
METAPROGRAMMING WITH TRAITS

an honors thesis
submitted by

Aaron Turon

UNIVERSITY OF CHICAGO
Department of Computer Science

May 2007

Contents

1 Introduction 4

2 Background 5

3 A design for trait-based metaprogramming 6
3.1 Some illustrative examples . 7
3.2 From no parameters to too many? . 9

4 A formal model: Meta-trait Java 11
4.1 Syntax . 11
4.2 Translation to FGJ . 13
4.3 Types in MTJ . 14
4.4 Subtyping . 16
4.5 Static semantics: expressions . 18
4.6 Static semantics: member declarations and trait expressions 19
4.7 Static semantics: classes and traits . 20
4.8 Soundness . 23

5 Type-directed operations 24
5.1 Typecase . 24
5.2 Matching . 25

6 Related work 26
6.1 Metaprogramming . 26
6.2 Type systems . 27
6.3 Traits . 28

7 Conclusion 29

A MTJ is type-safe 33
A.1 Translation is sound . 34
A.2 Flattened, well-typed programs are well-typed FGJ programs 42

Abstract

In many domains, classes have highly regular internal structure. For example, so-called
business objects often contain boilerplate code for mapping database fields to class mem-
bers. The boilerplate code must be repeated per-field for every class, because existing
mechanisms for constructing classes do not provide a way to capture and reuse such
member-level structure. As a result, programmers often resort to ad hoc code generation.
This paper presents a lightweight mechanism for specifying and reusing member-level
structure in Java programs. The proposal is based on a modest extension to traits that
we have termed trait-based metaprogramming. Although the semantics of the mechanism
are straightforward, its type theory is difficult to reconcile with nominal subtyping. We
achieve reconciliation by introducing a hybrid structural/nominal type system that ex-
tends Java’s type system. The thesis includes a formal calculus defined by translation to
Featherweight Generic Java.

Acknowledgments

I owe quite a lot to John Reppy and Anne Rogers: thank you. Anne Rogers was the one
who first suggested research, and encouraged me to get started as early as I could. She
has provided guidance and support at every juncture since then. It has been an honor
to work with John Reppy. His combination of passion, pragmatism, and high standards
have set a great example to strive for as a researcher—and a hard one to reach.

The department at Chicago was a good place to grow up, and whether I continue in
the ML community or find my home elsewhere, the strong tendency toward parsimony
and soundness will remain an aesthetic guide. Thanks also to the PL-Lunch group, and
to HYPER, particularly Adam Shaw, Mike Rainey, Jacob Matthews, Derek Dreyer, and
Matthias Blume. I wish you all the best!

Kathleen Fisher helped, more than once, in understanding some subtleties in type
theory and in her previous papers with John Reppy.

Finally I must thank my family for their unwavering support and encouragement—
they have always been a lifeline. And Jessica, my wife: thank you for keeping me
grounded, and for putting up with me in the meantime!

3

1 Introduction

In mainstream object-oriented languages, programming amounts to class creation. While
a programmer may write classes from scratch, good style dictates that existing code be
used when possible. Several mechanisms exist to aid the programmer in this endeavor:
inheritance combines existing classes with extensions or modifications; mixins and traits
capture such extensions, allowing them to be reused; and generic classes are instantiated
with type parameters to produce specialized classes. Each of these mechanisms allows
programmers to capture and reuse useful structure at the level of classes, but they pro-
vide limited support for capturing structure at the level of class members.

In many domains, classes have highly regular internal structure. As a simple exam-
ple, consider a thread-safe class in which all methods obtain a single lock before execut-
ing. Manually writing this boilerplate code results in clutter and rigidity: the locking
strategy cannot easily be changed after the fact. In Java, thread-safe methods were con-
sidered important enough to warrant the synchronized keyword, but adding keywords
is a kind of magic that only the language designer, not the language user, can perform.
In this paper, we propose a mechanism that allows programmers to capture, reuse, and
modify such member-level patterns in a coherent way.

The synchronized pattern consists of behavior common to otherwise unrelated mem-
bers of a class. Another common member-level pattern is when a class contains collec-
tions of similar members that are intended to match a domain model. For example,
consider a Customer class that provides access to a customer table in a database. For
each field present in the table, the Customer class will contain a cluster of members: for
the name field, the Customer class might contain an instance variable name and methods
getName, setName, and findByName. Moreover, the class will provide load and save meth-
ods that load and store the class’s instance variables. This situation is shown diagram-
matically in Figure 1. While additional behavior may be needed for particular fields,
it is desirable to abstract the common structure and implementation; once defined, the
abstraction answers the question “what does it mean for a class to provide access to
a database field?” We show how this can be done with our mechanism at the end of
Section 3.

Our proposal is based on a modest extension to traits [10] that allows programmers
to write trait functions, which are parameterized by member names. Trait functions are
applied at compile time to build classes, supporting what we term trait-based metapro-
gramming. In describing our mechanism as a form of metaprogramming, we mean that
(1) it operates entirely at compile-time and (2) it allows both generation and introspection
of code. There are many frameworks available for metaprogramming; our proposal’s
strength is its singular focus on member-level patterns. We believe that the territory
between classes and individual class members is a fruitful place to do metaprogram-
ming, and by focusing our efforts there, we are able to provide a succinct mechanism
with good guarantees about the generated code. A detailed discussion of related work
is given in Section 6.

The language design is presented informally in Section 3. In Section 4 we model our
mechanism as an extension to Featherweight Generic Java (FGJ), giving our semantics

4

class Customer {

}

String phone
String getPhone()
void setPhone(String)
void findByPhone(String)

String name
String getName()
void setName(String)
void findByName(String)

void load(int id) {
 ... do lookup ...

}

void save() {
 ...
}

name = results.getString("name");

phone = results.getString("phone");

Figure 1: A more complex member-level pattern

as a translation to FGJ. While the translation is very simple, its type theory is difficult
to reconcile with nominal subtyping because abstraction over member labels is allowed.
We achieve reconciliation by introducing a hybrid structural/nominal type system that
extends Java’s type system. The type system is not strongly tied to our broader proposal,
and we hope that the ideas will find broad application in metaprogramming systems for
nominally-subtyped languages, a possibility we discuss in Section 6.2.

2 Background

Traits were originally introduced by Schärli et al. in the setting of Smalltalk [10] as a
mechanism for sharing common method definitions between classes. In their proposal,
a trait is simply a collection of named methods. These methods cannot directly refer-
ence instance variables; instead, they must be “pure behavior.” The methods defined in a
trait are called the provided methods, while any methods that are referenced, but not pro-
vided, are called required methods. An important property of traits is that while they help
structure the implementation of classes, they do not affect the inheritance hierarchy. In
particular, traits are distinguished from mixins [5] because they can be composed with-
out the use of inheritance.1 Traits can be formed by definition (i.e., listing a collection of
method definitions) or by using one of several trait operations:

Symmetric sum merges two disjoint traits to create a new trait. 2

1Bracha’s Jigsaw [4], one of the first formal presentations of mixins, supports a similar notion of compo-
sition, but most other constructs under the name “mixin” do not.

2Smalltalk traits allow name conflicts, but replace the conflicting methods with a special method body
conflict that triggers a run-time error if evaluated.

5

Override forms a new trait by layering additional methods over an existing trait. This
operation is an asymmetric sum. When one of the new methods has the same
name as a method in the original trait, the override operation replaces the original
method.

Alias creates a new trait by adding a new name for an existing method. This operation
is not renaming, in that it does not replace references to the old name with the new
one.

Exclusion forms a new trait by removing a method from an existing trait. Combining the
alias and exclusion operations yields a renaming operation, although the renaming
is shallow.

The other important operation on traits is inlining, the mechanism whereby traits are in-
tegrated with classes. This operation merges a class C, a trait, and additional fields and
methods to form a new subclass of C. Often, the additional methods, called glue meth-
ods [10], provide access to the newly added fields. The glue methods, plus the methods
inherited from C, provide the required methods of the trait. An important aspect of traits
is that the methods of a trait are only loosely coupled; they can be removed and replaced
by other implementations.

Traits provide a lightweight alternative to multiple inheritance, and they have been
the focus of much recent interest, including formal calculi [12, 22] and other language
designs for traits [26, 30, 25, 15]. While the details of these various mechanisms vary,
they all share a focus on sharing common method implementations across unrelated
classes. Our design shifts the focus toward sharing member-level patterns that can occur
within a single class.

3 A design for trait-based metaprogramming

We present our design in the setting of Java, though there is little that is Java-specific.
Like other language designs that incorporate traits, a trait in our language has a collec-
tion of members it provides and a collection of members it requires. What is new in our
design is that traits may be parameterized over the names and types of these members:
our traits are really trait functions. The basic form of a trait is as follows:

trait trait-name (member-name parameters, type parameters, value parameters)
requires { requirements }
provides { member definitions }

Note that traits may be parameterized over values, such as constant values that vary
between instances of a member-level pattern. Member-name parameters are prefixed
with “$” so that member-name variables never shadow actual member names; in our
experience, having a clear distinction between obj.foo and obj.$foo makes trait code
easier to understand.

The requires and provides sections also differ from previous designs. In addition to
giving the signatures of required class members, the requirements section is also used

6

to place constraints on type parameters, as illustrated in the DelegateT example near the
end of this section. Another departure in our design is that the provides section can
contain field declarations. When such declarations are inlined in a class, the class’s con-
structors are responsible for initializing them. Traits are inlined using the use construct,
which is syntactically just another form of member definition. Since traits are actually
functions, the use construct applies the trait function to its arguments and inlines the
resulting member definitions. As shown below, the provides section of a trait can also
have use declarations, which is how traits are composed. Conflicting method or field
declarations within the body of a trait or class, whether defined directly or inlined from
traits, are rejected by the type system.

