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1.1 Syntax

Sorts

Index Terms

Propositions

Kinds

Types

Terms

Eval Contexts

Values
Heaps
Contexts

Index/Type
Proposition
Unrestricted

Linear

1 The Language

P.Q

> 7 9 M

| 1| oxo | 2] Loc| o—0 | oL | seqo | Plo)

N
X |n|t+t|txt

O [ &) | mt | mt

tt | ff | if(¢,t,t)

AX:o.t ]| tu

[t] | L | case(t,L —t,|X]|—1)
€| tut | fold(t,e >, X =Y — t)
{X:0 | P}

tet | t>t|t=t

T|PAQ | PDOQ|L]|PVQ |VX:0.P|3X:0. P
t=u | t>u | tet

o| o=k

1] A®B | A—B | 1A | ptrt | capt A
VX:0uP A|3X:0u:P A |Va:k A| a:k A
bool t | natt | [4]

if(t, A,B) | a | A X:0.A | At

510 | ee) | let (r,y) =eine

Ax.e | ee | | letlz=eine

new(e) | get, e | e:=cr € | fix f(x). e | share(e, ;)
tt | ff | if(e,eq,e2) |

n | case(e,0 — e1,s T — €3)

| o

(1] (E.e) | (v,E) | let{z,y)=FEine

Ee|vE | \E | letlx=FEine | if(E,e1,e2)

new(E) | get, £ | getgv | E:=¢ e | vi=c E | vi=g
case(E,0 — e1,s x — ez) | share(E,v)

O | (o) | Adze | XX :o.e | v | €| fixf(z).e | x| o | tt ]| ff|n

| hlw

) Xaik | B, X0
- | ILP

| Tye: A

] Ay A



1.2 Typing

a:kEY YFA:0 >k Ypt:o Y, X:0FA:k Ya:kFA:o
YFa:k YFAt: K YEAX:0. A:0— kK YFEVYa:k. A:o

Y2.X:0FA:o0 3, X :00> P :prop Q € {v,3} YhHA:o YFB:o YHFA:o YFB:o

YFQX:0:P A:o YFA®B:o YFA-—oB:o
> t: Loc X>t: Loc YHA:o YFEA:o Xpt:2 Yt N
YkF1:o0 Yhkptri:o YhcaptA:o YEI!A:o Y Fboolt:o Yhknatt:o

X>t:2 YHFA: K YFB:k
YFif(t,A,B): K

X1 P : prop

¥ > P : prop Y > Q : prop ®e{V,AD} ce{T,1} Y, X:0> P :prop Qe {v,3}
> P®Q : prop Y>> c: prop X> QX :o. P:prop
Y>t:o Y>u:o Y>t:N Y>u:N Y>t:o Y>u:P(o)
Y>> t=wu: prop Y>>t >u:prop Y>>t € u: prop

SO0+ P

(rules of first-order logic)

Y +1II ok

> 1T ok 1> P : prop
> F-ok X FII, P ok

YT ok

YT ok YFA:o
> F-ok SHT,xz: Aok

Y+ Aok

Y F Aok YEFEA:o
k- ok YEA x: Aok




(ST A=B: k)

(Standard congruence rules omitted)

YFHA:R »WIIFA=B:k »WIIFA=B:k YWII+-B=C:k
;2 IIFA=A:&k ;2 IIFB=A:«k S IIFA=C:k
»WIIFA=B:k Ya:kkFC: K YilIkFt=,u Y. X:oF Ak
1+ [A/a]C = [B/a]C : K S F [t/ X]A=[u/X]|A: K
SEFAX:0. Atk 2, X:0slIFAX=BX:k
SHOFMX 0. A)t=[t/X]A: Kk Y2wIIFA=B:o—«k
S Hif(tt,A,B) : & S HIif(ff,A,B) : Kk Y>t:2 N, X:2FA:k
S IEif(tt,A,B)=A: Kk S IOEif(ff,AB)=B: k IR if (e, [tt/ XA, [ff/X]A) = [t/ X]A : K
>, X:0lIFP < Q YEVX:0:P A:o Y X:0lIFP = @ YFIX:0:P. A:o
S IIFVX:0:P A=VX:0:Q.A:o Y IIF3IX:0:P A=3X:0:Q.A:0
YFVX:0:P (A®B):o X ¢ FV(B) YF3IX:0:P.(A®B):o X ¢ FV(B)

S OFWVX:0:P. A B=VX:0:P.(A®B):o0 Y UF(3X:0:P. A®B=3X:0:P.(A®B):o0

YFA:o YX1>t: Loc YFA:o Y, X:0FA:o0 X, X:00> P :prop
Y;Ilkcapt A=[capt A] : o S0+ [[A]]=[A4]: o Y2 [IF3X:0: P [Al=[3X:0:: P A]:o0
YFA:o YFB:o S [Al=[A] o S;IF [B]=[B]:o0

