h, Σ′′ ∶W ′′′ , η′′ ⊗ η f ,

W ′′′ .k =W ′′ .k,
W ′′′ , η′′ ⊧ρ R[v′/x] ∗ T@none {x . tt}

by (7).

9. Σ ⇉ Σ′′ .
10. W ′′′ .k =W ′′ .k =W ′ .k.

soundness of hoare-style reasoning 261

Case h; [i ↦ K[v]] ⊎ T → h′;T ′

11. Pick Σ′′ , η′′ , andW ′′′ with

W ′′′
guar

⊒ W ′′ ,

Σ′ ⇉ Σ′′ ,
h′ , Σ′′ ∶W ′′′ , η′′ ⊗ η f ,

W ′′′ .k =W ′′ .k − 1,
W ′′′ , η′′ ⊧ρ T ′@i {x . R}

by (7).

12. Σ ⇉ Σ′′ .
13. W ′′′ .k =W ′′ .k − 1 =W ′ .k − 1.

Case e ≠ v

14. Suppose h; [i ↦ K[e]] ⊎ T → h′; [i ↦ K[e′]] ⊎ T ′ .
15. h; [i ↦ e] ⊎ T → h′; [i ↦ e′] ⊎ T ′ .
16. Pick Σ′ , η′ , andW ′′ with

W ′′
guar

⊒ W ′ ,

Σ ⇉ Σ′ ,
h′ , Σ′ ∶W ′′ , η′ ⊗ η f ,

W ′′ .k =W ′ .k − 1,
W ′′ , η′ ⊧ρ [i ↦ e′] ⊎ T ′@i {x . Q}

by assumption.

17. W ′′ , η′ ⊧ρ [i ↦ K[e′]] ⊎ T ′@i {x . R} by induction hypothesis.

262 metatheory for the logic of local protocols

C.2.2 Soundness of key inference rules

�e soundness of Frame and Bind follow easily from the lemmas proved

in the previous section. Here we give proofs for the key rules dealing with

islands and li�ing atomic triples.

Lemma 21.
NewIsland

{P} e {x . Q ∗▷ι.I(ι.s)}
{P} e {x . Q ∗ ι}

We prove the result by a straightforward induction on the step index in

the underlying threadpool simulation, appealing to the following lemma in

the case that the main thread terminates: if

h, Σ ∶W , η ⊗ ηF and W , η ⊧ρ Q ∗▷ι.I(ι.s) ∗ T@none {true}

then

∃η′ ,W ′
guar

⊒ W . h, Σ ∶W ′
, η′ ⊗ ηF and W ′

, η′ ⊧ρ Q ∗ ι ∗ T@none {true}

�e proof of the lemma is as follows:

Proof.

1. W =W1 ⊗W2 ⊗W3 , η = η1 ⊗ η2 ⊗ η3 ,
W1 , η1 ⊧ρ Q , W2 , η2 ⊧ρ

▷ι.I(ι.s), W3 , η3 ⊧ρ T@none {true}
2. LetW ′ = (W .k,W .ω ⊎ [i ↦ IJιKρ

k])

3. W ′
guar

⊒ W

4. ▷∣W ′∣, η2 ⊧ρ
▷ι.I(ι.s)

5. Let η′ = η1 ⊗ η3
6. h, Σ ∶W ′ , η′ ⊗ ηF

7. W2 ⊗W3 , η3 ⊧ρ T@none {true} by framing

8. W ′ , η′ ⊧ρ Q ∗ ι ∗ T@none {true}

soundness of hoare-style reasoning 263

Let

η ⊧ IJWK ≜ W .K > 0 ∧ η = η i ∧ ∀i ∈ dom(W .ω). η i ∈ interp(W .ω(i))(▷∣W ∣)

Lemma 22.
Private

LPM a Lx . QM

{▷P} a {x . Q}

Proof.

1. Fix i ,W0 ,W , η, ηF , ρ

2. SupposeW0 , η ⊧ρ
▷P, W

rely

⊒ W0 , W .k > 0,
ηF#η, h, Σ ∶W , η ⊗ ηF , h; [i ↦ a]→ h′;T

3. ∃ηW . (h, Σ) = η ⊗ ηF ⊗ ηW , ηW ∈ IJW .ωKW

4. ∃v . h; a ↪ h′; v , T = [i ↦ v] by inversion on operational semantics

5. Let η′F = ηF ⊗ ηW

6. ∃η′#η′F . h′ = (η′ ⊗ η′F).h, (η ⊗ η′F).Σ ⇉ (η′ ⊗ η′F).Σ, ▷W , η′ ⊧ρ Q[v/x]
by assumption

7. Let Σ′ = (η′ ⊗ η′F).Σ

8. ▷W
rely

⊒ W

9. h′ , Σ′ ∶ ▷W , η′ ⊗ ηF

264 metatheory for the logic of local protocols

Lemma 23.

Shared

∀ι
rely

⊒ ι0 . ∃ι′
guar

⊒ ι. ∃Q . Lι.I(ι.s) ∗ PM a Lx . ▷ι′ .I(ι′ .s) ∗ QM ∧ (i ↦ ι′ ∗ Q) ⊢ R
{i ↦ ι0 ∗▷P} a {x . R}

Proof.

1. Fix j andW0 , η ⊧ρ ι0 ∗▷P

2. Su�ces to showW0 , η ⊧ρ [i ↦ e]@i {x . R}

3. FixW
rely

⊒ W0 and ηF#η

4. SupposeW .k > 0 and h, Σ ∶W , η ⊗ ηF

5. W , η ⊧ρ ι0 ∗▷P

6. W =W ′ ⊗W ′′ , η = η′ ⊗ η′′ , W ′ , η′ ⊧ρ ι0 , W ′′ , η′′ ⊧ρ
▷P

7. ∃ι
rely

⊒ ι0 ,ωF .W .ω = ωF ⊎ [j ↦ ι]

8. ∃ηι , η′F .
(h, Σ) = ηι ⊗ η ⊗ ηF ⊗ η′F
ηι ∈ ι.I(ι.s)(▷∣W ∣), η′F ∈∗iωF(i).I(ωF(i).s)(▷∣W ∣)

by semantics of world satisfaction

9. ∃ι′
guar

⊒ ι, Q .
i ↦ ι′ ∗ Q ⊧ρ R
Lι.J(ι.s) ∗ PM e Lx . ▷ι′ .J(ι′ .s) ∗ QM

by assumption

10. Let η̂ = η′′ ⊗ ηι

11. W ′′ , η̂ ⊧ρ
▷(ι.J(ι.s) ∗ P) by (1, 8)

12. Let η̂F = ηF ⊗ η′F
13. h = (η̂ ⊗ η̂F).h
14. Suppose h; [j ↦ a]→ h′;T

15. ∃v . h; a ↪ h′; v , T = [j ↦ v] by inversion

16. ∃η̂′ . h′ = (η̂′ ⊗ η̂F).h,
(η̂ ⊗ η̂F).Σ ⇉ (η̂′ ⊗ η̂F).Σ,
▷W ′′ , η̂′ ⊧ρ

▷ι′ .J(ι′ .s) ∗ Q[v/x]

by (9)