3.1 Some illustrative examples

In the remainder of this section, we present a series of examples that illustrate our mech-
anism and the kinds of patterns it captures. We begin by with the notion of a “property”
— a field along with getter and setter methods. In this example, the variables $f, $g,
and $s range over field and method names, while the variable T ranges over types. The
access modifiers public and private determine the visibility the members will have after
they are inlined into a class:

trait PropT ($f, $g, $s, T)
provides {

private T $f;
public void $s (T x) { $f = x; }
public T $g () { return $f; }

}

We can use PropT to define a 2D point class by “using” it twice with different member
names:

class Point2 {
use PropT (x, getX, setX, int);
use PropT (y, getY, setY, int);
Point2 () { x = 0; y = 0; }

}

Note also that the Point2 constructor initializes the fields introduced by the traits.
Next, we revisit the synchronized example from Section 1:

7

trait SyncT ($op, R, A...)
requires {

ThisType implements {
Mutex lock;
R $op (A...);

}
}
provides {

override public R $op (A...) {
lock.acquire();
R res = outer.$op (...);
lock.release();
return res;

}
}

This example illustrates several features of our design. Often, as here, we use a trait to
wrap behavior around methods in a way that does not depend on the parameters or
return type of the method. Since Java does not treat parameter sequences as tuples, we
introduce the notation “x...” as a way to name parameter sequences with heteroge-
neous types, where the arity may vary from instance to instance. This notation can be
used in the signatures of methods; within their bodies, the actual value of the parameter
sequence is denoted by “...”. When the trait is inlined, a tuple of types is given for the
parameter sequence, as in the following example that synchronizes a string comparison
method:

use SyncT (compare, int, (String, String));

The second feature to note is the ThisType keyword, which denotes the class that is
using the trait. Here, we use ThisType to state the requirement that the class provides
the lock field and an implementation of the $op method to be overridden by the trait.
The scope of ThisType acts is the entire trait, so it may appear as an argument or return
type of a method, for example. In particular, this means that traits can provide binary
methods.

The last feature is the use of the override and outer keywords in the declaration
of the provided method. The override keyword states that the method is replacing an
existing method in the class, which could either be inherited or locally defined. The
outer keyword is used to invoke the version of the method that is being overridden. The
outer keyword is similar to super, except that it may only be used to invoke methods
that have the override annotation. After a method is overridden by inlining a trait, it is
considered locally defined, and so it can be overridden again by inlining another trait;
this technique can be used to concatenate partial method implementations from multiple
traits, as we show in a later example.

The following class uses the SyncT trait to implement an atomic test-and-set opera-
tion:

8

class C {
private boolean x;
private Mutex lock;
boolean testAndSet () { boolean t = x; x = true; return t; }
use SyncT (testAndSet, boolean, ());
C () { lock = new Mutex(); x = false; }

}

Note that without the override annotation in the SyncT trait, there would be a conflict
between the definition of testAndSet given in the body of C and the one provided by
SyncT.

The requires clause of a trait can also be used to impose constraints on any type
parameters the trait might have. These constraints can be nominal (using extends) or
structural (using implements), with the latter allowing us to capture patterns like dele-
gation, as in the following example:

trait DelegateT ($m, $f, T, A..., R)
requires {
T implements { R $m (A...); }
ThisType implements { T $f; }

}
provides {
R $m (A...) { return $f.$m(...); }

}

We conclude with a more substantial example: the Customer class from Section 1.
Classes like Customer are quite common in database applications, where tables in re-
lational databases are mapped onto the class hierarchy. Usually, such classes include
large amounts of boilerplate code for performing this mapping. Numerous mechanisms
have been proposed to alleviate this burden, including code generation and other forms
of metaprogramming; sophisticated frameworks like Hibernate3 and Ruby on Rails4 are
currently used to automate this mapping.

Figure 2 presents a code fragment using trait-based metaprogramming to tackle the
mapping problem. Our solution uses two related traits: BObjectT factors out the code
needed to query an SQL database, and StringFieldT maps a field in an object to a string
field in a database. The latter is a trait function with value parameters: fieldName and
length. As a whole, the example demonstrates an idiom allowing traits to define “partial
methods:” a base trait(BObjectT) is used to seed a class with an empty implementation
of a method (loadData). Then a trait function (StringFieldT) is applied multiple times,
each time extending the method’s behavior before invoking the outer implementation.

3.2 From no parameters to too many?

One apparent downside of the proposed mechanism is that, having introduced parame-
ters, we need too many of them in order to encode interesting patterns. The StringFieldT

3http://www.hibernate.org/
4http://www.rubyonrails.org/

9

trait BObjectT(String table)
provides {

protected void loadData(ResultSet r) {}
protected void findBy(String whereClause) throws DataNotFound {
Connection con = ... open connection to database ...
Statement stmt = con.createStatement();
String sql = "SELECT * FROM " + table + " WHERE " + whereClause;
ResultSet r = stmt.executeQuery(sql);
if (r.next()) {
loadData(r);

} else {
throw new DataNotFound();

}
}

}

trait StringFieldT($f, $g, $s, $fBy, String fieldName, int length)
requires {

ThisType implements {
void loadData(ResultSet r);
void findBy(String whereClause) throws DataNotFound;

}
}
provides {

use PropT($f, $g, $s, String);
override String $s(String x) throws FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();
outer.$s(x);

}
override void loadData(ResultSet r) {
$f = r.getString(fieldName);
outer.loadData(r);

}
void $fBy(String x) throws DataNotFound, FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();
findBy(fieldName + " = ’" + x + "’");

}
}

class Customer {
use BObjectT("customers");
use StringFieldT(name, getName, setName, findByName, "name", 40);
use StringFieldT(addr, getAddr, setAddr, findByAddr, "address", 40);
use StringFieldT(phone, getPhone, setPhone,

findByPhone, "phone_num", 40);
... etc ...

}

Figure 2: Business objects: a sketch

10

trait, for example, takes a total of six parameters, and one can easily imagine adding
more for a more sophisticated implementation. This problem is exacerbated by param-
eter sequences, where the user of a trait must tediously spell out a tuple of types. In
many of these cases, however, the appropriate value for a parameter can be inferred or
explicitly computed. For instance, if the $f parameter to StringFieldT is name, we can
derive that $g should be getName, $s should be setName, and so on. Given a few prim-
itives for label manipulation, these rules are easy to write down. Likewise, the type
arguments to the SyncT trait can be inferred based on the actual method that the trait
overrides, as long as no method overloading has occurred. Having the compiler infer
these arguments makes our mechanism less cumbersome to use, and we take up the idea
in Section 5; as it turns out, this leads directly to a powerful form of pattern matching for
trait functions.

4 A formal model: Meta-trait Java

Having informally described trait-based metaprogramming, we proceed to the formal
model. The primary goal of this model is to study the type theory of our mechanism
in the context of Java’s nominal type system. Thus, we model only the core features of
our proposal: we drop super, outer, and variable-arity parameters, since they do not
substantially alter the type system, but do clutter its presentation. In earlier work, we
presented a detailed semantics for compiling traits with hiding and renaming [27]; here,
we give a simpler semantics that performs renaming only through trait functions. The
relationship between the two models is discussed in Section 6.3.

Our calculus, MTJ, is essentially an extension of Featherweight Generic Java (FGJ);
we drop FGJ’s type casts and method type parameters since they do not interact with
our type system in any interesting way.5 Featherweight Java was designed to capture
the minimal essence of Java, with particular focus on its type system and proof of sound-
ness, and FGJ extends FJ with generics [18]. Our calculus adds traits and trait functions
to FGJ, along with the additional type-theoretic machinery needed to support those fea-
tures. Like FGJ, we omit assignment, interfaces, overloading, and super-sends. MTJ is
not equipped with its own dynamic semantics; instead, we define a translation from
MTJ programs to FGJ programs. The type system, however, is given directly, and it
conservatively extends FGJ’s type system.

4.1 Syntax

The syntax of MTJ is given in Figure 3; portions highlighted in grey are extensions to
FGJ’s syntax. For the calculus, we abbreviate extends to /, requires to req, and provides
to prov. The metavariables c and d range over class names and t ranges over trait names.
For field names and method names (collectively called labels), we separate variables

5For the remainder of this paper, when we refer to FGJ, we mean this restricted calculus.

11

C ::= class c<α / N> / N {K D} class declaration
K ::= c(T f) {super(f); this.f = f;} constructor declaration

A ::= trait t($l, α) req {R} prov {D} trait function decl.

R ::= α / N implements {F S} trait requirement decl.

S ::= <α / N> T m(T x); method signature decl.

E ::= t(l, T) trait function application
| E drop l member exclusion
| E alias m as m method aliasing

D ::= F | M | use E; member declaration
F ::= T f; field declaration

M ::= T m(T x) {return e;} method declaration

e ::= x | e. f | e.m(e) | new N(e) expression
v ::= new N(e) value

N, P ::= c<T> nonvariable type name
T, U ::= N | α type name

Figure 3: MTJ: syntax

from concrete names, as follows:

Concrete Variable Either
Field names f, g $f f

Method names m $m m
Member names (labels) l $l l, k

Note we assume the sets of field and method names are disjoint. Object is a class name,
but cannot be defined in an MTJ program; this is a variable name, but cannot occur as a
parameter.

To keep notation compact, we make heavy use of overbar sequence notation: f de-
notes the possibly empty sequence f1, . . . , fn, for example. Pairs of sequences are inter-
leaved: T f stands for T1 f1, . . . , Tn fn, and this.f = f; stands for this.f1 = f1; . . . ;this.fn =
fn;. Sequences are delimited as necessary to match Java syntax. Sequences of param-
eters are also assumed to contain no duplicate names. The empty sequence is denoted
by •, and sequence concatenation by the · operator. Finally, sequences with named el-
ements are sometimes used as finite maps taking names to sequence elements. Thus,
D(foo) denotes the field or method declaration in D named foo (unambiguous because
method and field names must be distinct).

A class table CT is a map from class names c to class declarations. Likewise, a trait

12

Jclass c<α / N> / N {K D}K = class c<α / N> / N {K JDKc<α>}

JFKN = F
JMKN = M

Juse E; KN = JEKN

Jt(l, T)KN = J[l/$l, T/α, N/ThisType]DKN

where TT(t) = trait t($l, α) req {R} prov {D}
JE drop lKN = JEKN \ l

JE alias m as m′KN = JEKN · [m′/m] (JEKN(m))

Figure 4: MTJ to FGJ translation

table TT maps trait names t to trait declarations. A program is a triple (CT, TT, e). In
defining the semantics of MTJ, we assume fixed, global tables CT and TT. We further
assume that these tables are well-formed: the class table must define an acyclic inheritance
hierarchy, and the trait table must define an acyclic trait use graph.