S HOF[A® Bl =[B®A]:o S OF[A®@B]=[A®@B']:0



S ILET;ARe: A

Y F1II ok Y T ok Y F Aok r:Ae A >+ II ok Y T ok Y F Aok rz:Ael

ST ARz A ST ARz A

Y+ 1II ok Y FT ok Y Aok Yok
SIGT;AR() 1

I A Fep i A I Asbes: B WILT; A Fe: A® B I, Ag, 2 Ajy: Ble : C
SIGT; A, A b (eg,e2) : AR B SIGT; A Ag et {(x,y) =eine : C
I Ax: Abe: B G ILT; A1 Fe: A— B ST A e i A
Y ILTAF Az .e: A— B S:ILT; A, AsFee : B
S IED; - Fo: A S ILT; A e 1A SILT, 2z A Ax e C
SIILT; AR 1A SILT; AL AsFletlz =eine : C
SILT;ARe: A S ILT; Al e:ptrt SILT;A Fe tcapt A
S ILT; A new(e):3¢: Loc:: T lptri®cap ¢ A SIGT; A A Fget, e A®capt 1
S ILT; Ay Feptrit ST A e i A S ILT; Az e tcaptl I, f: A— Bjx:Ake: B
SILT A, Ag, Az ei=en e tcapt A S ILT; - Ffix f(x).e: A— B
;15T A tt: bool tt S IL T A F ff : bool ff

;ILET; AR e boolt St =tt; ;A e : C S It =1 A Fey: C
SIL T AL A if(e,eq,e2) : C S;ILET; AR nnatn

S ILET; Ay Fenatt 1Lt =0;T A0 ey : C Y X NILt=s X ;T Aq,z:nat X Fey: C
S ILT; Ay, Ao b case(e,0 = eg,s ¢ — e9) : C




E;H;F;AI—e:A‘ ... continued

ST ARv: A
S ILT; AR e [4]

2, X oI P;T;AFv: A X ¢ FV(D),FV(T),FV(A)
W IETARv:VX o P A

S I T;ARe:VX o P A Y>tio 5 10F [t/ X)P
S ILT;ARe: t/X]A

SILT;ARe: [t/ X])A Y>t:o S IF [t/ X P
I ARe:dX :0: P A

Y. Xl P Az Ake: C
SIET;A Fo:3X 0 P A X ¢ FV(II),FV(T'),FV(A),FV(A"),FV(C)
I T AA F [w/xle: C

S,a:k;ILT; A0 B a ¢ FV(T),FV(A) S ILT;AbRe:Va: k. B YSHFA:k
I ARv:Va: k. B S ILT;AbRe: [A/a]B

YHA:k S,a:kEFB:o 5ILT;ARe: [A/a)B
1T ARe:da: k. B

SILT; AR v:3a: k. B S,a:m LA 2 :BFe: C a € FV(A"),FV(A),FV(I'),FV(C)
SIGT; AA F [v/xle: C

S ILTARe: A .IIFA=B:o
»ILT;ARe: B

S IIFPVQ S, ILP;T;AFe: A SILQ T AlRe: A YFEA:o
S ILT;AlRe: A

> I[I+-3dX :0. P Y2, X:0II,P;T;Abe: A YHFA:o IR L YFEA:o
M ILT;ARe: A ;I ARe: A

1.3 Sharing Construct

YFA:0—>0 S ILT; Ak e [Ad ¥ IT - monoid, (¢, (+)) 514 F v 0 [A/alspecT;
;I T A F share(e,7;) : Ja: 0 — o. [a t] ® IspecT,; & lsplitT ® ljoinT & !promoteT

where
specT, = VX:0.VY:0,:P. B;®[a(t; - X)] —
3Z 2ol Q. C; @ [ (- X))
where X, a ¢ FV(P),FV(Q;), FV(B:), FV(C;), FV(t;), FV (1))
splitT = VX, Y:o0.[a (X Y)] —[aX]|®[aY]
joinT = VX YV:o. [aX|®[aY]—|a (X Y)]
promoteT = VX:0:X =X X.[aX]—olaX]
VX:0.e- X=XA
monoidy(6,(+)) = VX, YV:0.0 X - Y=Y XA
VXY, Z:0. (X -Y)-Z=X-(Y Z)



1.4 Operational Semantics

(hylet ) = () ine) — (h;e)
(hslet (x1,x2) = (v1,v2) ine) — (h;[v1/x1,v2/22]€)
(h; (M. €) v) o (b3 o/z)e)
(hyletlz =lvine) — (h; [v/z]e)
(h; new(v)) = (hW[l:v]; (1, e))
e ofee, 0 o (hw [0 O (v, o)
hw[e: O] £ =y v) o (hw [0 ;o)
(B (fx (2). €) 0) o (b [fix f(2). e/ f,v/]e)
(R [e]) = (h;e)
(h;if(tt, e, e’)) — (h;e)
(hl(ff@@)) — (h;e)
(h;case(0,0 » e,sx —€')) <= (h;e)
(h;case(sv,0 = e,sx — €')) — (h;[v/x]e’)
(h; share(v, v;)) — (hW [ : ff]; (() ,Top;, Isplit, !join, Ipromote) )
where op; = Az let (flag, ) = get, £ in
let _ =/ :=4 ttin
if flag

then (fix f(x). fz) ()

else let y = v; z in

let =/ :=4 ffin
Y

split = Az. (e 0)

join = Az.e

promote = Ax.le

(h;e) < (h';¢€")
(h; Ele]) = (h'; Ele'])

2 Semantics

2.1 Semantics of Sorts and Kinds

S[-1 : Sort — Set
S[N] = N

sl = {

Sle xd'] = S[o] x S[o’]
Sloe — '] = S[o] — S[o']

S[2] = {tt,ff}

Sloi]l = {L}+8S]

Slseqo] = {x1-... 2% | z; € So]}
S[P@l = P(SleD

K[-] : Kind — Set

K[e] = ValPred

Klo = &] = S[o] — K[«]