17. Let Ŵ = (W .k − 1, ⌊ωF⌋W .k−1 ⊎ [j ↦ ι′])

18. Ŵ
guar

⊒ W

19. ∃η′ι , η′ . η̂′ = η′ ⊗ η′ι ,
▷∣Ŵ ∣, η′ι ⊧ i ↦ ι′ .J(ι′ .s),
Ŵ , η′ ⊧ρ Q[v/x]

by semantics of assertions, token-purity of island

interpretations

20. Write Σ′ = (η̂′ ⊗ η̂F).Σ
21. Σ ⇉ Σ′

22. h′ , Σ′ ∶ Ŵ , η′ ⊗ ηF by (8, 19)

soundness of hoare-style reasoning 265

23. Ŵ , η′ ⊧ρ Q[v/x] ∗ i ↦ ι′

24. Ŵ , η′ ⊧ρ R[v/x] by (9)

25. Ŵ , η′ ⊧ρ [j ↦ v]@i {x . R}

266 metatheory for the logic of local protocols

C.3 soundness of refinement reasoning

C.3.1 Congruence

Lemma 24 (Soundness Shortcut). ∆; Γ ⊧ e1 ⪯ e2 ∶ τ is equivalent to

∀U ∀ρ ∶ ∆ → VRel ∀γ1 , γ2 ∶ dom(Γ)→ Val.
[∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x)]
Ô⇒

[∀K , j, i . U , (∅, {∅; [j ↦ K[e2[γ2/Γ]]]}) ⊧ρ

[i ↦ e1[γ1/Γ]]@i {x1 . ∃x2 . x1 ⪯V x2 ∶ τ ∧ j ↣s K[x2]}].

soundness of refinement reasoning 267

C.3.1.1▸ New

Lemma 25.

∆; Γ ⊧ e i ⪯ f i ∶ τ i
∆; Γ ⊧ new e ⪯ new f ∶ ref(τ)

Proof.

1. Let U , ρ ∶ ∆ → VRel, γ1 , γ2 ∶ dom(Γ)→ Val.
2. Suppose ∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
3. Write e′i = e i[γ1/Γ], f ′i = f i[γ2/Γ].
4. Let K , i , j.

5. Write η = (∅, {∅; [j ↦ K[new f ′]]}).
6. Write Q = ∃y. x ⪯V y ∶ ref(τ) ∧ j ↣s K[y].
7. Su�ces to show U , η ⊧ρ [i ↦ new e′]@i {x . Q}. by Lem. 24.

LetM = ∣ref(τ)∣. We now proceed to make a claim: for any 0 ≤ m ≤ M it su�ces to prove

U ′
, ηm ⊧ρ [i ↦ new v1 , . . . , vm , e′m+1 , . . . , e

′

M]@i {x . Q},

for all U ′
rely

⊒ U and all U ′ ⊧ρ v1 ⪯V w1 ∶ τ1 , . . . ,U ′ ⊧ρ vm ⪯V wm ∶ τm , where

ηm = (∅, {∅; [j ↦ K[new w1 , . . . ,wm , f ′m+1 , . . . , f
′

M]]})

We prove the claim by induction on m; the case m = 0 was proved above. So, suppose the claim holds for 0 ≤ m < M
and assume that we know that

U ′′
, ηm+1 ⊧ρ [i ↦ new v1 , . . . , vm+1 , e′m+2 , . . . , e

′

M]@i {x . Q},

holds for all for all U ′′
rely

⊒ U and all U ′′ ⊧ρ v1 ⪯V w1 ∶ τ1 , . . . ,U ′′ ⊧ρ vm+1 ⪯V wm+1 ∶ τm+1, where

ηm+1 = (∅, {∅; [j ↦ K[new w1 , . . . ,wm+1 , f ′m+2 , . . . , f
′

M]]})

In the interest of applying the induction hypothesis, we pick arbitrary U ′
rely

⊒ U and

U ′ ⊧ρ v1 ⪯V w1 ∶ τ1 , . . . ,U ′ ⊧ρ vm ⪯V wm ∶ τm

By induction, it will su�ce for the claim to prove that

U ′
, ηm ⊧ρ [i ↦ new v1 , . . . , vm , e′m+1 , . . . , e

′

M]@i {x . Q},

holds, where

ηm = (∅, {∅; [j ↦ K[new w1 , . . . ,wm , f ′m+1 , . . . , f
′

M]]})

Now, by assumption and Lemma 24 and Corollary 2 we have

U ′
, ηm ⊧ρ [i ↦ e′m+1]@i {xm+1 . Qm+1 ∧ ⋅

rely

⊒ U ′},

268 metatheory for the logic of local protocols

where

Qm+1 = ∃ym+1 . xm+1 ⪯V ym+1 ∶ τm+1 ∧ j ↣s K[new w1 , . . . ,wm , y′m+1 , . . . , f
′

M]

Now, let vm+1 be arbitrary and take W ′′ , η′′ ⊧ρ Qm+1[vm+1/xm+1] ∧ ⋅
rely

⊒ U ′ and by an application of Lemma 20 we

have the claim if we can show

W ′′
, η′′ ⊧ρ [i ↦ new v1 , . . . , vm+1 , e′m+2 , . . . , e

′

M]@i {x . Q}.

Luckily, we can pick wn+1 such that we have

∣W ′′∣ ⊧ρ vm+1 ⪯V wm+1 ∶ τm+1 ,
η′′ = (∅, {∅; [j ↦ K[new w1 , . . . ,wm+1 , f ′m+2 , . . . , f ′M]]}),

∣W ′′∣
rely

⊒ U ′

and we can apply our original assumption. A�er this detour, we proceed with the proof proper:

8. Let U ′
rely

⊒ U .

9. Let ⋀U ′ ⊧ρ v ⪯V w ∶ τ.

10. Write η′ = (∅, {∅; [j ↦ K[new w]]}).
11. Su�ces to show U ′ , η′ ⊧ρ [i ↦ new v]@i {x . Q}.

12. LetW ′
rely

⊒ U ′ , η f #η′ .