4.2 Translation to FGJ

An FGJ program is an MTJ program with an empty trait table (and thus no trait use dec-
larations). The semantics of MTJ are given by a translation function J−K that takes MTJ
class declarations to FGJ class declarations. The translation flattens trait use declarations
into sequences of FGJ member declarations, incorporating the bodies of traits into the
classes in which they are used. As a consequence, the so-called flattening property [24]
holds by construction: class members introduced through traits cannot be distinguished
from class members defined directly within a class.6

Much of the work of translation is performed by substitution. Since trait functions
are strictly first-order, the definitions of the various substitution forms (types for types,
labels for labels, etc.) are straightforward and hence omitted.

The details of the translation are shown in Figure 4. Class declarations are translated
by flattening the class body, keeping track of the name of the class so that any occur-
rences of ThisType can be replaced by it. Fields and methods are already “flat,” so the
only interesting member-level translation is for trait use declarations. To flatten a trait
function application, we first substitute the actual parameters for the formal parame-
ters within the trait body, and then flatten the result. To drop a member for an inlined
trait, we simply remove it from the flattened collection of member delcarations. There
is a subtlety in the semantics for aliasing: when recursive methods are aliased, do their
recursive invocations refer to the original method or to the alias? We have chosen the
latter interpretation, following Liquori and Spiwack [22]. This choice does not affect our

6A similar property, called the copy principle, has been defined for mixins [1].

13

type system, but does affect finer-grained type systems that track individual method
requirements [27].

Note that translation is guaranteed to terminate, since the trait use graph is required
to be acyclic.

4.3 Types in MTJ

We now turn to the static semantics for MTJ. One approach for constructing a type
system for traits is to defer type checking of trait members until the trait is used in a
class, then check the trait members as if they were declared within that class [22]. While
this approach is pleasantly simple, requiring no changes to the existing type system for
classes, it has at least one significant downside: type errors in a trait function may not
be detected until that function is used, perhaps by a programmer using a library of such
trait functions.

Our goal, in contrast, is to subsume FGJ’s type system while separately type check-
ing trait definitions, expressions, and uses. To achieve this goal, our calculus must give
types to traits and trait expressions. Trait types must also be available at the expression
level, because this and ThisType may appear in trait method bodies. In a structural
type system, these requirements can be easily met by introducing incomplete object types
to track trait requirements and assigning these types to traits [12, 3]; the type of a trait
would then be a (structural) supertype of all classes that include that trait. Determin-
ing the status of trait types in a nominal type system is more difficult. One route is to
associate a type name with each trait declaration [30], as is done for class declarations.
Typing trait expressions involving aliasing or exclusion, however, is awkward with this
approach.

The situation in MTJ is further complicated by the fact that trait functions are ab-
stracted over labels and types, and may constrain their type parameters to implement
interfaces that include abstract labels (Section 3). In principle these features could be
supported in a purely nominal way, but we believe that the resulting type system would
be too brittle and cumbersome, and would limit the programmer’s ability to use existing
classes as type parameters to traits.

In view of these concerns, we propose a hybrid structural/nominal type system.
Purely nominal type systems must still check the structure of types to ensure soundness;
the pertinent structure does not appear in the syntax of the types, but rather through
auxiliary machinery (e.g., fields and mtype in FGJ). Our type system exposes structural
types syntactically: an object type N � σ is a pair of a type name N and an object signa-
ture σ. If an object has type N � σ, then it is nominally a subtype of N, and structurally a
subtype of σ. The nominal component is used for checking method arguments and re-
turn values, because in FGJ these constructions impose nominal subtyping constraints,
while the structural component is used for checking field accesses and method invoca-
tions, corresponding to the structural-checking machinery in FGJ. The full syntax of MTJ
types is given in Figure 5.

Of course, there is a relationship between the two components of an object type: for
each nominal type N — for each class — there is a signature σN giving its interface. We

14

N, P ::= c<T> nonvariable type name
T, U ::= N | α type name

τ ::= N � σ object type
| T type name
| ∀α <: τ.τ bounded polymorphic type
| τ → τ function/method type
| ∏ $l.τ label-dependent type

σ ::=
〈
l : µl

l∈L〉
R object signature

µ ::= T | T → T object member signature
R ::= {l} required member set

Figure 5: MTJ: type syntax

call this signature the canonical signature for N. The purpose of the signature component
in an object type is to impose additional structural constraints on the type of the object,
beyond those already imposed by its canonical signature. These additional constraints
can only be introduced through the requires and provides declarations in a trait func-
tion; thus, the constraints are only placed on type variables (including ThisType, which
we treat as a type variable). The type variables in a trait are replaced by class names
when trait function application is translated to FGJ. Our type system ensures that the
constraints on these type variables are satisfied by the eventual class name arguments,
ensuring the type-safety of the resulting FGJ code.

Notice that types τ include both object types and type names. A type name is either
a nonvariable type name (which is a class name, possibly applied to type parameters)
or a type variable. A nonvariable type name N stands for the object type N � σN that
includes the canonical signature of the class. A type variable α stands for an unknown
(but bounded) object type. The surface syntax of the language prevents trait and class
member declarations from introducing new object types: member declarations can only
refer to named types. Thus, in the type syntax, object signatures are constrained to use
type names rather than arbitrary object types. This constraint allows us to give a tidy
account of recursive object types, as we shall see later.

An object signature σ is annotated with a set R of member names. In the object type
for a trait, this set contains the name of all required members. For example, consider the
following trait BarT, which requires a foo method and provides a bar method:

trait BarT
requires { ThisType implements { Object foo(Object x); } }
provides { Object bar(Object x) { return foo(foo(x)); } }

The type of BarT is Object � 〈foo : Object → Object, bar : Object → Object〉{foo}. The
nominal component of the type is Object because BarT places no nominal constraints on
ThisType. Note that expression-level typing does not distinguish between the provided

15

and required members of an object type, because traits are ultimately incorporated into
classes that must provide all required members.

Classes are also given object types, as with the following polymorphic class [18]:

class Pair<X / Object, Y / Object> / Object {
Pair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }
X fst; Y snd;
Pair<X,Y> setfst(X newfst) { return new Pair<X,Y>(newfst, snd); }

}

Our type system will give the following type to Pair:

∀X <: Object � 〈〉∅ , Y <: Object � 〈〉∅ . Pair<X,Y> �
〈

fst : X, snd : Y,
setfst : X → Pair<X,Y>

〉
∅

Trait functions add an additional complication: the result type of a trait function may
depend on its label parameters, but these labels are unknown values, not unknown types.
We introduce a very limited form of dependent types [16] to address this issue. In our
calculus, the dependent type ∏ $l.τ represents a function that takes a label parameter
and yields a value of type τ, where $l may occur free in τ. For example, consider the
following trait function:

trait GetterT ($f, $g, T)
requires { ThisType implements { T $f; } }
provides { T $g() { $f; } }

In MTJ, GetterT has the type

∏ $f, $g . ∀T <: Object � 〈〉∅ . Object � 〈$f : T, $g : • → T〉{$f}
To give the typing judgments of the system, we need a few definitions. A context Γ is

a sequence of abstract labels $l and variable typings x : T; we write $l ∈ Γ and Γ(x) = T,
respectively, to denote their occurrence in Γ. Each label or variable may only occur once
in Γ. A type context ∆ is a finite map from type variables α to types τ. Just as we fixed
class and trait tables in the translation semantics, we fix a global class type table CTy and
trait type table TTy for the static semantics. The former takes class names to types, the
latter takes trait names to types. These tables play a role similar to a store typing: they
give each class and trait a presumed type, allowing us to check mutually-recursive class
definitions. Ultimately, we ensure that the actual type of each class and trait matches the
type given in the table. Formally, we regard the tables as implicit contexts for our typing
judgments.

4.4 Subtyping

MTJ has three forms of subtyping: nominal subtyping, written ∆ ` N1 l N2, structural
subtyping, written ∆ ` σ1 <: σ2, and general subtyping, written ∆ ` τ1 <: τ2. These
relations are defined in Figure 6.

16

Nominal subtyping: ∆ ` T l T

CT(c) = class c<α / N> / N { . . . }
∆ ` c<T>l [T/α]N

∆(α) = N � σ

∆ ` α l N

∆ ` T1 l T2 ∆ ` T2 l T3

∆ ` T1 l T3 ∆ ` T l T

Structural subtyping: ∆ ` σ <: σ

µm = T → T µ′m = T → T′ ∆ ` T l T′

∆ `
〈
m : µm, l : µl

l∈L〉
R <:

〈
m : µ′m, l : µl

l∈L〉
R

L1 ⊇ L2 R1 ⊆ (R2 ∪ (L1 \ L2))

∆ `
〈
l : µl

l∈L1
〉
R1

<:
〈
l : µl

l∈L2
〉
R2

∆ ` σ1 <: σ2 ∆ ` σ2 <: σ3

∆ ` σ1 <: σ3

General subtyping: ∆ ` τ <: τ

∆ ` N1 l N2 ∆ ` σ1 <: σ2

∆ ` N1 � σ1 <: N2 � σ2 ∆ ` α <: ∆(α)

∆ ` τ1 <: τ2 ∆ ` τ2 <: τ3

∆ ` τ1 <: τ3

Figure 6: MTJ: subtyping

The nominal subtyping relation is just FGJ’s subtyping relation: it defines inheritance-
based subtyping, which is the reflexive-transitive closure of the extends relation.

Structural subtyping applies to object signatures. We support both depth and width
subtyping. For depth subtyping, we follow FGJ (and GJ) in providing only covariant
subtyping on methods. We also consider a signature with fewer requirements to be a
subtype of the same signature with more requirements; the reasons for this choice will
become clear in Section 4.7.