2.2 Logical Semantics
2.2.1 Entailment Relation
The models relation |=x is a subset of {(p, P) | p € Env(X) AX > P : prop}



pEsT < always

pEs PAQ <= ppEx Pandpls Q
pEsPDOQ < ifps P then p s Q

pEs L <= never

plEs PVQ < pEsPorpkEsQ

p):g VX :0. P — VdES[[O']]p[XHd} ):Z,X:O'P
pEs3IX:0. P <« 3deS[o]. p[X —d Es x0c P
pEst=u:0 <<= I[Ept:o)p=I[E>u:o]p
pEst>u0 = I[E>t:olp>I[E>u:o]p
pEsteEu:0 << I[E>t:opel[Z>u:oa]p

2.3 Worlds

World,, % {W ’ k<n,dj. we Islanndf;|r1 }

w[0] = Hlslandy,
(M, -, €) commutative monoid,
Island,, =

( HeapJ_,U 0,
def

M, e, I,E) | I €M — ResPred,
E € EnvPred(M)

Hilsland,, = AA{(W,e) | W e World,,, h # L},
Heap |

5 def VW/QW(W,T)GQD
ResPred,, = <S¢ C RebAtomn — (Wor) € o
ResAtom,, VVEVVorldn7 Vi. a; € Wwli].M

= (ag,-.-,m-1),Mm |Ww|
EnvPred(M) = {ECM | vaeE a€M. a-d €FE}

!
ValPred V C ValAtom ’ YW IW. (W,r,v) € V}

=V (Wi r-r'v)eV
ValAtom = {(W, r,v) | In. (W,r) € ResAtom,}

&
S

bk +1,w) = (k, lw]k)
Ly sen) e = ()i s [tnlr)
I_(M"’eaIvE)Jk = ( » € )\Cl'_ ( )_JkaE)
lelk = AW,r) € | Wik <k}
(oo nth) 3 (11, stn) ' >, Vi<mn.u =1
(K, w") 3; (k,w) = k’:k—j, W 3 |w]w
(K, w') 3 (k,w) = 3 ((W,w) Z; (k,w))

(s,r,7p) W = s=80-... Sm_1, m=|Ww|,
Vie0...(m—1).
(bW, 8;) € Wwl[il.I((s -7 -rp)[i]) A
rpi] € Wwli].E

v Jr = . =rg
r[0]
(hie) —; (B';e') = 3D ((hie) =" (W) A|D| < j



2.4 Semantics of Types

V[EFA:x] : Env(Z) — K[x]
V[EF1:0]p = {(W,r,()}
VIEF A ®Ay:olp = {(W,ry-ra, (v1,09)) | (W,r1,01) € V[Ai]p A (W, ra,09) € V[As]p}

YW IW. YW ' ') € V[S F A o]p. }

V[EFA—B:o]p = {(WT’”) (W'r-rvv)e[EF B:o]p

VIEH!A:o]p = {(W,r-v,lv) | (W,r,v) € V[A]pAr =1-1}
V[Ekoptrt:olp = {(W,rf) | €=1TI[t]p}

V[EFcaptA:olp = {(W,r-[0:v],e) | L=T[t]pA(W,rv) € V[EF A:o]p}
VIEFVX:0:P A:o]p = {(er) | Vd € S[o]. p[X = d] E P = (W,r,v) € V[, X :0F A:0]p[X + d]}
VIEF3IX:0:P. A:o]p = {(W,rv) | 3deS[o]. plX = d =PAW,r,v)eV[E,X 0k A:o]p[X — d]}

V[EFVYa:k A:o]p = {(W,r,v) | YV € K[&]. (W,r,v) € V[E,a: sk A:o]pla— V]}
VIEF3a:k A:op = {(W,r,v) | IV eK[k]. (W,r,v) € V[E,a:kt A:o]pla— V]}
VIEFa:olp £ pa)
V[EFboolt:o]p = {(W,rd) | d=TI[t]p}
V[Etnatt:o]p = {(W,rd) | d=TI[t]p}
V[EF[A]:o]p = {(W ) | Jv. (W,r,v) € V[EF A:o]p}

[N
)
e

V[ Fif(t, A, B) : s]p

V[E"AZKH/} I[t]p = tt
V[EF B:klp ZI[t]p=ff
VIAX :0. Alp = M eS[o]. V[E, X :0F A:o]p[X — d]
V[EFAt:k]p = (V[EFA:o— &]p)Z[t]p)

it i<Wk, (s,rrp): W, {|s-rerpl;
T

def
Al = {(VV’T’G) then W' 3, W, (s',7/,rp) : W', h=|s"-

2.5 Semantics of Contexts
Env(:) = 0

Env(S,a:k) = {pa—V | peEnv(X), Ve K[x]}

def

Env(X, X :0) = {p,X —d | pe€Env(X), de S]]}
Substitutions for unrestricted context Defined by induction over a derivation of ¥ F I ok.

U[SF-okl pW = {}
U[SFT,z: Aok pW = {y,z—= (rv) | yeU[SFT okl p WA (W,r,v) e V[SFA:o]pAr=r-1}

Substitutions for linear context Defined by induction over a derivation of X - A ok.

L[EF okl pW = {1}
LIEFAz: Aokl pW = {6,z (rv) | §€L[ZFAK] p WA (W,rv) € V[EF A:o]p}

Functions 7(y) and 7(6) For~y € U[X T ok] p W, define 7 () to be the monoidal product of the first components
of all elements in the range of 4. Similarly, define 7(d) for § € L[X + A ok] p W.