13. SupposeW ′ .k > 0 and h, Σ ∶W ′ , η′ ⊗ η f .

14. h; [i ↦ new v]→ h ⊎ [ℓ1 ↦ v]; [i ↦ ℓ1].
15. Pick ℓ2 with ∀h2;T2 ∈ Σ. ℓ2 ∉ dom(h2).
16. Write Σ = {∅; [j ↦ K[new w]]}⊗ Σ0 .
17. Write Σ′ = {[ℓ2 ↦ w]; [j ↦ K[ℓ2]]}⊗ Σ0 .
18. Σ ⇉ Σ′ .
19. Write η′′ = (∅, {∅; [j ↦ K[ℓ2]]}).
20. Pick n ∉ dom(W ′ .ω).
21. Write P = ∃x , y. ⋀ x ⪯V y ∶ τ ∧ (ℓ1 ↦i (x) ∗ ℓ2 ↦s (y)).
22. Write ι = (({1},∅,∅, λ_.∅), Jλ_.PKρ

W′k , 1,∅).
23. WriteW ′′ = (W ′ .k,W .ω ⊎ [n ↦ ι]).
24. ∣W ′′∣ ⊧ρ ℓ1 ⪯V ℓ2 ∶ ref(τ).

25. ▷W ′′
guar

⊒ W ′ .

26. ▷∣W ′′∣
rely

⊒ ▷∣W ′∣.

27. ▷∣W ′′∣
rely

⊒ U ′ .

28. h ⊎ [ℓ1 ↦ v], Σ′ ∶W ′′ , η′′ ⊗ η f .

29. h ⊎ [ℓ1 ↦ v], Σ′ ∶ ▷W ′′ , η′′ ⊗ η f by Lem. 16 .

30. ▷W ′′ , η′′ ⊧ρ [i ↦ ℓ1]@i {x . Q}.

soundness of refinement reasoning 269

C.3.1.2▸ Fork

Lemma 26.

∆; Γ ⊧ e1 ⪯ e2 ∶ unit

∆; Γ ⊧ fork e1 ⪯ fork e2 ∶ unit

Proof.

1. Let U , ρ ∶ ∆ → VRel, γ1 , γ2 ∶ dom(Γ)→ Val.
2. Suppose ∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
3. Write e′1 = e1[γ1/Γ], e′2 = e2[γ2/Γ].
4. Let K , i , j.

5. Write η = (∅, {∅; [j ↦ K[fork e′2]]}).
6. Write Q = ∃x2 . x1 ⪯V x2 ∶ unit ∧ j ↣s K[x2].
7. Su�ces to show U , η ⊧ρ [i ↦ fork e′1]@i {x1 . Q}. by Lem. 24.

8. LetW
rely

⊒ U , η f #η.

9. SupposeW .k > 0 and h, Σ ∶W , η ⊗ η f .

10. h; [i ↦ fork e′1]→ h; [i ↦ ()] ⊎ [i′ ↦ e′1].
11. Pick j′ with ∀h′;T ′ ∈ Σ. j′ ∉ dom(T ′).
12. Write Σ = {∅; [j ↦ K[fork e′2]]}⊗ Σ0 .
13. Write Σ′ = {∅; [j ↦ K[()]] ⊎ [j′ ↦ e′2]}⊗ Σ0 .
14. Σ ⇉ Σ′ .
15. Write η′ = (∅, {∅; [j ↦ K[()]]}).
16. Write η′′ = (∅, {∅; [j′ ↦ e′2]}).
17. h, Σ′ ∶W , η′ ⊗ η′′ ⊗ η f .

18. h, Σ′ ∶ ▷W , η′ ⊗ η′′ ⊗ η f by Lem. 16.

19. ▷W , η′ ⊧ρ [i ↦ ()]@i {x1 . Q}.
20. ∣▷W ∣, η′′ ⊧ρ [i′ ↦ e′1]@i′ {x1 . tt} by assumption and Lem. 24. .

21. ▷W , η′ ⊗ η′′ ⊧ρ [i ↦ ()] ⊎ [i′ ↦ e′1]@i {x1 . Q} by Lem. 19.

270 metatheory for the logic of local protocols

C.3.1.3▸ Function Application and Abstraction

Lemma 27. For U .k ≠ 0 we have U ⊧ρ rec f (x).e1 ⪯V rec f (x).e2 ∶ τ1 → τ2
equivalent to

∀w1 ,w2 . ∀U ′
rely

⊒ ▷U .
[U ′ ⊧ρ w1 ⪯V w2 ∶ τ1]
Ô⇒

[∀K , j, i . U ′
, (∅, {∅; [j ↦ K[e2[rec f (x).e2/ f ,w2/x]]]}) ⊧ρ

[i ↦ e1[rec f (x).e1/ f ,w1/x]]@i {x1 . ∃x2 . x1 ⪯V x2 ∶ τ2 ∧ j ↣s K[x2]}].

Lemma 28.

∆; Γ ⊧ e1 ⪯ e2 ∶ τ1 → τ2 ∆; Γ ⊧ f1 ⪯ f2 ∶ τ1
∆; Γ ⊧ e1 f1 ⪯ e2 f2 ∶ τ2

Proof.

1. Let U , ρ ∶ ∆ → VRel, γ1 , γ2 ∶ dom(Γ)→ Val.
2. Suppose ∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
3. Write e′1 = e1[γ1/Γ], e′2 = e2[γ2/Γ].
4. Write f ′1 = f1[γ1/Γ], f ′2 = f2[γ2/Γ].
5. Let K , i , j.

6. Write η = (∅, {∅; [j ↦ K[e′2 f ′2]]}).
7. Write Q = ∃x2 . x1 ⪯V x2 ∶ τ2 ∧ j ↣s K[x2].
8. Su�ces to show U , η ⊧ρ [i ↦ e′1 f ′1]@i {x1 . Q}. by Lem. 24.

9. Write Q′ = ∃x′2 . x′1 ⪯V x′2 ∶ τ1 → τ2 ∧ j ↣s K[x′2 f ′2].
10. U , η ⊧ρ [i ↦ e′1]@i {x′1 . Q′}. by assumption and Lem. 24.

11. U , η ⊧ρ [i ↦ e′1]@i {x′1 . Q′ ∧ ⋅
rely

⊒ U} by Cor. 2.

12. Let v′1 ∈ Val.

13. LetW ′ , η′ withW ′ , η′ ⊧ρ Q′[v′1/x′1] ∧ ⋅
rely

⊒ U .