General subtyping is defined so that the nominal and structural components of an
object type may vary independently. In particular, it is sometimes necessary for the nom-
inal component of a type to be promoted without affecting the structural component, as
in the following example:

class HasFoo { Object foo; }
trait NeedsFooA requires { ThisType implements {foo : Object} }
trait NeedsFooB requires { ThisType / HasFoo } provides { use NeedsFooA; }

In NeedsFooB, ThisType is bounded by HasFoo � 〈foo : Object〉{foo}. In NeedsFooA, how-
ever, ThisType is bounded by Object � 〈foo : Object〉{foo}, so a promotion of the nomi-
nal component of the bound is needed. Note that foo is marked required for NeedsFooA

because it is not provided by the trait—in particular, it cannot be removed using drop—

17

Bound of type name:

type(c<T>) = [T/α]τ0 when CTy(c) = ∀α <: τ.τ0

bound∆(N) = type(N)
bound∆(α) = ∆(α)

Well-formed type names: ∆ ` T OK

α ∈ dom(∆)

∆ ` α OK

CTy(c) = ∀α <: τ.τ0 ∆ ` T OK ∆ ` bound∆(T) <: [T/α]τ

∆ ` c<T> OK

Expression typing: ∆; Γ ` e : T

∆; Γ ` x : Γ(x)

∆; Γ ` e0 : T0 bound∆(T0) = N � σ

∆; Γ ` e0. f : σ(f)

∆; Γ ` e0 : T0 bound∆(T0) = N � σ σ(m) = T → T′

∆; Γ ` e : U ∆ ` U l T

∆; Γ ` e0.m(e) : T′

∆ ` N OK fields(N) = T f ∆; Γ ` e : U ∆ ` U l T

∆; Γ ` new N(e) : N

Figure 7: MTJ: expression typing

but is expected to be present in any class using the trait.

4.5 Static semantics: expressions

We present the static semantics of MTJ starting with expressions and working our way
upwards.

As usual for a type system without a subsumption rule, we include a promotion
function bound∆ for computing the least nonvariable supertype of a given type, given
in Figure 7. At the expression level, all types are named, so bound∆ is only defined on
type names. The type computed by bound∆, however, is always an object type. Thus,
using bound∆ on a nonvariable type name corresponds to an iso-recursive “unfold:”
the signature component of bound∆(N), i.e., the canonical signature of N, is the one-
step expansion of N. We use the function “type” to compute the canonical type; that
function, in turn, uses the class table to discover the appropriate canonical signature.
As in FGJ, we have a well-formedness check for type names, written ∆ ` T OK, which
ensures that the type parameters for a class respect their bounds.

The expression typing rules (Figure 7) are similar to their counterparts in FGJ, with

18

Label checking: Γ ` l OK

Γ ` l OK

$l ∈ Γ

Γ ` $l OK

Member declaration typing: ∆; Γ ` D : τ

∆ ` T OK Γ ` f OK

∆; Γ ` T f; : Object � 〈 f : T〉∅

∆; Γ ` E : τ

∆; Γ ` use E; : τ

∆ ` T0, T OK Γ ` m OK ∆; Γ, x : T ` e : U ∆ ` U l T0

∆; Γ ` T0 m(T x) {return e;} : Object �
〈
m : T → T0

〉
∅

Trait expression typing: ∆; Γ ` E : τ

TTy(t) = ∏ $l.∀α <: τ . N � σ ∆ ` T OK Γ ` l OK
∆ ` bound∆(T) <: [l/$l, T/α, Γ(this)/ThisType]τ

∆; Γ ` t(l, T) : [l/$l, T/α, Γ(this)/ThisType]N � σ

∆; Γ ` E : T �
〈
l : µl

l∈L〉
R m ∈ L \R m′ /∈ L Γ ` m′ OK

∆; Γ ` E alias m as m′ : T �
〈
m′ : µm, l : µl

l∈L〉
R

∆; Γ ` E : T �
〈
l : µl

l∈L〉
R k ∈ L \R

∆; Γ ` E drop k : T �
〈
l : µl

l∈L〉
R∪{k}

Figure 8: MTJ: member-level typing

a few notable differences. Most importantly, field access and method invocation are
checked via object signatures, rather than separate machinery. These rules are the mo-
tivation for our hybrid type system, making it possible to type traits and classes in a
uniform way. Our rule for method invocation is somewhat simpler than in FGJ, because
we do not model generic methods. A final point to observe is that all premises involv-
ing subtyping use the nominal subtyping relation. Each such premise corresponds to a
proposition that must hold, using FGJ’s (nominal) subtyping relation, after translation
of the expression.

4.6 Static semantics: member declarations and trait expressions

Type checking for classes and traits begins at the member level: the judgment ∆; Γ `
D : τ, given in Figure 8, assigns each member declaration an object type. This type
should be understood as the least upper bound for the type of objects containing the

19

declaration. For field and method declarations, the nominal component of the type will
always be Object, while the structural component will give the label and type for that
member. Trait use declarations are assigned the type of their trait expression, which may
include nominal requirements.

Member declaration typing checks that any abstract labels are in scope (Γ ` l OK).
Notice that method bodies are checked via the expression typing judgment, and the type
given to the body is (as usual) required to be a nominal subtype of the expected return
type. We also check that any types appearing in the program text are well-formed.

Trait expression typing is fairly straightforward; here, our type system resembles
Fisher and Reppy’s [12]. Recall that, when trait function applications are translated, a
class name is substituted for ThisType (Section 4.2); really, ThisType is an implicit type
parameter to every trait. Thus, when checking a trait function application, we substitute
the type of this (as given by Γ) for ThisType in the trait type. We also substitute the
explicit type arguments, checking that they respect their bounds.

The alias operation requires that the method to be aliased is actually provided by
the trait, and that no method with the aliased name is provided or required by the trait.
Likewise, for drop we check that the member to be dropped is provided by the trait.
Because the member might be mentioned in a method provided by the trait, we do not
simply drop it from the trait signature, but rather mark it as required. A more precise
type can be given if member requirements are tracked for each provided method [27],
but this comes at a cost: it leaks fine-grained implementation details about the trait into
its signature.

4.7 Static semantics: classes and traits

When typing a class or trait declaration, we attempt to find the meet (greatest lower
bound) of its member declaration types. If the meet is defined, it gives us the type for
the class or trait; if it is not defined, there is a type error. For example, consider the
following class:

class C {
int x;
int getX() { return x; }

}

The types of the member declarations are

Object � 〈x : int〉∅ and Object � 〈getX : • → int〉∅

respectively. The greatest lower bound of these types is

Object � 〈x : int, getX : • → int〉∅

Replacing Object in the nominal component of this type with C, we have the type of the
class.

As another example, suppose we have a trivial trait that provides nothing, but re-
quires a method foo:

20

trait ReqT
requires { ThisType implements { Object foo(); } }
provides {}

Notice that the type of ReqT is Object � 〈foo : • → Object〉{foo}. We can then define a
class A that uses ReqT:

class A / Object {
A foo() { return this; }
use ReqT;

}

Taking the meet of ReqT’s type with the type of foo defined in A yields the type Object �
〈foo : • → A〉∅. This is why types with fewer required members are “smaller” according
to the subtyping relation: when we take the meet of two types, one requiring a member
and one providing it, the resulting type lists the member as provided. In the above
example, the type of the required member was lowered as well. On the other hand, the
class B is not well-typed.

class B / Object {
Object foo(Object x) { return x; }
use ReqT;

}

The requisite meet is not defined for B, because its type for foo has no lower bound in
common with ReqT.

The meet of two object types, written τ1 ∧∆ τ2, is defined in Figure 9. In addition, we
define object type concatenation, written τ1 ⊕∆ τ2, which yields the meet of its operands
but also checks that they provide disjoint sets of members.

The judgment ∆; Γ ` R ⇒ α <: τ is used to gather trait requirements into type con-
straints. Recall that both nominal and structural requirements can be specified. Object
type concatenation is used to compute a type encompassing the given structural require-
ments, while checking that there is at most one requirement for any member name. The
rule takes the meet of this type with the nominal requirement, allowing structural re-
quirements to refine, but not conflict with, its canonical signature. Thus, for instance, a
trait cannot both require ThisType to be a subclass of String and also provide a length

method that returns a boolean. The type constraint given by the judgment includes the
labels of all required members in its requirement set.

The typing rule for trait function declarations is given in a declarative style: it uses
a type context ∆ mentioning types that are in turn checked under ∆. This is necessary
for two reasons. First, a requires clause for one type parameter may mention any of
the trait function’s type parameters, so requirements must be checked under the the
constraints they denote. Likewise, the upper bound for ThisType is needed for type
checking member declarations, but the types given to those declarations are used to
constrain ThisType. The result type of the trait function, τ0, is the concatenation of the
types of the provided and required members of the trait. Using concatenation rather
than meet ensures that the trait does not contain multiple definitions of a member.

21

Object type meet: N � σ ∧∆ N � σ = N � σ

∆ ` Ni l Nj with i, j ∈ {1, 2}
∆ ` σ <: σ1 ∆ ` σ <: σ2 ∆ ` σ′ <: σ1, ∆ ` σ′ <: σ2 =⇒ ∆ ` σ′ <: σ

N1 � σ1 ∧∆ N2 � σ2 = Ni � σ

Object type concatenation: N � σ ⊕∆ N � σ = N � σ

σ1 =
〈
l : µl

l∈L1
〉
R1

σ2 =
〈
l : µl

l∈L2
〉
R2

(L1 ∩ L2) ⊆ (R1 ∪R2)

N1 � σ1 ⊕∆ N2 � σ2 = N1 � σ1 ∧∆ N2 � σ2

Requirements: reqs
(

N �
〈
l : µl

l∈L〉
R

)
= N �

〈
l : µl

l∈R〉
R

Method signature declaration typing: ∆; Γ ` S : τ

∆ ` T0, T OK Γ ` m OK

∆; Γ ` T0 m(T x); : Object �
〈
m : T → T0

〉
∅

Requirement constraints: ∆; Γ ` R ⇒ α <: τ

∆ ` N OK ∆; Γ ` F : τf ∆; Γ ` S : τs

bound∆(N) ∧∆ (
⊕

∆ τf · τs) = N �
〈
l : µl

l∈L〉
∅

∆; Γ ` α / N implements {F S}⇒ α <: N �
〈
l : µl

l∈L〉
L

Trait function declaration typing: A : τ

∆; $l ` R ⇒ α <: τ ∆; $l ` R0 ⇒ ThisType <: τ′0
∆ = α <: τ, ThisType <: τ0 ∆; $l, this : ThisType ` D : τdecl

τ0 = τ′0 ⊕∆ (
⊕

∆ τdecl) ∆ ` τ′0 <: reqs(τ0)

trait t($l, α) req {R0 R} prov {D} : ∏ $l . ∀α <: τ . τ0

Class declaration typing: C : τ

K = c(U g, T f) {super(g); this.f = f;}
fields(N) = U g fields(c<α>) = U g; T f

∆ = α <: type(N) ∆ ` N, N OK ∆; this : c<α> ` D : τ

P � σ =
⊕

∆ τ σ =
〈
l : µl

l∈L〉
R N � σN = type(N)

∆ ` σ <: (σN � (L \R)) R ⊆ dom(σN) ∆ ` c<α>l P

class c<α / N> / N {K D} : ∀α <: type(N) . c<α> � σ ∧∆ N � σN

Figure 9: MTJ: class and trait typing

22

Note that a trait function t may use other traits without fulfilling their requirements.
In this case, we insist that t explicitly state the unfulfilled requirements in its ThisType
constraints, which is checked by the hypothesis ∆ ` τ′0 <: reqs(τ0), where τ′0 is the
bound t places on ThisType and τ0 is the result type of the trait function.