2.6 Semantics of Typing Judgments

Suppose ¥ F T' ok and ¥ F A ok. We say that ;I T;A IF e : A, if for every W, p € Env(Y), p Es I,
yEU[EFT ok] pW and 6 € L[ F A ok] p W, it is the case that (W, 7(v) - m(d),d(v(e))) € E[A]p.

Similarly, we say that 3;TLT; A IFY v @ A, if for every W, p € Env(X), p s II, v € U[S F T ok] p W and
d € L[X F A ok] p W, it is the case that (W, () - w(d),0(v(v))) € V[EF A : o]p.

3 Differences from the Paper

The definition of the model presented in the previous section differs slightly from, but is more general than, the
definition of the model presented in the paper that this Appendix accompanies. First, in this Appendix, each island
contains a set E (the environment invariant), which constrains the possible frame resources that are allowed on the
island in the definition of E[A]p, but no such set exists in the definition of island in the paper. This additional set
is included here because we expect it to be useful in encoding more advanced forms of state transition systems in
our model, which we want to explore in future work. Because the paper omits this environment invariant F, it also
conflates r and rp in the satisfaction relation at worlds: Instead of defining a quaternary relation (s,r,rg) : W as
in this Appendix, the paper defines a ternary relation (s,r’) : W and instantiates v with r - rg in the definition of
E[A]p. A second point of difference is that the definition of E[A]p provided in this Appendix existentially quantifies
over a new environment resource 7, which extends the initial environment resource rg, but in the definition in the
paper, i = rp. A third difference between the two is notational: This Appendix uses the notation (W, r,v) € V[A]p,
whereas the paper writes the same definition as (r,v) € V[A]}Y.

Modulo the notational difference, it is easy to show that the definitions of V[A]p and E[A]p in the paper equate
to the respective definitions in this Appendix if we force the environment’s invariant in each island to be the entire
monoid of the island. This justifies why the model in this Appendix is more general than the model in the paper.
Furthermore, the only construction of F in the soundness proof of the next section sets F equal to the entire monoid,
so the soundness proof here also implies soundness w.r.t. the slightly different model in the paper.

4 Fundamental Theorem and Soundness

Lemma 1. Well-formedness If ;1T Ak e: A, then X T ok and ¥ F A ok.

Proof. By simultaneous induction on typing and kinding derivations. O

Futures Let a € K[x]. We define futures(a) € K[x] by induction on x as follows:
futures(a € K[o]) = {(W',r,v) | (W,r,v)€a AW I W}
futures(f € K[o — &]) = Az € S[o]. futures(f )
Lemma 2 (World monotonicity). The following hold:
1. a € V[ A: k]p implies futures(a) = a
2. W W implies U[E FT ok] p W CU[EF T ok] p W’
3. W W implies L[EF Aok] pW C LIEF Aok] p W’

Proof. (1) follows by induction on the given derivation of ¥ A : k. The interesting case of type variables « follows
from the restriction that every element in K[o] is future-closed. (2) and (3) are trivial consequences of (1) at kK = o,
using the definitions of U[X T ok]] p W and L[X F A ok] p W. O

Lemma 3 (Resource shifting). If (s,7-7',rp) : W, then (s,7,r' -rp): W.

Proof. Let m = |W.w|. To show (s,r,r’-rp) : W, we need to show two things: (Gl) s = sg ... Sy—1 and
for every ¢ € {0,...,m—1}, bW,s;) € Wwli].I(s[d] - r[i] - '[i] - rr[i]), and (G2) For every ¢ € {0,...,m — 1},
rr[i] - res’[i] € Wwl[i].E. (G1) is exactly the corresponding statement of invariance satisfaction for the given relation
(s,r-r',rp) : W. (G2) follows because the given relation (s,r-7/,rr) : W implies that rp[i] € Ww[i].E and E is
closed under extensions. O
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Resource Futures Let a € K[x]. We define rfutures(a) € K[«] by induction on & as follows:

rfutures(a € K[o]) = {(W,r",v) | (W,r,v) €anr’ I7}

rfutures(f € Ko — &]) = Az € S[o]. rfutures(f z)

Lemma 4 (Resource monotonicity). The following hold:
1. If (W,r,e) € E[A]lp and 1 D 7, then (W,r1,¢e) € E[A]p.
2. Ifa e V[EF A:k]p, then rfutures(a) = a

Proof. (1) is proved as follows. Because r J r, there is some 74 such that r1 = r - r5. Following the definition of
(W,r1,e) € E[A]p, assume that j < Wk, (s,r-re,rp) : Wand (|s-r-rg-7p|;€) —; (h;e’) #>. Now observe that
(s,r-ro,rp) : W implies (s,r,7p -72) : W by Lemma 3, so instantiating the definition of (W,r,e) € E[A]p with
r=r,rg=rp-re, s=s,weget W J; W, (5,7 ,rp) : W, o= |s-r"-rp|, rpg Dre-reand (W, rp,e) € V[A]p.
It remains only to show that ri. J 7, but this follows trivially from 7 J rp - 7.

(2) follows by induction on kinding judgments. For the case of A — B, we use (1). O

Lemma 5 (Value inclusion). If (W,r,v) € V[ F A : o]p, then (W,r,v) € E[A]p.