14. Su�ces to showW ′ , η′ ⊧ρ [i ↦ v′1 f ′1]@i {x1 . Q} by Lem. 20.

15. Su�ces to show ∣W ′∣, η′ ⊧ρ [i ↦ v′1 f ′1]@i {x1 . Q} by Cor. 1.

16. SupposeW ′ .k > 0 WLOG.
17. Pick v′2 with

∣W ′∣ ⊧ρ v′1 ⪯V v′2 ∶ τ1 → τ2 ,
η′ = (∅, {∅; [j ↦ K[v′2 f ′2]]}),

∣W ′∣
rely

⊒ U .

18. Write Q′′ = ∃x′′2 . x′′1 ⪯V x′′2 ∶ τ1 ∧ j ↣s K[v′2 x′′2].
19. ∣W ′∣, η′ ⊧ρ [i ↦ f ′1]@i {x′′1 . Q′′}. by assumption and Lem. 24.

soundness of refinement reasoning 271

20. ∣W ′∣, η′ ⊧ρ [i ↦ f ′1]@i {x′′1 . Q′′ ∧ ⋅
rely

⊒ ∣W ′∣} by Cor. 2.

21. Let v′′1 ∈ Val.

22. LetW ′′ , η′′ withW ′′ , η′′ ⊧ρ Q′′[v′′1 /x′′1] ∧ ⋅
rely

⊒ ∣W ′∣.
23. Su�ces to showW ′′ , η′′ ⊧ρ [i ↦ v′1 v′′1]@i {x1 . Q} by Lem. 20.

24. Su�ces to show ∣W ′′∣, η′′ ⊧ρ [i ↦ v′1 v′′1]@i {x1 . Q} by Cor. 1.

25. SupposeW ′′ .k > 0 WLOG.
26. Pick v′′2 with

∣W ′′∣ ⊧ρ v′′1 ⪯V v′′2 ∶ τ1 ,
η′′ = (∅, {∅; [j ↦ K[v′2 v′′2]]}),

∣W ′′∣
rely

⊒ ∣W ′∣.

27. LetW ′′′
rely

⊒ ∣W ′′∣, η f #η′′ .

28. SupposeW ′′′ .k > 0 and h, Σ ∶W ′′′ , η′′ ⊗ η f .

29. Write v′1 = rec f (x).g′1 and v′2 = rec f (x).g′2 .
30. h; [i ↦ v′1 v′′1]→ h; [i ↦ g′1[v′1/ f , v′′1 /x]].
31. Write Σ = {∅; [j ↦ K[v′2 v′′2]]}⊗ Σ0 .
32. Write Σ′ = {∅; [j ↦ K[g′2[v′2/ f , v′′2 /x]]]}⊗ Σ0 .
33. Σ ⇉ Σ′ .
34. Write η′′′ = (∅, {∅; [j ↦ K[g′2[v′2/ f , v′′2 /x]]]}).
35. h, Σ ∶ ▷W ′′′ , η′′ ⊗ η f by Lem. 16.

36. h, Σ′ ∶ ▷W ′′′ , η′′′ ⊗ η f .

37. Su�ces to show▷W ′′′ , η′′′ ⊧ρ [i ↦ g′1[v′1/ f , v′′1 /x]]@i {x1 . Q}.
38. Su�ces to show ∣▷W ′′′∣, η′′′ ⊧ρ [i ↦ g′1[v′1/ f , v′′1 /x]]@i {x1 . Q}

by Cor. 1.

39. SupposeW ′′′ .k > 0 WLOG.
40. ∣W ′′′∣ ⊧ρ v′1 ⪯V v′2 ∶ τ1 → τ2 .

41. ∣▷W ′′′∣ = ▷∣W ′′′∣.
42. ∣▷W ′′′∣ ⊧ρ v′′1 ⪯V v′′2 ∶ τ1 .

43. ∣▷W ′′′∣, η′′′ ⊧ρ [i ↦ g′1[v′1/ f , v′′1 /x]]@i {x1 . Q} by Lem. 27.

272 metatheory for the logic of local protocols

Lemma 29.

∆; Γ, f ∶ τ1 → τ2 , x ∶ τ1 ⊧ e1 ⪯ e2 ∶ τ2
∆; Γ ⊧ rec f (x).e1 ⪯ rec f (x).e2 ∶ τ1 → τ2

Proof.

1. Let U , ρ ∶ ∆ → VRel, γ1 , γ2 ∶ dom(Γ)→ Val.
2. Suppose ∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
3. Write e′1 = e1[γ1/Γ], e′2 = e2[γ2/Γ].
4. Let K , i , j.

5. Write η = (∅, {∅; [j ↦ K[rec f (x).e′2]]}).
6. Write Q = ∃x2 . x1 ⪯V x2 ∶ τ1 → τ2 ∧ j ↣s K[x2].
7. Su�ces to show U , η ⊧ρ [i ↦ rec f (x).e′1]@i {x1 . Q}. by Lem. 24.
8. Su�ces to show U , η ⊧ρ Q[rec f (x).e′1/x1].
9. Su�ces to show U ⊧ρ rec f (x).e′1 ⪯V rec f (x).e′2 ∶ τ1 → τ2 .

10. Su�ces to show ∀U ′
rely

⊒ U . U ′ ⊧ρ rec f (x).e′1 ⪯V rec f (x).e′2 ∶ τ1 → τ2 .

11. Proceed by induction on U ′ .k.

12. Suppose U ′ .k > 0.

13. Let w1 ,w2 ,U ′′
rely

⊒ ▷U ′ with U ′′ ⊧ρ w1 ⪯V w2 ∶ τ1 .

14. Let K , j, i .

15. Write η′ = (∅, {∅; [j ↦ K[e′2[rec f (x).e′2/ f ,w2/x]]]}).
16. Write Q′ = ∃x2 . x1 ⪯V x2 ∶ τ2 ∧ j ↣s K[x2].
17. Su�ces to show U ′′ , η′ ⊧ρ [i ↦ e′1[rec f (x).e′1/ f ,w1/x]]@i {x1 . Q′}

by Lem. 27.

18. ∀x ∈ dom(Γ). U ′′ ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
19. U ′′ ⊧ρ rec f (x).e′1 ⪯V rec f (x).e′2 ∶ τ1 → τ2 by induction hypothesis.