Class declaration typing is similar to trait function typing: the types of the class’s
member declarations are used to partially determine the class’s type via concatenation.
There are several important differences, however. For one, the class type includes the
canonical signature of its immediate superclass (σN in the rule). If a class overrides
any members of its superclass, the overriding definitions must be subtypes of the origi-
nals. Hence, we check that the signature of the superclass, σN , restricted to the members
defined in the class body, L \ R, is a supertype of the signature for the class body, σ.
Another difference is that all trait requirements must be fulfilled by the class. This is
checked in two ways. First, the set of required members from the class body, R, must
be a subset of the members provided by the superclass, dom(σN). Second, class itself is
required to be a nominal subtype of any nominal requirements introduced by the traits
it uses (∆ ` c<α>l P).

4.8 Soundness

The semantics of MTJ is given by a translation to FGJ, but the resulting FGJ class table
is also a valid MTJ class table. Thus, our soundness result is broken into two steps, one
taking place entirely within MTJ and one relating the two calculi. We briefly survey the
result here, with a detailed version of the proof available in the appendix.

DEFINITION 1.
A class C is flat if it contains no trait use declarations.

Note that limiting the syntax of MTJ to flat class declarations yields the syntax of
FGJ, modulo the features that we dropped (casts and generic methods).

To prove soundness, we need to ensure that the presumed class and trait types from
the class type and trait type tables agree with the actual classes and traits in CT and TT.

DEFINITION 2.
A class type table CTy agrees with a class table CT, written CT ` CTy, if dom(CT) =
dom(CTy) and for all c ∈ dom(CT), we have CT(c) : CTy(c). We write TT ` TTy for
the same property relating the trait tables.

We can now show a typical soundness result purely in terms of MTJ; here, translation
acts as the “dynamic semantics” for MTJ and we prove that any well-typed program will
successfully translate to a program with the same type.

THEOREM 3 (Soundness of translation).
If CT ` CTy and TT ` TTy then, for all c ∈ dom(CT), we have that C = JCT(c)K is
defined, that C is flat, and that C : CTy(c). Furthermore, if ` e : T under CT, then
` e : T under the translated class table.

23

This theorem is straightforward to prove. First, we prove a series of standard lem-
mas for weakening of the context and type and label substitution. These are sufficient
to prove the theorem, since translation is essentially trait function application. A minor
twist comes in the lemma showing type preservation for member declaration transla-
tion. The type of the original member is not always the same as the translated member:
if the original member is a trait use declaration, and the trait places requirements on
ThisType, those requirements will not appear in the flattened trait body. Thus, the trans-
lation preserves only the provided elements of a member declaration type. Theorem 3 still
holds, however, because the class typing rule ensures that there are no residual require-
ments, so the type of the class as a whole is preserved under translation.

We then show the following result, relating MTJ to FGJ.

THEOREM 4 (Well-typed, flat MTJ programs are well-typed FGJ programs).
If (CT, •, e) is an MTJ program with only flat class declarations and CT ` CTy, TT ` TTy,
and `MTJ e : T, then (CT, e) is a well-typed FGJ program and `FGJ e : T.

This theorem is even easier to prove: we prove that our canonical type signatures
give the same results as FGJ’s machinery (e.g., the mtype function), and then prove by a
series of inductive arguments that our typing judgments imply the corresponding judg-
ments in FGJ. Taking the two theorems together, we have that a type-safe MTJ program
translates to a type-safe FGJ program.

5 Type-directed operations

Trait-based metaprogramming, as we have described it so far, has only a very simple
notion of computation: trait function application. In this section, we sketch two compile-
time control mechanisms for our language, both of which operate on the structure of
types.

5.1 Typecase

Often it is useful for the implementation of a trait to vary depending on its type argu-
ments. For example, Figure 2 gave a trait function StringFieldT that was specialized
for string fields, but would be better presented in a type-generic way. To achieve this,
we add a typecase keyword, allowing trait type parameters to be analyzed as in Fig-
ure 10.The typecase keyword may be used at the member declaration level to give mul-
tiple implementations of provided methods, with the implementation chosen based on
the closest type (or supertype) match. A default case must be provided, and each case
must provide the same members at the same types. Note, however, that within each
case the bound on the type variable is refined to reflect the branch taken. This design
is taken from Weirich and Huang’s proposal for run-time type-directed programming in
Java [32]; the semantics for their mechanism can easily be adapted to our formal system.

24

trait FieldT(T, $f, $g, $s, $fBy, String fieldName, int length)
provides {

typecase(T)
case String {

use PropT($f, $g, $s, String);
...

}
case Integer { ... }
case List<U> {

typecase(U)
case ...
default { ... }

}
default { ... }

}

Figure 10: Typecase

5.2 Matching

Trait functions are often used to implement a policy that should be applied uniformly
across the fields or methods of a class (e.g., the SyncT trait from Section 3). In these cases,
having to use the trait at each member name becomes burdensome. Fähndrich et al. have
described a pattern-based approach to program generation that fits nicely with our trait
functions [11]. The match construct is another form of trait-function application, but
unlike use, it allows some of the arguments to be unspecified. For example, recall the
SyncT trait from Section 3. We can use the match construct to apply it to all the methods
in a class as follows:

class Foo {
private Mutex lock;
public int bar () { ... }
public bool baz () { ... }
match SyncT (?, ?, ?);

}

The “?” symbol tells the compiler to generate an argument through matchings. Match-
ing must be used in conjunction with the requires clause of a trait. The pattern being
matched is a field or method signature required of either ThisType or a type parameter.
Each matched argument must occur in the same signature. To avoid the possibility of
the provided methods of a trait being included in a match, we only match against defini-
tions occurring earlier in the class body than the match declaration. Superclass members
are also included for matching. Finally, as a related extension, we allow limited compu-
tation with labels, so that for example getfield can be generated by the expression "get"

+ $f when field is substituted for $f.
Matching is particularly powerful when combined with typecase. For example, au-

tomatic serialization code can be generated for a class by combining the two mecha-

25

nisms, and using the technique of partial methods described in Section 3. On the other
hand, matching complicates the type system, particularly when label computation is
added: we need non-trivial type equality, and a form of qualified types [19], to fully check
the construct.

6 Related work

6.1 Metaprogramming

Broadly speaking, metaprogramming consists of writing (meta) programs that manipu-
late (object) programs [29]. Compilers are the best-known metaprograms, but the tech-
nique is also useful for generating high-level code. In particular, generative program-
ming has been proposed as a paradigm for building families of related systems: code
and other artifacts are generated from a high-level model or specification, automat-
ing much of the software development process [6]. Metaprogramming, of course, is
a crucial element of this process. Since metaprogramming raises the level of abstrac-
tion and can arbitrarily modify the meaning of code, it is important that metaprogram-
ming frameworks strike a good balance between expressiveness, invasiveness, readabil-
ity, and safety guarantees.

Draheim et al. give a good summary of several metaprogramming frameworks for
Java and similar languages, focusing specifically on their utility for generative program-
ming [8]. A typical approach is to use so-called meta-objects to represent and alter code
entities (classes, methods, etc.). The implementation of the meta-objects gives rise to a
meta-object protocol (MOP) that can be overridden or extended with new features [20].
For example, MetaJ is an MOP-based interpreter for Java that allows arbitrary run-time
inspection and modification of classes [7]. The MOP approach can also be restricted to
compile-time, as with the OpenJava framework [31]. MOP frameworks have been used
both to generate code and to modify the semantics of language mechanisms such as
multiple inheritance. They are extremely flexible, but require manipulation of ASTs and
provide very few guarantees about generated code.

An alternative approach is to incorporate metaprogramming constructs directly into
the language. SafeGen [17], for example, extends Java with cursors and generators. Cur-
sors pick out a collection of entities within the code of a program, while generators,
guided by cursors, output code fragments. Generators are written in a quasi-quotation
style, giving the system a great deal of flexibility. Perhaps the most interesting aspect
of SafeGen is that generators are statically checked for safety, using a theorem prover to
check short first-order sentences produced by the type checker. Programmers are insu-
lated from the theorem-proving process: from their perspective, it is just another type
system.

Aspect-oriented programming (AOP) is another form of metaprogramming, where
advice is weaved into existing code [21]. Our proposal has significant similarities with
AOP, but also significant differences. Trait functions enable programmers to abstract
“cross-cutting concerns” in a way similar to aspects; advice often wraps methods with
new behavior, just as we do with examples like SyncT. The most important difference is

26

a matter of control: aspects control their own application to classes through pointcuts,
but traits are explicitly included in classes.

Fähndrich et al. have described an elegant pattern-based approach to metaprogram-
ming, similar to AOP, but focused on generating new class members, rather than modi-
fying existing behavior [11]. Their system is template-based, but uses pattern matching
to determine how to instantiate the templates. The patterns provide constraints that
lead to strong static guarantees about the templates. In Section 5, we sketch a design
inspired by this idea: the member requirements for a trait function are matched against
the members defined in a class, and the trait is automatically applied for each match.
This brings trait-based metaprogramming much closer to AOP, but the control of trait
application still remains in the hands of the class designer, who must explicitly request
the pattern matching to take place. Moreover, our design has a much coarser-grained
notion of pointcuts than AOP, since traits cannot be inserted at arbitrary points in the
control-flow of a method.

Most similar to our proposal, the Genoupe framework [9] for C# supports code gen-
eration through parameterized classes. Classes are parameterized over types and val-
ues, and may contain code that inspects their parameters at compile-time, generating
code as it does so. For example, classes can use a @foreach keyword to loop over the
fields or methods of a type parameter. The code within the @foreach will be gener-
ated repeatedly for each match. Genoupe includes some static type checking of pa-
rameterized classes, but it cannot guarantee the well-formedness of the generated code.
Moreover, generation results in complete classes, which cannot be combined in a single-
inheritance language.