Proof. Since (|s -1 - rp|;v) <o (|s- 7 rp|;v) 4, we can choose W' =W, s’ = s, ' = r and 7, = rp in the definition
E[A]p to obtain the result. O

Lemma 6 (Evaluation cut). If 3;ILT; Ay lFe: A and 311, T; Ag,x - Al Elz] : B, then ;11T Ay, Ag IF Ele] : B.

Proof. We want to show that X;IL T, Ay, As I+ Efe] : B. Following the definition of I, assume a W, p € Env(Y),
pEs I,y e U[EFT ok] p W and § € L[EF Aq,Az0k] p W. From the last fact, we know that there are
01, 02 such that 63 € L[EF Ajok] p W and §2 € L[EF Az ok] p W. We want to show that (W, n(y) - w(d1) -
7(62), 62(61 (+(E[e])))) € ELBlp, or, equivalently, (W,x(7) - w(81) - w(82), 6:(+(E))[61(x(€))]) € E[Blp. For ease of
notation, define

1. 1o =m(v), r1 = 7(01) and ro = 7(d2)
Then, we want to show that (W, rg - r1 - r2, d2(v(E))[61(7(e))]) € E[B]p. Note that because v € U[E F T ok] p W,
2. 79010 =170
Expanding the definition of E[B]p, pick j < W.k, s and r such that
3. (s,rg-11-19,1R) : W
4. (lro - r1 - r2l; 02((E))[01(v(€))]) =5 (W5 e’)
It follows immediately that there are é, iL, J1, j2 such that
5 j1tje=1J

6. (Iro- 71 -2l b1(y(e)) =, (hie)
7. (hssa((EDE) = (W)

From the assumption ;I T; Ay I e : A, we know that (W, ro - r1,7(d1(e))) € E[A]p. Instantiating the definition of
E[A]p with W =W, r=rg-11,j=j1,8=85,7Tp =7 - r2 - 79 and fact 6, we obtain W, §, #, v such that:

8. W, W

9. (8,7,7F) W

10. h =137 15|

11. Y/ drp-r2- 170

12. (W,7,é) € V[ F A: o]p (This forces é to be a value, say 0)

From fact 11, there must be a 7%’ such that

11



13. 'rp=1p-7T9-70 - TF
From the assumption v € U[E F T ok] p W, fact 8 and Lemma 2(2), we get that
4. yeU[S T ok] p W
Similarly, from the assumption d; € L[ F Ag ok] p W, fact 8 and Lemma 2(3), we get that
15. 6y € L[S+ Ay ok] p W
This, together with fact 12 implies that:
16. (09,2 > (7,0)) € L[S+ Ag,z: Aok] p W

Using facts 14 and 16 with the definition of ¥;ILT;Ag,z: A I+ Elz] : B, we derive that (W, 7(y) - (da) -
7, 82(v(E))[0]) € E[B]p. Equivalently, (W,ro - o - #,02(y(E))[0]) € E[B]p. We now wish to instantiate the def-
inition of E[B]p with W = W, j=jo, 7 =79 T2 -, rF =TF -TF -7T0, s = & and fact 7. To do that, we must check
the following:

(G1) j2 < Wk

(G2) h=13-ro-r2--rp 1% -0
(G3) (8,0 727,15 1% -10) : W
We prove all three facts below:

Proof of (G1): From fact 8, we know that W.k = W.k + j1. Since ji + jo = j, we get W.k — jo = W.k — j. Since
j < W.k by assumption, W.k — jo > 0, as required.

Proof of (G2): From facts 10 and 21, we get h = |§-7-rp - ry - 79 - 75|. The result follow immediately from fact 2
(7"0 T = 7”0).

Proof of (G3): Following the definition of (8,70 -7y - 7,7 - 7%’ - 7o) : W, we need to prove two propositions: (a)
W, 5) e inv(W,rg -9 - 7 - 15 - 7%’ - 7o), and (b) 715 1o € env(W). We can rewrite (a) as (bW, §) € inv(W, 7 - ),
which follows immediately from fact 18.

To prove (b), we must show that for every j < [W.w|, (ro - 7r - 7%')[j] € W.w[j].E. We now consider two cases:
j < |Ww| and j > |Ww|. For j < |W.w|, we know from fact 3 that rp[j] € W.w[j].E. Because W.wl[j].E is closed
under extensions, (rq - rp - 7¥')[j] € W.w[j].E. Finally, because W W, Ww[j] = W.wlj], so we derive the required
(ro - 7r - 7%)[j] € W.wlj].E. For j > |W.w|, ro - e - 7%'[j] = r¥'[j] = 7¥[j] (because o, 7r, o only contribute units at
indexes beyond |W.w|), so we only need to show that 7[j] € W.w[j].E. This follows from fact 18.

Having proved (G1)—(G3), we instantiate the definition of £[B]p with W = W, j = jo, r =10-To-F, rp = 1% 10,
s = § and fact 7. This yields W', ¢, 7/, ri such that:

17. W 3;,, W

18. (¢',r',rp) : W'

19. B =|s" -7 - rg

20. v drp 1% - 1o

21. (W',r",¢') € V[EF B :o]p (This forces ¢’ to be a value, say v')

It remains only to check that (a) W’ 3; W and (b) 7 3 rp. (a) follows from facts 8, 17 and j = j1 + j2. (b) follows
from fact 20. [

Lemma 7 (World stepping). For every world W, "W J, W.