20. U ′′ , η′ ⊧ρ [i ↦ e′1[rec f (x).e′1/ f ,w1/x]]@i {x1 . Q′} by assumption and Lem. 24.

C.3.1.4▸ CAS

Lemma 30. For U .k ≠ 0 we have that U ⊧ρ ℓ1 ⪯V ℓ2 ∶ ref(τ) implies the
existence of an i ∈ dom(U .ω) such that we have

IJU .ω(i)KU = {([ℓ1 ↦ v1], {[ℓ2 ↦ v2];∅}) ∣⋀▷U ⊧ρ v1 ⪯V v2 ∶ τ}.

Lemma 31. Assume that we have U ⊧ρ v1 ⪯V v2 ∶ σ and U ⊧ρ w1 ⪯V w2 ∶ σ .
If U .k ≠ 0 and there are η, h and Σ such that h, Σ ∶ U , η holds, then we have
that

v1 = w1 ⇐⇒ v2 = w2 .

soundness of refinement reasoning 273

Lemma 32.

∆; Γ ⊧ e1 ⪯ e2 ∶ ref(τ) τn = σ ∆; Γ ⊧ f1 ⪯ f2 ∶ σ ∆; Γ ⊧ g1 ⪯ g2 ∶ σ
∆; Γ ⊧ cas(e1[n], f1 , g1) ⪯ cas(e2[n], f2 , g2) ∶ bool

Proof.

1. Let U , ρ ∶ ∆ → VRel, γ1 , γ2 ∶ dom(Γ)→ Val.
2. Suppose ∀x ∈ dom(Γ). U ⊧ρ γ1(x) ⪯V γ2(x) ∶ Γ(x).
3. Write e′1 = e1[γ1/Γ], e′2 = e2[γ2/Γ].
4. Write f ′1 = f1[γ1/Γ], f ′2 = f2[γ2/Γ].
5. Write g′1 = g1[γ1/Γ], g′2 = g2[γ2/Γ].
6. Let K , i , j.

7. Write η = (∅, {∅; [j ↦ K[cas(e′2[n], f ′2 , g′2)]]}).
8. Write Q = ∃x2 . x1 ⪯V x2 ∶ bool ∧ j ↣s K[x2].
9. Su�ces to show U , η ⊧ρ [i ↦ cas(e′1[n], f ′1 , g′1)]@i {x1 . Q}.

by Lem. 24.

10. Write Q′ = ∃x′2 . x′1 ⪯V x′2 ∶ ref(τ) ∧ j ↣s K[cas(x′2[n], f ′2 , g′2)].
11. U , η ⊧ρ [i ↦ e′1]@i {x′1 . Q′}. by assumption and Lem. 24.

12. U , η ⊧ρ [i ↦ e′1]@i {x′1 . Q′ ∧ ⋅
rely

⊒ U}. by Cor. 2.

13. Let v′1 ∈ Val.

14. LetW ′ , η′ withW ′ , η′ ⊧ρ Q′[v′1/x′1] ∧ ⋅
rely

⊒ U .

15. Su�ces to showW ′ , η′ ⊧ρ [i ↦ cas(v′1[n], f ′1 , g′1)]@i {x1 . Q}
by Lem. 20.

16. Su�ces to show ∣W ′∣, η′ ⊧ρ [i ↦ cas(v′1[n], f ′1 , g′1)]@i {x1 . Q}
by Cor. 1.

17. SupposeW ′ .k > 0 WLOG.
18. Pick v′2 with

∣W ′∣ ⊧ρ v′1 ⪯V v′2 ∶ ref(τ),
η′ = (∅, {∅; [j ↦ K[cas(v′2[n], f ′2 , g′2)]]}),

∣W ′∣
rely

⊒ U .

19. Write Q′′ = ∃x′′2 . x′′1 ⪯V x′′2 ∶ σ ∧ j ↣s K[cas(v′2[n], x′′2 , g′2)].
20. ∣W ′∣, η′ ⊧ρ [i ↦ f ′1]@i {x′′1 . Q′′} by assumption and Lem. 24.

21. ∣W ′∣, η′ ⊧ρ [i ↦ f ′1]@i {x′′1 . Q′′ ∧ ⋅
rely

⊒ ∣W ′∣} by Cor. 2.

22. Let v′′1 ∈ Val.

23. LetW ′′ , η′′ withW ′′ , η′′ ⊧ρ Q′′[v′′1 /x′′1] ∧ ⋅
rely

⊒ ∣W ′∣.
24. Su�ces to showW ′′ , η′′ ⊧ρ [i ↦ cas(v′1[n], v′′1 , g′1)]@i {x1 . Q}

by Lem. 20.

274 metatheory for the logic of local protocols

25. Su�ces to show ∣W ′′∣, η′′ ⊧ρ [i ↦ cas(v′1[n], v′′1 , g′1)]@i {x1 . Q}
by Cor. 1.

26. SupposeW ′′ .k > 0 WLOG.
27. Pick v′′2 with

∣W ′′∣ ⊧ρ v′′1 ⪯V v′′2 ∶ σ ,
η′′ = (∅, {∅; [j ↦ K[cas(v′2[n], v′′2 , g′2)]]}),

∣W ′′∣
rely

⊒ ∣W ′∣.
28. Write Q′′′ = ∃x′′′2 . x′′′1 ⪯V x′′′2 ∶ σ ∧ j ↣s K[cas(v′2[n], v′′2 , x′′′2)].
29. ∣W ′′∣, η′ ⊧ρ [i ↦ g′1]@i {x′′′1 . Q′′′} by assumption and Lem. 24.

30. ∣W ′′∣, η′ ⊧ρ [i ↦ g′1]@i {x′′′1 . Q′′ ∧ ⋅
rely

⊒ ∣W ′∣} by Cor. 2.

31. Let v′′′1 ∈ Val.

32. LetW ′′′ , η′′′ withW ′′′ , η′′′ ⊧ρ Q′′′[v′′′1 /x′′′1] ∧ ⋅
rely

⊒ ∣W ′′∣.
33. Su�ces to showW ′′′ , η′′′ ⊧ρ [i ↦ cas(v′1[n], v′′1 , v′′′1)]@i {x1 . Q}

by Lem. 20.

34. Su�ces to show ∣W ′′′∣, η′′′ ⊧ρ [i ↦ cas(v′1[n], v′′1 , v′′′)]@i {x1 . Q}
by Cor. 1.

35. SupposeW ′′′ .k > 0 WLOG.
36. Pick v′′′2 with

∣W ′′′∣ ⊧ρ v′′′1 ⪯V v′′′2 ∶ σ ,
η′′′ = (∅, {∅; [j ↦ K[cas(v′2[n], v′′2 , v′′′2)]]}),

∣W ′′′∣
rely

⊒ ∣W ′′∣.

37. LetW ′′′′
rely

⊒ W ′′′ , η f #η′′′ .