In general, the novelty of our approach is its particular focus on member-level patterns
and its strength is in simplicity. Typed traits are composable, incomplete class imple-
mentations, and with our extension, they offer a uniform, expressive, and type-safe way
to do metaprogramming without resorting to AST manipulation. In addition, the result
of this metaprogramming is always just a trait, leaving ultimate control of the code to
the class designer.

6.2 Type systems

Nominal subtyping is a refinement of structural subtyping: type names are placed in
a nominal subtyping relationship, but the types these names represent must be struc-
turally related to guarantee type safety. In purely nominal type systems, types must be
always be named, and subtyping always explicitly stated; “combining” structural and
nominal subtyping amounts to relaxing these requirements. Moby [14] and Unity [23]
relax them entirely, allowing the use of arbitrary structural subtyping. In Moby, there
are object types and class types, the latter naming a specific class. Subtyping on class types
is based on the explicit inheritance hierarchy, and so is essentially nominal, while object
types are compared structurally. Unity is closer to our type system in that object types
include a nominal component (called a brand) and a structural component. In both type
systems, as with ours, nominal types have associated “canonical” structural types de-
scribing their interface. Programmers can choose whether to constrain types structurally

27

or nominally, or, with Unity, both.
Our proposal also allows arbitrary structural subtyping, but only at the trait func-

tion level; subtyping for expressions is strictly nominal. We believe this paradigm to
be widely applicable: a metalanguage with flexible, structural subtyping can be used to
generate code for an object language with a more rigid, nominal type system. Moreover,
since traits are just (incomplete) collections of class members, our type system can be
used for other metaprogramming frameworks that do not make traits an explicit pro-
gramming construct but still assemble classes from partial implementations. Though
type parameters will not be tied to trait functions in such frameworks, they can still be
used at the metaprogramming level with purely structural constraints, since they will
not be present in generated code.

In Ancona et al.’s polymorphic bytecode proposal, compilation units are type-checked
without complete knowledge of the inheritance hierarchy: type-checking results in a set
of structural and nominal constraints to be satisfied by the eventual, dynamically-linked
class hierarchy [2]. The combination of nominal and structural constraints resembles
our object types, and the system retains Java’s purely nominal subtyping after linking
is performed. Polymorphic bytecode, in order to respect Java’s type system, must place
nominal constraints on types any time a method is invoked: it has no analog to our trait
functions, which allow purely structural constraints to be imposed and discharged.

6.3 Traits

The introduction of traits for Smalltalk [10] prompted a flurry of work on traits for
statically-typed languages. Fisher and Reppy developed the first formal model of traits
in a statically-typed setting [13], subsequently extending it to support polymorphic traits
and stateful objects [12]. The model type checks traits in isolation from classes. The
structural component of our type system is essentially a variant of Fisher and Reppy’s
type system. In our previous workshop paper [27], we reformulated the Fisher-Reppy
trait calculus using Riecke-Stone dictionaries [28], giving a semantics for member re-
naming and hiding operations on traits. The calculus renames members by modifying
a dictionary, rather than substituting labels in program code. Thus, it provides a foun-
dation for the separate compilation of trait functions in Moby, which already uses such
dictionaries in its implementation. Riecke-Stone dictionaries are used in the implemen-
tation for the language Moby, so we believe that our semantics for member renaming
can be applied directly for that language. Separate compilation in Java remains future
work.

Several designs extending Java with traits have been proposed. In [30], Smith and
Drossopoulou describe a family of three such extensions, collectively called Chai. They
support separate type checking of traits by introducing trait names into Java’s type sys-
tem; in essence, traits define interfaces, and the classes that use them are considered
to have “implemented” those interfaces. As discussed in Section 4, this approach is
probably too brittle to support trait functions. Another proposed design is FeatherTrait
Java [22], which adds traits to Featherweight Java, but defers all type checking until traits
have been included in a class.

28

There are strong similarities between traits and mixins [5]; a good discussion of their
relationship can be found in [15]. The main difference between them is that mixins
force a linear order in their composition, with each mixin overriding related members
from earlier mixins. This linear order introduces fragility problems and may make code
maintenance more difficult [10]. Bracha’s Jigsaw framework is often cited as the first
formal account of mixins [4]. Jigsaw supports deep renaming (Bracha calls it global
renaming) and method hiding, so it could serve as a substrate for implementing our
metaprogramming idiom. We believe, however, that the composition mechanism for
traits make them a better fit.

7 Conclusion

We have presented a language design for metaprogramming with traits. We believe our
proposal hits a sweet spot for metaprogramming: while its semantics are very simple,
it is capable of capturing a wide variety of patterns occurring at the member level of
class definitions. In modeling our mechanism formally, we have developed a type sys-
tem which incorporates a mixture of structural and nominal subtyping, and proved
the soundness of the resulting calculus. An implementation is underway, written as
a source-to-source translator for Java.

29

References

[1] D. Ancona, G. Lagorio, and E. Zucca. Jam–designing a Java extension with mixins.
TOPLAS, 25(5):641–712, September 2003.

[2] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca. Poly-
morphic bytecode: compositional compilation for Java-like languages. In POPL’05,
pages 26–37, 2005.

[3] Viviana Bono, Michele Bugliesi, and Luigi Liquori. A Lambda Calculus of Incom-
plete Objects. In MFCS, pages 218–229, 1996.

[4] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah, March 1992.

[5] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the Joint
Conference on Object-oriented Programming: Systems, Languages, and Applications, and
the European Conference on Object-oriented Programming, pages 303–311, New York,
NY, October 1990. ACM.

[6] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co., 2000.

[7] A. A. de Oliveira, T. H. Braga, M. Maia, and R. da Silva Bigonha. MetaJ: An Exten-
sible Environment for Metaprogramming in Java. JUCS, 10(7):872–891, 2004.

[8] Dirk Draheim, Christof Lutteroth, and Gerald Weber. An Analytical Comparison
of Generative Programming Technologies. Technical Report B-04-02, Institute of
Computer Science, Freie Universität Berlin, January 2004.

[9] Dirk Draheim, Christof Lutteroth, and Gerald Weber. A Type System for Reflective
Program Generators. In GPCE’05, pages 327–341, 2005.

[10] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew
Black. Traits: A Mechanism for fine-grained Reuse. TOPLAS, 28(2):331–388, March
2006.

[11] Manuel Fähndrich, Michael Carbin, and James R. Larus. Reflective program gen-
eration with patterns. In GPCE’06, pages 275–284, New York, NY, USA, 2006. ACM
Press.

[12] Kathleen Fisher and John Reppy. Statically typed traits. Technical Report TR-2003-
13, Department of Computer Science, University of Chicago, Chicago, IL, Decem-
ber 2003.

[13] Kathleen Fisher and John Reppy. A typed calculus of traits. In Proceedings of the
11th Workshop on Foundations of Object-oriented Programming, January 2004.

30

[14] Kathleen Fisher and John H. Reppy. Extending Moby with Inheritance-Based Sub-
typing. In ECOOP’00, pages 83–107, 2000.

[15] Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with Classes,
Mixins, and Traits. In APLAS’06, 2006.

[16] Martin Hofmann. Syntax and Semantics of Dependent Types. In Semantics and
Logics of Computation, volume 14, pages 79–130. Cambridge University Press, 1997.

[17] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically Safe Program
Generation with SafeGen. In GPCE’05, pages 309–326, 2005.

[18] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.

[19] Mark P. Jones. A theory of qualified types. In Bernd Krieg-Bruckner, editor, ESOP
’92, 4th European Symposium on Programming, Rennes, France, February 1992, Proceed-
ings, volume 582, pages 287–306. Springer-Verlag, New York, N.Y., 1992.

[20] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The art of metaobject proto-
col. MIT Press, Cambridge, MA, USA, 1991.

[21] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
ECOOP’97, pages 220–242, 1997.

[22] Luigi Liquori and Arnaud Spiwack. Feathertrait: A modest extension of feather-
weight java. TOPLAS, to appear, 2007.

[23] Donna Malayeri and Jonathan Aldrich. Combining Structural Subtyping and Ex-
ternal Dispatch. In FOOL/WOOD’07, 2007.

[24] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening Traits. Journal of Object Tech-
nology, 5(4):129–148, June 2006.

[25] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, Lex Spoon, and Matthias Zenger. An overview of the Scala
programming language (second edition). Technical Report LAMP-REPORT-2006-
001, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
May 2006.

[26] Philip J. Quitslund. Java traits — improving opportunities for reuse. Technical
Report CSE 04-005, OGI School of Science & Engineering, September 2004.

[27] John Reppy and Aaron Turon. A foundation for trait-based metaprogramming. In
FOOL/WOOD’06, 2006.

[28] Jon G. Riecke and Christopher A. Stone. Privacy via subsumption. INC, 172(1):2–28,
January 2002. A preliminary version appeared in FOOL5.

31

[29] Tim Sheard. Accomplishments and research challenges in meta-programming. In
SAIG 2001: Proceedings of the Second International Workshop on Semantics, Applications,
and Implementation of Program Generation, pages 2–44, London, UK, 2001. Springer-
Verlag.

[30] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-Like Languages. In
ECOOP’05, pages 453–478, 2005.

[31] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. Open-
Java: A class-based macro system for java. In OORaSE, pages 117–133, 1999.

[32] Stephanie Weirich and Liang Huang. A Design for Type-Directed Programming in
Java. In Workshop on Object-Oriented Developments, 2004.

32

A MTJ is type-safe

Before giving the complete details of the proof, we need several additional definitions.

DEFINITION 5.
A member declaration sequence D is flat if it contains no trait use declarations.

DEFINITION 6.
A class declaration C is flat if its member declaration sequence is flat.

DEFINITION 7.
A class type table CTy agrees with a class table CT, written CT ` CTy, if dom(CT) =
dom(CTy) and for all c ∈ dom(CT), we have CT(c) : CTy(c). We write TT ` TTy for
the similar property relating trait and trait type tables.