Proof. We only need to show that W J; W. The rest follows by induction on n. To prove bW J; W, suppose that
W = (k+ 1,w). Then, bW = (k, |w]k). It suffices to show that (k, |w|r) 3 (k + 1,w), which, by definition of J at
worlds, reduces to proving that |w]; J |w]k, which holds trivially. O
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Lemma 8. If (W,s) € w[i].I(r) and W.k < j, then (W,s) € |w];[i].I(r).
Proof. Immediate from definition of |w];. O
Lemma 9 (World step satisfaction). If (s,r,rg): W, then (s,r,rp) : bW.

Proof. Let W = (k + 1,w). Then, bW = (k, |w]x). To prove (s,r,rr) : bW, we need to show two facts for every
i€{0,...,|[Wuw|—1}:

L. rpli] € |w]uli)-E
2. (oW, sli]) € [wlg[i].I(s[i] - r[i] - reli])

(1) follows immediately from the following two facts:
_ rpli] € w[i].E (because (s, r,r5) : W)
- |w]&[i].E = w]i].E (by definition of |-|3)

To prove (2), we note that because (s, r,7r) : W, we have (bW, s[i]) € wli].I(s[¢]-r[i]-rr[i]). By Lemma 7, soW J bW
and because I(s[i] - r[i] - rr[d]) is closed under world extension, we obtain (>>W, s[i]) € wli].I(s[i]-r[i] - rp[i]). Finally,
(>pW).k =k —1 < k, so by Lemma 8, we have (>6W, s[i]) € |w]|r[i].I(s[] - r[é] - rr[i]), as needed. O

F
Lemma 10 (Administrative closure). If for every h, (h;e) <, (h;é) and (W,r,é) € E[A]p, then (W,r,e) € E[A]p.
Proof. We want to show that (W,r,e) € E[A]p. Following the definition of E[A]p, pick j, s, 7r, h, e’ such that

1. < Wk

2. (s,ryrp): W

3. (|s-r-rrlie) —; (hye') &
Because evaluation is deterministic, we must have:

4. (|s-r-rrl;e) —=n {|s-7-1p|;€) =m (h;e') &

5. j=m+n
Let W =" W. By Lemma 7, W 3, W, so by facts 1 and 5 we get:

6. m < W.k
By Lemma 9 on fact 2,

7. (s,7y7R) W

Instantiating the definition of the given fact (W,r,¢é) € E[A]p with j =m,s =s,r =r,rp = rp,h = h, e’ = ¢’ using
facts 6, 7, and 4, we get W', &', 7/, rf such that:

8. W 3, W

9. (s',7',rp) : W/

10. o= 15" -7 - rg|

1. 7} Jrp

12. (W,r',e') € V[Alp

It remains only to check that W’ 3J; W. This follows trivially from three previously derived facts: j = m + n,
W' 3, W and W 3,, W. O

Lemma 11 (Index context weakening). Let p € Env(X), p’ € Env(¥') and dom(X) Ndom(X’) = 0. Then, the
following hold whenever the left hand sides are defined:

1. p Ex P implies p,p’ s x P
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2. V[EFA:k]lp=V[E,XFA:s](p,p).

3. E[A]p = E[A](p, p').

J. U[EFT ok] p W = U[S, 5 T ok] (p, o) W
5. LISF Aok] p W = L[S, S F A ok] (p, o) W

Proof. (1)—(5) follow by induction on the definitions of the various relations. The proof requires the assumption that
I[E>t:o]p=TI[Z, X >t: o](p,p’) when the left hand side is defined. O

Lemma 12 (Index term substitution). Let dom(X) Ndom(X') =0, p € Env(X), E>t:0 and d = Z[E >t : o]p.
Then, the following hold whenever the left hand sides are defined:

1. p,X = dEsxio Piff p s [t/X]P.

VIS, X ok A:k](p, X s d) = V[E F [t/X]A : &]p.
E[A](p, X = d) = E[[t/ X]A]p.

U, X o T ok] (p, X s d) W =U[S F [t/X]T ok] p W

AT I

LIE,X:0bFAoK] (p,X—d)W=L[EF[t/X]Aock] p W

Proof. By induction on the definitions of the various relations. The proof requires the assumption that
I, X ot 1 0'|(p, X — d) =Z[E > [t/ Xt : o']p. O

Lemma 13 (Type substitution). Let dom(X) Ndom(X') =0, p € Env(X), X F A: Kk and a=V[X + A: k]p. Then,
the following hold whenever the left hand sides are defined:

1 p,aalsas Piff pls P.

V[Z,a:kF B:r](p,ar a) =V[EF [A/a]B : K]p.
E[B](p,a = a) = E[[A/a]B]p.

U[S,a:kF T ok] (p,a— a) W = U F [A/a]T ok] p W

AR R

L[E,a:6FAK] (pyar—a) W=L[EF[A/a]A ok] p W

Proof. By induction on the definitions of the various relations. O
Lemma 14 (Propositional soundness). If 3; 11+ P, then for every p € Env(X), p Ex IT implies p =5 P.

Proof. By soundness of the proof system for first-order logic (i.e., by induction on the proof of ¥;II + P). O
Lemma 15. If W’ 3; W, then bW’ 3, bW.

Proof. Suppose W/ = (k' + 1,0w’) and W = (k + 1,w) where w’ = ¢f),...,¢), and w = 1g,...,t,. Then, bW’ =

r'n

(K, |w'|k) and bW = (k, |w]k). To show that W' 3, bW’, we must prove the following three statements:
(Gl) K +j=k: Because W' J; W, k'+1+j=k+1,s0k +j=k.