38. SupposeW ′′′′ .k > 0 and h, Σ ∶W ′′′′ , η′′′ ⊗ η f .

39. Suppose h; [i ↦ cas(v′1[n], v′′1 , v′′′)]→ h′;T ′ .

40. SupposeW ′′′′ .k > 1 WLOG.
41. Write v′1 = ℓ1 and v′2 = ℓ2 .
42. Pick v ,w , h0 , Σ0 with
⋀▷∣W ′′′′∣ ⊧ρ v ⪯V w ∶ τ,
h = [ℓ1 ↦ v] ⊎ h0 ,
Σ = {[ℓ2 ↦ w];∅}⊗ {∅; [j ↦ K[cas(v′2[n], v′′2 , v′′′2)]]}⊗ Σ0

by Lem. 30.

43. ▷∣W ′′′′∣ ⊧ρ vn ⪯V wn ∶ σ .

44. ▷∣W ′′′′∣ ⊧ρ v′′1 ⪯V v′′2 ∶ σ .

45. h, Σ ∶ ▷∣W ′′′′∣, η′′′ ⊗ η f by Lem. 16.

46. vn = v′′1 ⇔ wn = v′′2 by Lem. 31.

soundness of refinement reasoning 275

Case vn = v′′1 ∧wn = v′′2

47. Write v†n = v′′′1 and v†m = vm ,m ≠ n.
48. h′ = h[ℓ1 ↦ v†].
49. T ′ = [i ↦ true].
50. Write w†n = v′′′2 and w†m = wm ,m ≠ n.
51. Write Σ′ = {[ℓ2 ↦ w†];∅}⊗ {∅; [j ↦ K[true]]}⊗ Σ0 .
52. Σ ⇉ Σ′ .
53. Write η′′′′ = (∅, {∅; [j ↦ K[true]]}).
54. ⋀▷∣W ′′′′∣ ⊧ρ v† ⪯V w† ∶ τ.
55. h′ , Σ′ ∶W ′′′′ , η′′′′ ⊗ η f .

56. h′ , Σ′ ∶ ▷W ′′′′ , η′′′′ ⊗ η f by Lem. 16.

57. ▷W ′′′′ , η′′′′ ⊧ρ [i ↦ true]@i {x1 . Q}.

Case vn ≠ v′′1 ∧wn ≠ v′′2

58. h′ = h.
59. T ′ = [i ↦ false].
60.Write Σ′ = {[ℓ2 ↦ w];∅}⊗ {∅; [j ↦ K[false]]}⊗ Σ0 .
61. Σ ⇉ Σ′ .
62. Write η′′′′ = (∅, {∅; [j ↦ K[false]]}).
63. h, Σ′ ∶W ′′′′ , η′′′′ ⊗ η f .

64. h, Σ′ ∶ ▷W ′′′′ , η′′′′ ⊗ η f by Lem. 16 .

65. ▷W ′′′′ , η′′′′ ⊧ρ [i ↦ false]@i {x1 . Q}.

276 metatheory for the logic of local protocols

C.3.2 May-re�nement

�eorem 4 (May-re�nement). Suppose ⋅; ⋅ ⊧ e1 ⪯ e2 ∶ nat holds. Let h1 , h2,
i , j and n be arbitrary. If we have

∃h′1 , T1 . h1; [i ↦ e1]→∗ h′1; [i ↦ n] ⊎ T1

then we also have

∃h′2 , T2 . h2; [j ↦ e2]→∗ h′2; [j ↦ n] ⊎ T2 .

Proof. LetM be the number of steps in the assumed reduction. Write

h1; [i ↦ e1] = h01 ;T
0
1 → h11 ;T

1
1 → ⋯→ hM

1 ;T
M
1 = h′1; [i ↦ n] ⊎ T1 .

We proceed to prove by induction the claim that for all 0 ≤ m ≤ M there areWm , ηm#η, and Σm with the following
properties, where η = (h1 , {h2;∅}) and Σ = {h2; [j ↦ e2]}:
● Wm , ηm ⊧ρ Tm

1 @i {x1 . ∃x2 . x1 ⪯V x2 ∶ nat ∧ j ↣s x2}.
● hm

1 , Σm ∶Wm , ηm ⊗ η.

● Wm .k = 1 +M −m.

● Σ ⇉ Σm .
Let us initially consider the base case m = 0. We choose W0 = (1 + M ,∅), η0 = (∅, {∅; [j ↦ e2]}) and Σ0 =

{h2; [j ↦ e2]}. �e di�erent properties are easily veri�ed; the only nontrivial is the �rst and that follows from the
initial assumption ⋅; ⋅ ⊧ e1 ⪯ e2 ∶ nat.�e induction step comes down to unrolling the de�nition of threadpool triples;

we omit the details.

Instantiating our claim at m = M now gives usWM , ηM#η, and ΣM such that:

● WM , ηM ⊧ρ [i ↦ n] ⊎ T1@i {x1 . ∃x2 . x1 ⪯V x2 ∶ nat ∧ j ↣s x2}.
● h′1 , ΣM ∶WM , ηM ⊗ η.

● WM = 1.
● Σ ⇉ ΣM .

A �nal unrolling of the de�nition of threadpool triples and a few calculations gives us Σ′ with Σ ⇉ Σ′ and Σ′ =
{∅; [j ↦ n]}⊗ Σ0. All that remains is to pick an element from the nonempty set Σ′.

D
Reference: the Joins library API
A new Join instance j is allocated by calling an overload of factory method
Join.Create:

Join j = Join.Create(); or
Join j = Join.Create(size);

�e optional integer size is used to explicitly bound the number of channels
supported by Join instance j. An omitted size argument defaults to 32; size
initializes the constant, read-only property j.Size.
A Join object notionally owns a set channels, each obtained by calling an

overload of method Init, passing the location, channel(s), of a channel or
array of channels using an out argument:

j.Init(out channel);
j.Init(out channels, length);

�e second form takes a length argument to initialize location channels with
an array of length distinct channels.
Channels are instances of delegate types. In all, the library provides six

channel �avors:

// void-returning asynchronous channels

delegate void Asynchronous.Channel();

delegate void Asynchronous.Channel<A>(A a);

// void-returning synchronous channels

delegate void Synchronous.Channel();

delegate void Synchronous.Channel<A>(A a);

// value-returning synchronous channels

delegate R Synchronous<R>.Channel();

delegate R Synchronous<R>.Channel<A>(A a);

�e outer class of a channel Asynchronous, Synchronous or Synchronous<R>
should be read as amodi�er that speci�es its blocking behaviour and optional

return type.