DEFINITION 8.
The provided members of an object type, written provs, is defined as follows:

provs
(

N �
〈

l : µl
l∈L

〉
R

)
= Object �

〈
l : µl

l∈L\R
〉

∅

DEFINITION 9.
The field sequence of a class, written fields, is defined as follows:

fields(c<T>) = fields([T/α]N) · [T/α]fieldsc<T>(D)
where CT(c) = class c<α / N> / N {K D}

fieldsN(M) = •
fieldsN(F) = F

fieldsN(use E;) = fieldsN(E)

fieldsN(t(l, T)) = [l/$l, T/α, N/ThisType]fieldsN(D)
where TT(t) = trait t($l, α) req {R} prov {D}

fieldsN(E drop l) = fieldsN(E) \ l

fieldsN(E alias m as m′) = fieldsN(E)

General remarks
For notational brevity, we assume that CT ` CTy and TT ` TTy for all of the lemmas in
this appendix. We state these assumptions explicitly for the theorems.

33

A.1 Translation is sound

LEMMA 10 (Weakening).
Suppose ∆′ = ∆, α <: N � σ and ∆′ ` N OK and ∆ ` W OK. We have

1. If ∆ ` T l U then ∆′ ` T l U.

2. If ∆ ` σ1 <: σ2 then ∆′ ` σ1 <: σ2.

3. If ∆ ` τ1 <: τ2 then ∆′ ` τ1 <: τ2.

4. If bound∆(T) = τ then bound′∆(T) = τ.

5. If ∆ ` T OK then ∆′ ` T OK.

6. If ∆; Γ ` e : T then ∆′; Γ ` e : T and ∆; Γ, x : W ` e : T and ∆; Γ, $l ` e : T.

7. If ∆; Γ ` D : τ then ∆′; Γ ` D : τ and ∆; Γ, x : W ` D : τ and ∆; Γ, $l ` D : τ.

8. If ∆; Γ ` E : τ then ∆′; Γ ` E : τ and ∆; Γ, x : W ` E : τ and ∆; Γ, $l ` E : τ.

Proof. Straightforward induction on each corresponding derivation; the last two propo-
sitions are proved by mutual induction on derivations.

LEMMA 11 (No free label variables in trait expressions).
If ∆; Γ ` E : N � σ then Γ ` l OK for each l ∈ dom(σ).

By induction on E. The only interesting case is trait function application; the result
holds for that case because, by well-formedness constraints on the types given by the
trait type table, there can be no free label variables in a trait type.

LEMMA 12 (No free label variables in member declarations).
If ∆; Γ ` D : N � σ then Γ ` l OK for each l ∈ dom(σ).

Proof. By case analysis on D, using Lemma 11.

LEMMA 13 (No abstract labels in class types).
If type(N) = N � σ then dom(σ) contains no abstract labels.

Proof. Follows directly from Lemma 12 and the class declaration typing rule.

LEMMA 14 (Label substitution preserves nominal subtyping).
If ∆ ` T l U and [l/$l]∆ is defined and Γ ` l OK then [l/$l]∆ ` T l U.

Proof. Trivial induction.

LEMMA 15 (Label substitution preserves structural subtyping).
If ∆ ` σ1 <: σ2 and [l/$l]∆ is defined and Γ ` l OK and [l/$l]σ1, [l/$l]σ2 are defined then
[l/$l]∆ ` [l/$l]σ1 <: [l/$l]σ2.

Proof. Straightforward induction, using Lemma 14.

34

LEMMA 16 (Label substitution preserves general subtyping).
If ∆ ` τ1 <: τ2 and [l/$l]∆ is defined and Γ ` l OK and [l/$l]τ1, [l/$l]τ2 are defined then
[l/$l]∆ ` [l/$l]τ1 <: [l/$l]τ2.

Proof. Trivial induction, using Lemmas 14 and 15.

LEMMA 17 (Label substitution preserves bounds).
If bound∆(T) = τ and [l/$l]∆ is defined and Γ ` l OK then bound[l/$l]∆(T) = [l/$l]τ

Proof. Follows directly from Lemma 13.

LEMMA 18 (Label substitution preserves well-formed type names).
If ∆ ` T OK and [l/$l]∆ is defined then [l/$l]∆ ` T OK.

Proof. Trivial induction, using Lemmas 16 and 17.

LEMMA 19 (Label substitution preserves expression typing).
If ∆; Γ, $l ` e : T and [l/$l]∆ is defined and Γ ` l OK then [l/$l]∆; Γ ` [l/$l]e : T.

Proof. By induction on the derivation of ∆; Γ, $l ` e : T.

Case e = x: Trivial.

Case e = e0. f : ∆; Γ, $l ` e0 : T0 bound∆(T0) = N � σ T = σ(f)

By induction, [l/$l]∆; Γ ` [l/$l]e0 : T0. By Lemma 17, bound[l/$l]∆(T0) = [l/$l](N �
σ) = N � [l/$l]σ. If f = $l then [l/$l]σ(l) = T; otherwise [l/$l]σ(f) = T. In either case,
we are done.

Case e = e0.m(e): Similar to ET-FIELD, using Lemma 14.

Case e = new N(e): Easy, using Lemma 14.

LEMMA 20 (Label substitution preserves trait expression typing).
If ∆; Γ, $l ` E : τ and [l/$l]∆ is defined and [l/$l]τ is defined and Γ ` l OK then
[l/$l]∆; Γ ` [l/$l]E : [l/$l]τ.

Proof. By induction on E. We give one case.

Case E = E0 alias m as m′: ∆; Γ, $l ` E0 : T �
〈
l : µl

l∈L〉
R

m ∈ L \R m′ /∈ L Γ, $l ` m′ OK
τ = T �

〈
m′ : µm, l : µl

l∈L〉
R

By induction,
∆; Γ ` [l/$l]E0 : T � [l/$l]

〈
l : µl

l∈L
〉
R

35

If $l 6= m and $l 6= m′, we are done. Suppose $l = m. Because [l/$l]τ is defined, we
know that l 6= m′. Hence, m′ /∈ [l/$l]L. Likewise, l ∈ [l/$l]L. Further l /∈ [l/$l]R
– otherwise, $l = m ∈ R, or else l ∈ R, which cannot be because [l/$l]τ is defined,
completing that case. Finally, suppose $l = m′. It must be that l /∈ [l/$l]L because
otherwise $l = m′ ∈ L or l ∈ L which cannot be because [l/$l]τ is defined.

LEMMA 21 (Label substitution preserves member declaration typing).
If ∆; Γ, $l ` D : τ and [l/$l]∆ is defined and [l/$l]τ is defined and Γ ` l OK then
[l/$l]∆; Γ ` [l/$l]D : [l/$l]τ.

Proof. Trivial, using Lemmas 18, 19, 14, and 21.

LEMMA 22 (Label substitution preserves meets).
If N1 � σ1 ∧∆ N2 � σ2 = N � σ and [l/$l]∆ is defined and Γ ` l OK and [l/$l]σ1, [l/$l]σ2
are defined then

N1 � [l/$l]σ1 ∧[l/$l]∆ N2 � [l/$l]σ2 = N � [l/$l]σ

Proof. Easy, using Lemmas 14 and 15.

LEMMA 23 (Label substitution preserves concatenations).
If N1 � σ1 ⊕∆ N2 � σ2 = N � σ and [l/$l]∆ is defined and Γ ` l OK and [l/$l]σ1, [l/$l]σ2
are defined then

N1 � [l/$l]σ1 ⊕[l/$l]∆ N2 � [l/$l]σ2 = N � [l/$l]σ

Proof. Immediate from Lemma 22.

LEMMA 24.
If ∆ ` N l P, then ∆ ` type(N) <: type(P).

LEMMA 25.
If ∆ ` N l P, then ∆ ` bound∆(N) <: bound∆(P).

LEMMA 26.
For all N, we have type([T/α]N) = [T/α]type(N).

Proof. Suppose CTy(c) = ∀β <: τ.τ0. We have

type([T/α]c<U>) = type(c<[T/α]U>)
= [([T/α]U)/β]τ0

= [T/α]([U/β]τ0)
= [T/α]type(c<U>)

because the free type variables of τ0 must belong to the set {β}.

LEMMA 27 (Type substitution preserves field sequences).
For all N, we have fields([T/α]N) = [T/α]]fields(N).

36

Proof. The argument is very similar to the previous lemma.

LEMMA 28 (Type substitution preserves nominal subtyping).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ ` T l U then ∆ ` [T/α]T l
[T/α]U.

Proof. By induction.

LEMMA 29 (Type substitution preserves structural subtyping).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ ` σ1 <: σ2 then ∆ `
[T/α]σ1 <: [T/α]σ2.

Proof. By induction, using Lemma 28.

LEMMA 30 (Type substitution preserves general subtyping).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ ` τ1 <: τ2 then ∆ ` [T/α]τ1 <:
[T/α]τ2.

Proof. By induction, using Lemmas 28 and 29.

LEMMA 31.
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ then

∆ ` bound∆([T/α]T) <: [T/α]bound∆,α<:τ(T)

Proof. If T is a nonvariable type name then applying Lemma 26 is enough. Otherwise, if
T is not one of α then we are done. Finally, if T = αi for some i then we need only show
that ∆ ` bound∆(Ti) <: [T/α]bound∆,α<:τ(αi), that is, that ∆ ` bound∆(Ti) <: [T/α]τi,
which is true by assumption.

LEMMA 32 (Type substitution preserves well-formed type names).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ ` T OK then ∆ ` [T/α]T OK.

Proof. By induction on the derivation of ∆, α <: τ ` T OK, using Lemma 31.

LEMMA 33 (Type substitution preserves expression typing).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ; Γ ` e : T then ∆; Γ ` [T/α]e :
U with ∆ ` U l [T/α]T.

Proof. Straightforward induction on e, using Lemmas 27, 28, 31, and 32. We show one
case.

Case e = e0.m(e): ∆, α <: τ; Γ ` e0 : T0 bound∆,α<:τ(T0) = N � σ

σ(m) = V → T ∆, α <: τ; Γ ` e : W
∆, α <: τ ` W l V

By induction, we have

∆; Γ ` [T/α]e0 : U0 ∆ ` U0 l [T/α]T0

37

and it follows that
∆ ` bound∆(U0) <: bound∆([T/α]T0)

Using Lemma 31, we also have that

∆ ` bound∆([T/α]T0) <: [T/α]bound∆,α<:τ(T0)

so that, putting things together, we can deduce

∆ ` bound∆(U0) <: [T/α]bound∆,α<:τ(T0)

Suppose bound∆(U0) = P � σ′. Inverting the subtyping judgment, this implies that
∆ ` σ′ <: [T/α]σ and, inverting structural subtyping, we have

σ′(m) = ([T/α]V) → T′ ∆ ` T′ l [T/α]T

Finally, by induction and Lemma 28 we have

∆; Γ ` [T/α]e : W ′ ∆ ` W ′ l [T/α]V

which completes the case.