(G2) n’ > n: This follows immediately from W’ J; W.
(

G3) For i < n, [t = ||ti]e]r: Note that because k' < k, |[ti]r]er = [ti)wr- So, it suffices to prove that

LL;Jk’ = LLiJk’- From W/ ;j W we know that Lg = L%Jk’-&-l- Therefore, LLHk/ = LLLiJk’-‘rle’ = LLiJk’; as
required.

O
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Lemma 16 (Soundness of sharing). If X - A : 0 — o and X;I1 - monoid, (e, (), then the following semantic
inference rule is sound:
S ILT;AlRe: [At S I IF o) [A/alspecT,
I T; Al share(e, vf) : 3a i o — o. [a t] ® IspecT; @ lsplitT @ ljoinT ® IpromoteT

where
specT, = VX:0.VY:0l:P.B;®[a(t;- X)] —
AZ 0! Q. C; @ [ (t, - X))
where X, a ¢ FV(P;),FV(Q;),FV(B;),FV(C;),FV(t;),FV(t))

splitT = VX, Y:0. [a(X YY) —|aX]|®[aY]
jomT = VX YV:o. [aX|®[aY]—|a (X Y)]
promoteT = VX:0:X =X X.[aX]—!aX]
VX:0.e- X=XA
monoid,(6,(+)) = VX, Y:0. X - Y=Y XA

VX,Y,Z:0. (X Y)- Z=X (Y 2)

Proof. Let B = Ja: 0 — o. [at] ®lspecT; @ !splitT & !joinT ® !promoteT. We want to prove that ;I T; A I+
share(e, v$) : B. By applying Lemma 6 using the premise and the evaluation context E = share([],7;), we reduce
this obligation to that of proving X;II; I'; x : [A t] IF share(z, vf) : B.

Assume a world W, p € Env(X) such that p Ex I, v e U[EF T ok] p W, and a (W,r,e) € V[EF [At]: o]p. It
suffices to prove that (W, n(y) - r,share(e,v(vf))) € E[B]p. Let 7° = w(y). We need to prove that:

(W, 7* - r,share(s, y(v5))) € E[B]p
Following the definition &[], pick rr, s, j < W.k, h, €’ such that:
1. j< Wk
2. (s,7%-ryrp): W

3. <|s~7"5 -rorp\;share(o,va))> —; (hye’) 4.

Call this point (A) in the proof — we will return to it later to complete the proof.
From the operational semantics of the construct share(-,-), we immediately derive that j = 1 and

4. ¢ = vy = (e, op;, Isplit, ljoin, promote)
5 h= |5~TS~T-7’F‘H'J[£:1CF]

Assume that [Ww| = |(W).w| = n. Because ;I - monoid, (e, (+)), there is a monoid on S[o] with operation
+ = Z[-]p and unit element Z[¢] p, which also we denote with . We now define a new world W that extends >W with
one new, (n+ 1)th island as follows. The new island is (M, -, ¢, I, E), where M = {U(x), L(x,y) | z,y € S[o]}w{L}
and the operation - is defined as follows:

U)-Uly) = Ulz+y)

L(z,y)-U(z) = L(z,y+2)
L()-L(-) = L
1. = 1

It is easily checked that the element ¢ = U(e) is a unit for the monoid. We further define:

IU(z)) = {(W,r-[£:Af]) | Jv. W,r,v) e V[EF A:0— 0o]p) z}
HL(ey) = (W[t | z=y)
I =0
E = M

We denote by (a) the element of Wy: (e,..., €, a).
Let d = Z[t]p. Returning to point (A) of our proof, we choose W/ =W, s’ = s- [0 : ff]-r, rp = rp, 7 = r*-(U(d))
and show the following to complete the proof.
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G1 " J; W. This is immediate because j =1 and W/ =W, Jy (>W) J; W.

G2) ((s-[¢:ff)-r,r®-(U(d)),rr) : Ws. This is proved below.

G4) rp = rp. This is trivial because ri = rp.

(G1) w
(G2)
(G3) h=|s-[L:ff]-r-rp-r°-(U(d))]. This is immediate from fact (5).
(G4)
(G5)

(Ws,r® - (U(d)),v0) € V[EF B : o]p. This is proved below.
Proof of (G2). By Lemma 9 applied to fact (2), we obtain that:
6. (s,r*-r,rp):pW

To prove (G2), we must prove the following two facts:

(G2.1) Vi < n+1. rg[i] € Wewli].E

(

(
(
(
(
(

Proof: For ¢ < n, W,.w[i] = (bW).w[i], so we only need to show that Vi < n+ 1. rg[i] € (>W).w[i].E, which
follows from fact (6). For i = n, the statement is trivial because, by construction of W, Ws.w[n].E = M.

G2.2) s-[0:ff]-r=350-...-sp, where (bW, s;) € Wi.wl[i].I(s[i] - [£: ff][¢] - (r - v*)[i] - (U(d))[7] - rr[d])
Proof: From fact (6), we know that:
7. 8=s8y"... s, where oW, s,) € W) .w[i].I(s[i] - (r-r®)[i] - rr[d])
We choose: sg = 8, -y Sn—1 = Sh_1, Sn = [£: ff] - and split 3 cases:

Case i = 0: We have to show that (bW, s0) € Wi.w[0].I(s[0] - [€ : ff] - (r-7%)[0] - rp[0]). Because
Ws.w[0] = (bW).w[0] by construction, it suffices to prove that (bW, so) € (bW).w[0].I(s[0] - [¢ : ff] -
(r-r%)[0] - [0]). Since invariant of island 0 is independent of the argument, it also suffices to prove that
(>Ws, s0) € (W).w[0].I(s[0] - (r-7#)[0] - rp[0]). By construction, Wy J »W. Therefore, by Lemma 15,
>Ws J oW, Hence, because I at each island is closed under world extensions, it suffices to prove that
(>pW, s) € (W).wI[0].1(s[0] - (r - r#)[0] - 7r[0]). This follows from fact (7).