When a synchronous channel is invoked, the caller must wait until the

delegate returns (void or some value). When an asynchronous channel is

invoked, there is no result and the caller proceeds immediately without

waiting. Waiting may, but need not, involve blocking.

Apart from its channels, a Join object notionally owns a set of join patterns.
Each pattern is de�ned by invoking an overload of the instance method When

277

278 reference: the joins library api

followed by zero or more invocations of instance method And followed by

a �nal invocation of instance method Do.�us a pattern de�nition typically

takes the form:

j.When(c1).And(c2)⋯.And(cn).Do(d)

Each argument c to When(c) or And(c) can be a single channel or an array
of channels. All synchronous channels that appear in a pattern must agree on
their return type.

�e argument d to Do(d) is a continuation delegate that de�nes the body of
the pattern. Although it varies with the pattern, the type of the continuation

is always an instance of one of the following delegate types:

delegate R Func<P1 , . . . , Pm,R>(P1 p1 , . . . , Pm pm);

delegate void Action<P1 , . . . , Pm>(P1 p1 , . . . , Pm pm);

�e precise type of the continuation d, including its number of arguments,
is determined by the sequence of channels guarding it. If the �rst channel,

c1, in the pattern is a synchronous channel with return type R, then the
continuation’s return type is R; otherwise the return type is void.
�e continuation receives the arguments of channel invocations as dele-

gate parameters P1 p1 , . . . , Pm pm , for m ≤ n. �e presence and types of
any additional parameters P1 p1 , . . . , Pm pm is dictated by the type of each
channel c i :

● If c i is of non-generic type Channel or Channel[] then When(c i)/And(c i)
adds no parameter to delegate d.

● If c i is of generic type Channel<P>, for some type P then When(c i)/And(c i)
adds one parameter p j of type Pj = P to delegate d.

● If c i is an array of type Channel<P>[] for some type P then When(c i)/And(c i)
adds one parameter p j of array type Pj = P[] to delegate d.

Parameters are added to d from le� to right, in increasing order of i.
In the current implementation, a continuation can receive at most m ≤ 16
parameters.

A join pattern associates a set of channels with a body d. A body can
execute only once all the channels guarding it have been invoked. Invoking a

channel may enable zero, one or more patterns:

● If no pattern is enabled then the channel invocation is queued up. If the
channel is asynchronous, then the argument is added to an internal bag.

If the channel is synchronous, then the calling thread is blocked, joining a

notional bag of threads waiting on this channel.

● If there is a single enabled join pattern, then the arguments of the invoca-
tions involved in the match are consumed, any blocked thread involved

in the match is awakened, and the body of the pattern is executed in

that thread. Its result—a value or an exception—is broadcast to all other

reference: the joins library api 279

waiting threads, awakening them. If the pattern contains no synchronous

channels, then its body runs in a new thread.

● If there are several enabled patterns, then an unspeci�ed one is chosen to
run.

● Similarly, if there are multiple invocations of a particular channel pending,
which invocation will be consumed when there is a match is unspeci�ed.

�e current number of channels initialized on j is available as read-only
property j.Count; its value is bounded by j.Size. Any invocation of j.Init
that would cause j.Count to exceed j.Size throws JoinException.
Join patterns must be well-formed, both individually and collectively.

Executing Do(d) to complete a join pattern will throw JoinException if d is
null, the pattern repeats a channel (and the implementation requires linear

patterns), a channel is null or foreign to this pattern’s Join instance, or the
join pattern is empty. A channel is foreign to a Join instance j if it was not
allocated by some call to j.Init. A pattern is empty when its set of channels
is empty (this can only arise through array arguments).

Array patterns are useful for de�ning dynamically sized joins, e.g. an n-

way exchanger:

class NWayExchanger<T> {

public Synchronous<T[]>.Channel<T>[] Values;

public NWayExchanger(int n) {

var j = Join.Create(n); j.Init(out Values, n);

j.When(Values).Do(vs ⇒ vs);

}

}

E
Reference: the Reagents library API

// Isolated updates on refs (shared state)

upd: Ref[A] ⇒ (A × B ⇀ A × C) ⇒ Reagent[B,C]

// Low-level shared state combinators

read: Ref[A] ⇒ Reagent[Unit, A]

cas: Ref[A] × A × A ⇒ Reagent[Unit, Unit]

// Interaction on channels (message passing)

swap: Endpoint[A,B] ⇒ Reagent[A,B]

// Composition

+ : Reagent[A,B] × Reagent[A,B] ⇒ Reagent[A,B]

>> : Reagent[A,B] × Reagent[B,C] ⇒ Reagent[A,C]

* : Reagent[A,B] × Reagent[A,C] ⇒ Reagent[A, B × C]

// Liftings

lift: (A ⇀ B) ⇒ Reagent[A,B]

first: Reagent[A,B] ⇒ Reagent[A×C, B×C]

second: Reagent[A,B] ⇒ Reagent[C×A, C×B]

// Computed reagents

computed: (A ⇀ Reagent[Unit, B]) ⇒ Reagent[A,B]

// Post-commit actions

postCommit: (A ⇒ Unit) ⇒ Reagent[A,A]

// Invoking a reagent:

dissolve: Reagent[Unit,Unit] ⇒ Unit // as a catalyst

react: Reagent[A,B] ⇒ A ⇒ B // as a reactant,

// same as the ! method

281

	Colophon
	Abstract
	Acknowledgments
	Contents
	List of Figures

	i Prologue
	1 Overview
	1.1 The problem
	1.2 My thesis
	1.2.1 Understanding scalable concurrency
	1.2.2 Expressing scalable concurrency

	1.3 Organization
	1.4 Previously published material

	2 Concurrency meets parallelism
	2.1 Concurrency is not parallelism
	2.1.1 Scalable concurrency
	2.1.2 What scalable concurrency is not

	2.2 Top down: the problems of concurrency
	2.2.1 Expressive interaction
	2.2.2 The problem of sharing
	2.2.3 The problem of timing
	2.2.4 The role of abstraction

	2.3 Bottom up: the problems of scalability
	2.3.1 Cache coherence
	2.3.2 The foundation of interaction: consensus

	2.4 The rudiments of scalable concurrency: performance
	2.4.1 Fine-grained locking
	2.4.2 Optimistic concurrency
	2.4.3 Linked data structures
	2.4.4 Backoff
	2.4.5 Helping and elimination
	2.4.6 Synchronization and dual data structures