LEMMA 34 (Type substitution preserves trait expression typing).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ; Γ ` E : τ then ∆; Γ `
[T/α]E : [T/α]τ.

Proof. By induction on E. We show the only interesting case.

Case E = t(l, U): TTy(t) = ∏ $l.∀β <: τ′ . N � σ

∆, α <: τ ` U OK Γ ` l OK
∆, α <: τ ` bound∆,α<:τ(U) <: [l/$l, U/β, Γ(this)/ThisType]τ′

τ = [l/$l, U/β, Γ(this)/ThisType]N � σ

By Lemma 32 we have ∆ ` [T/α]U OK. By Lemma 30 we have

∆ ` [T/α]bound∆,α<:τ(U) <: [T/α]([l/$l, U/β, Γ(this)/ThisType]τ′)

which, because the free type variables in σ must be contained in {β}, means that

∆ ` [T/α]bound∆,α<:τ(U) <: [l/$l, ([T/α]U)/β, Γ(this)/ThisType]τ′

By Lemma 31, we have

∆ ` bound∆([T/α]U) <: [T/α]bound∆,α<:τ(U)

which completes the case.

LEMMA 35 (Type substitution preserves member declaration typing).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and ∆, α <: τ; Γ ` D : τ then ∆; Γ `
[T/α]D : [T/α]τ.

38

Proof. Trivial case analysis on D, using Lemmas 28, 32, 33, and 34.

LEMMA 36 (Type substitution preserves meets).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and τ1 ∧∆,α<:τ τ2 = τ then [T/α]τ1 ∧∆
[T/α]τ2 = [T/α]τ.

Proof. Similar to the proof of Lemma 22.

LEMMA 37 (Type substitution preserves concatenations).
If ∆ ` T OK and ∆ ` bound∆(T) <: [T/α]τ and τ1 ⊕∆,α<:τ τ2 = τ then [T/α]τ1 ⊕∆
[T/α]τ2 = [T/α]τ.

Proof. Immediate from Lemma 36

LEMMA 38 (Provs commutes with concatenation).
If τ ⊕∆ τ′ is defined, then provs(τ ⊕∆ τ′) = provs(τ)⊕∆ provs(τ′).

LEMMA 39.
We have

1. if JDKN is defined then it is flat.

2. if JEKN is defined then it is flat.

Proof. By induction on (mutual) derivations.

LEMMA 40 (Flattening preserves typing).
Suppose ∆ ` N OK and ∆ ` N <: τ0. Then

1. if ∆; Γ, this : N ` D : τ0 and JDKN is defined then ∆; Γ, this : N ` JDKN : τ with⊕
∆ τ = provs(τ0).

2. if ∆; Γ, this : N ` E : τ0 and JEKN is defined then ∆; Γ, this : N ` JEKN : τ with⊕
∆ τ = provs(τ0).

Proof. By induction on the (mutual) derivation of JDKN and JEKN .

Case D = F, D = M: Trivial.

Case D = use E;: By induction (part 2).

Case E = t(l, T): TT(t) = trait t($l, α) req {R R0} prov {DP}
J[l/$l, T/α, N/ThisType]DKN is defined

By the typing rule for trait function application we have

TTy(t) = ∏ $l.∀α <: τB . P � σ ∆ ` T OK Γ ` l OK
∆ ` T <: [l/$l, T/α, N/ThisType]τB

39

Since TTy and TT agree, we further have the following via the typing rule for traits:

∆′ = α <: τB, ThisType <: P � σ ∆′; $l, this : ThisType ` DP : τP

where provs(
⊕

∆′ τP) = provs(P � σ). Applying Weakening (Lemma 10) we have

∆, ∆′; Γ, $l, this : ThisType ` DP : τP

By Lemmas 35 and 21, we have that

∆; Γ, this : N ` [l/$l, T/α, N/ThisType]DP : [l/$l, T/α, N/ThisType]τP.

Let D = J[l/$l, T/α, N/ThisType]DPKN so that, by induction (part 1), ∆; this : N ` D :
τ with ⊕

∆

τ = provs(
⊕

∆

[l/$l, T/α, N/ThisType]τP)

and it follows, using Lemmas 23 and 37, that⊕
∆

τ = provs([l/$l, T/α, N/ThisType]P � σ)

which completes the case.

Case E = E′ drop k: JE′KN is defined

By the typing rule for drop expressions, we have ∆; Γ ` E′ : T �
〈
l : µl

l∈L〉
R and

k ∈ L \ R. We have that ∆ ` N <: T �
〈
l : µl

l∈L〉
R∪{k}, and that reqs(type(N)) = ∅; it

follows that ∆ ` N <: T �
〈
l : µl

l∈L〉
R. By induction (part 2), ∆; Γ, this : N ` JE′KN : τ

with
⊕

∆ τ = provs(T �
〈
l : µl

l∈L〉
R). It follows (using Lemma 39) that k ∈ dom(JE′KN),

and that ∆; Γ, this : N ` JE′KN \ k : τ′ with
⊕

∆ τ′ = provs(T �
〈
l : µl

l∈L〉
R∪{k}).

Case E = E′ alias m as m′: Similar.

LEMMA 41 (Flattening preserves fields).
We have

1. if JDKN is defined then fieldsN(D) = fieldsN(JDKN).

2. if JEKN is defined then fieldsN(E) = fieldsN(JEKN).

Proof. Straightforward induction on the (mutual) derivation of JDKN and JEKN .

LEMMA 42 (Translation preserves typing).
If JCT(c)K is defined then JCT(c)K : CTy(c).

40

Proof. We have by assumption (inverting the class declaration typing rule) that

CT(c) = class c<α / N> / N {K D}
CTy(c) = ∀α <: type(N) . c<α> � σ ∧∆ N � σN

K = c(U g, T f) {super(g); this.f = f;}
fields(N) = U g fields(c<α>) = U g; T f

∆ = α <: type(N) ∆ ` N, N OK ∆; this : c<α> ` D : τ

P � σ =
⊕

∆ τ σ =
〈
l : µl

l∈L〉
R N � σN = type(N)

∆ ` σ <: (σN � (L \R)) R ⊆ dom(σN) ∆ ` c<α>l P

Using Lemmas 38 and 40, we have that

∆; this : c<α> ` JDKc<α> : τ′ provs(⊕∆ : τ′) = provs(
⊕

∆

τ) = provs(P � σ)

Let Object � σ′ = provs(P � σ). Since R ⊆ dom(σN) and ∆ ` c<α>l P, we have that

c<α> � σ ∧∆ N � σN = c<α> � σ′ ∧∆ N � σN

completing the proof.

DEFINITION 43.
We define trait-use order on member declarations and trait expressions, written ≺, as
follows.

E occurs in D

E ≺ D

E does not occur in D

D ≺ E

Note the relation is a well-founded, strict partial order by the constraints placed on the
trait-use graph.

LEMMA 44.
Suppose ∆ ` N OK and ∆ ` N <: τ0. Then

1. if ∆; Γ, this : N ` D : τ0 then JDKN is defined.

2. if ∆; Γ, this : N ` E : τ0 then JEKN is defined.

Proof. By well-founded induction on the order ≺, using the fact that if ∆; Γ ` D : τ
with

⊕
∆ τ = N � σ and D is flat then dom(σ) = dom(D).

THEOREM 45 (Soundness of translation).
If CT ` CTy and TT ` TTy then, for all c ∈ dom(CT), we have that C = JCT(c)K is
defined, that C is flat, and that C : CTy(c). Furthermore, if ` e : T under CT, then
` e : T under the translated class table.

Proof. Follows directly from Lemmas 39, 42, and 44.

41

A.2 Flattened, well-typed programs are well-typed FGJ programs

Note for this section, we assume:

• all classes in the class table are flat,

• the class table agrees with the class type table,

• the trait table is empty, and

• the members of classes are given in field, constructor, methods order, as in FGJ.

LEMMA 46.
For all c ∈ dom(CT), we have fields(c<T>) = fieldsFGJ(c<T>).

Proof. A simple inspection of the definitions shows they are equivalent (for flat classes).

LEMMA 47.
For all N with ∆ ` N OK and type∆(N) = N � σ, we have that

mtypeFGJ(m, N) = T → T if and only if σ(m) = T → T.

Proof. By induction on the class hierarchy.

We now need to work with type contexts, the syntax of which varies between MTJ
and FGJ. To translate between the two calculi, we need the following definition.

DEFINITION 48.
A type context ∆ is flat if, for each α <: N � σ ∈ ∆, we have N � σ = type(N). In
addition, if ∆ = α <: N � σ we define

J∆K = α <: N

LEMMA 49.
If ∆ is flat and bound∆(T) = N � σ then (boundFGJ)J∆K(T) = N.

Proof. Immediate.

LEMMA 50.
If ∆ is flat and ∆ ` T l U then J∆K `FGJ T <: U.

Proof. Trivial induction on the derivation of ∆ ` T l U.

LEMMA 51.
If ∆ ` N OK with ∆ flat then J∆K `FGJ N OK.

Proof. Easy induction on the derivation of ∆ ` N OK, using Lemma 50.

LEMMA 52.
If ∆ and Γ are flat and ∆; Γ ` e : T, then J∆K; Γ `FGJ e : T.

42

Proof. By induction on e, using Lemmas 46, 47, 49, 50, and 51.

LEMMA 53.
For each C in CT we have C OKFGJ.

Proof. Follows from Lemmas 46, 51, and 52, using inversion on the MTJ method dec-
laration typing rule. The only subtlety is showing that the MTJ typing rule for classes
satisfies the override constraint in FGJ; this follows from Lemma 47 the MTJ premise

∆ ` σ <: (σN � (L \R))

which, in context, has the effect of constraining the types of overriding methods in the
same way that the override judgment does in FGJ.

THEOREM 54 (Flattened, well-typed programs are well-typed FGJ programs).
If (CT, •, e) is an MTJ program with only flat class declarations (or, equivalently, (CT, e)
is an FGJ program) and CT ` CTy and ` e : T, then (CT, e) is a well-typed FGJ program
and `FGJ e : T.

Proof. Using Lemmas 52 and 53.

43