	2.5 The rudiments of scalable concurrency: correctness
	2.5.1 Safety: linearizability
	2.5.2 Liveness: nonblocking progress properties

	ii Understanding scalable concurrency
	3 A calculus for scalable concurrency
	3.1 The calculus
	3.1.1 Syntax
	3.1.2 Typing
	3.1.3 Operational semantics

	3.2 The memory consistency model
	3.3 Contextual refinement
	3.4 Observable atomicity
	3.4.1 The problem with atomic blocks
	3.4.2 Refinement versus linearizability

	4 Local protocols
	4.1 Overview
	4.1.1 The state transition system approach
	4.1.2 Scaling to scalable concurrency
	4.1.3 A note on drawing transition systems

	4.2 Spatial locality via local life stories
	4.2.1 A closer look at linking: Michael and Scott's queue
	4.2.2 The story of a node

	4.3 Role-playing via tokens
	4.4 Thread locality via specifications-as-resources
	4.5 Temporal locality via speculation

	5 A logic for local protocols
	5.1 Overview
	5.2 Assertions
	5.2.1 Characterizing the implementation heap
	5.2.2 Characterizing implementation code
	5.2.3 Characterizing (protocols on) shared resources
	5.2.4 Characterizing refinement and spec resources
	5.2.5 The remaining miscellany

	5.3 Semantic structures
	5.3.1 Resources
	5.3.2 Islands and possible worlds
	5.3.3 Environments
	5.3.4 Protocol conformance
	5.3.5 World satisfaction

	5.4 Semantics
	5.4.1 Resources, protocols, and connectives
	5.4.2 Refinement
	5.4.3 Hoare triples and threadpool simulation

	5.5 Basic reasoning principles
	5.5.1 Hypothetical reasoning and basic logical rules
	5.5.2 Reasoning about programs: an overview
	5.5.3 Reasoning about refinement
	5.5.4 Concurrent Hoare logic
	5.5.5 Atomic Hoare logic
	5.5.6 Reasoning about specification code
	5.5.7 Reasoning about recursion
	5.5.8 Derived rules for pure expressions

	5.6 Metatheory
	5.6.1 Soundness for refinement
	5.6.2 Lemmas for threadpool simulation

	6 Example proofs
	6.1 Proof outlines
	6.2 Warmup: concurrent counters
	6.2.1 The protocol
	6.2.2 The proof

	6.3 Warmup: late versus early choice
	6.4 Elimination: red flags versus blue flags
	6.5 Michael and Scott's queue
	6.5.1 The protocol
	6.5.2 Spatial locality
	6.5.3 The proof: enq
	6.5.4 The proof: deq

	6.6 Conditional CAS
	6.6.1 The protocol
	6.6.2 The proof

	7 Related work: understanding concurrency
	7.1 High-level language
	7.1.1 Representation independence and data abstraction
	7.1.2 Local state
	7.1.3 Shared-state concurrency

	7.2 Direct refinement proofs
	7.2.1 Linearizability
	7.2.2 Denotational techniques
	7.2.3 RGSim

	7.3 Local protocols
	7.3.1 The hindsight approach
	7.3.2 Concurrent abstract predicates
	7.3.3 Views and other fictions of separation

	7.4 Role-playing
	7.5 Cooperation
	7.5.1 RGSep
	7.5.2 RGSim
	7.5.3 Reduction techniques

	7.6 Nondeterminism
	7.6.1 The linear time/branching time spectrum
	7.6.2 Forward, backward, and hybrid simulation

	iii Expressing scalable concurrency
	8 Join patterns
	8.1 Overview
	8.2 The join calculus and Russo's API
	8.3 Solving synchronization problems with joins

	9 Implementing join patterns
	9.1 Overview
	9.1.1 The problem
	9.1.2 Our approach

	9.2 Representation
	9.3 The core algorithm: resolving a message
	9.4 Sending a message: firing, blocking and rendezvous
	9.5 Key optimizations
	9.5.1 Lazy message creation
	9.5.2 Specialized channel representation
	9.5.3 Message stealing

	9.6 Pragmatics and extensions
	9.7 Correctness
	9.8 Performance
	9.8.1 Methodology
	9.8.2 Benchmarks
	9.8.3 Analysis

	10 Reagents
	10.1 Overview
	10.1.1 Isolation versus interaction
	10.1.2 Disjunction versus conjunction
	10.1.3 Activity versus passivity

	10.2 The high-level combinators
	10.2.1 Atomic updates on Refs
	10.2.2 Synchronization: interaction within a reaction
	10.2.3 Disjunction of reagents: choice
	10.2.4 Conjunction of reagents: sequencing and pairing
	10.2.5 Catalysts: passive reagents
	10.2.6 Post-commit actions

	10.3 Translating join patterns
	10.4 Atomicity guarantees
	10.5 Low-level and computational combinators
	10.5.1 Computed reagents
	10.5.2 Shared state: read and cas
	10.5.3 Tentative reagents

	10.6 The Michael-Scott queue

	11 Implementing reagents
	11.1 Overview
	11.2 Offers
	11.3 The entry point: reacting
	11.4 The exit point: committing
	11.5 The combinators
	11.5.1 Shared state
	11.5.2 Message passing
	11.5.3 Disjunction: choice
	11.5.4 Conjunction: pairing and sequencing
	11.5.5 Computational reagents

	11.6 Catalysis
	11.7 Performance
	11.7.1 Methodology and benchmarks
	11.7.2 Analysis

	12 Related work: expressing concurrency
	12.1 Composable concurrency
	12.1.1 Concurrent ML
	12.1.2 Software transactional memory
	12.1.3 Transactions that communicate
	12.1.4 Composing scalable concurrent data structures

	12.2 Join calculus implementations
	12.2.1 Lock-based implementations
	12.2.2 STM-based implementations
	12.2.3 Languages versus libraries

	12.3 Scalable synchronization
	12.3.1 Coordination in java.util.concurrent
	12.3.2 Dual data structures

	iv Epilogue
	13 Conclusion
	13.1 Looking back
	13.2 Looking ahead
	13.2.1 Understanding scalable concurrency
	13.2.2 Expressing scalable concurrency
	13.2.3 Crossing the streams

	References

	v Technical appendix
	A Reference: the Fcas calculus
	B Reference: the logic of local protocols
	C Metatheory for the logic of local protocols
	C.1 Basic properties of the logic of local protocols
	C.2 Soundness of Hoare-style reasoning
	C.2.1 Constructions with Threadpool Triples
	C.2.2 Soundness of key inference rules

	C.3 Soundness of refinement reasoning
	C.3.1 Congruence
	C.3.2 May-refinement

	D Reference: the Joins library API
	E Reference: the Reagents library API