Case 0 < i < n: We have to show that (bW, s;) € Wi.wl[i].I(s[i]- (r - 7°)[] - rr[¢]). As in the previous case,
it suffices to prove that (>>W,s;) € (W) .w(i].I(s[i] - (r - 7°)[i] - rr[é]), which follows from fact (7).

Case i = n: We must show that (bW, [¢ : ff] - r) € W,.w[n].I(U(d)). By construction, Wy.w[n].I(U(d)) =
{(W,r-[€:1f]) | Jv. W,r,v) € (V[EF A:0 — o]p) d}. Therefore, it suffices to prove that Jv. (W, r,v) €
(V[EFA:0—o]p) d. Since d = Z[t]p, this is equivalent to Jv. (W,r,v) € (V[EF At:o]p), which
follows from our initial assumption that (W,r,e) € (V[E F [A ¢] : o]p).

Proof of (G5). We have to show that (W, r* - (U(d)),v) € V[EF B:o]p. Since B=3a:0 — o. ..., we need a
witness for a. We pick the following witness:

T =X eS[o].{(W,r,e) | r[n] 2 U(z)}

It now suffices to prove that (W, 7°-(U(d)),vg) € V[E,: 0 — o - [a t] ® IspecT,;®!split T®!joinT®@!promoteT : o] (p, a — T).
Following the definition of V[-]- at ® and ! and observing that because r* = mw(v), r® = r® - r®_ it suffices to prove
each of the following:

G5.1) (W, (U(d)),8) € V[E,a: 0 — o F [at]: o](p,a > T)

G5.2) (Ws,e,split) € V[E,a: 0 — o b splitT : o] (p,a — T)

G5.3) (Ws,€,join) € V[E,a: 0 — o joinT : o] (p, . — T')

G5.4) (Ws, e, promote) € V[X,a : 0 — o - promoteT : o] (p, a — T)
G5.5) (Ws,r®,0p;) € V[E,a: 0 — ok specT; : o](p,a— T)
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We prove each of these.

Proof of (G5.1). It suffices to prove that there is v such that:

(W, (U(t)),v) € V[E,a:0—okat:o](p,ar—T)
= (V[Z,a:0—=oka:0—=o(p,a—T)) (Z[t](p,a— T))
= Td
= {(W,r,e) | r[n] 2U(d)}
Since (U(d))[n] = U(d) 3 U(d), we choose v = e to complete the proof.
Proof of (G5.2). By definition, split = Az. (e, e) and splitT =VX,Y :0. [a (X -Y)] — [a X] ® [ Y]. Following
the definition of V[-]- at type V-. -, pick arbitrary dy,ds € S[o] and define p' = p,a = T, X — d1,Y — dy and ¥/ =

Y,a:0—=0,X:0,Y :0. It suffices to prove that: (Ws, e, A\z. (o,0)) e V[E' F[a (X -Y)] - [a X]|®@[aY]:o]p.
Following the definition of V[-]-, pick W' J W, and r/, v’ such that

8 (Wi r'v)eV[E Fa (X -Y)]:o]p
It suffices to prove that:
(G5.2.1) (W', 7", (e, 0)) € V[Z' F [a X] ® [a Y] : o]/
From fact (8), there is v” such that:
(W) € V[E¥Fa(X-Y):o]p
= (VIE'Fa:o—o]p) (Z[X-Y]p)

= T (d1+d2)
= {(W.r,e) | r[n] 2U(d1 +d2)}
= {(W,r,e) | r[n] 3 U(d1) - U(d2)}

Therefore,
9. '[n] 3U(d1) - U(dz)
10. 3a: 7'[n] = U(dy) - U(ds) - a.
Define r1 = (U(dy)) and ro = (r2[0],...,r2[n]), where:
roln] = { r'[1] A z:<n
U(d)-a i=n
Because of fact (10), r1 - r2 = r’. So, our goal (G5.2.1) can be reduced to proving:
(G5.2.2) (W', 71, e) € V[ I [o X] : o]/
Proof: It suffices to prove that:

(W'.r1,e) € V[EX'FaX:o]p

VIZ a0 o) (ZIX]P)
T dy

= {(W,r,e) | r[n] 2 U(d1)}

Since r[n] = U(dy) 3 U(dy), we are done.
(G5.2.3) (W' re,e) € V[E' F [aY]: o]y
Proof: It suffices to prove that:

(W' ra,0) € V[E¥FaY:o]py

VI F a0 — o) (Z[V]Y)
T dy

= {(W,r,0) | r[n] U(d2)}

Since ro[n] = (U(de) - @) 3 U(dz), we are done.
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Proof of (G5.3). By definition, join = Az. e and joinT = VX,Y : 0. [ X]® [ Y] —o [a (X - Y)]. Following the
definition of V[-]-, pick di,ds € S[o] and define p’' = p,a—» T, X —» d;,Y = dyand ¥’ =%, a:0 50, X :0,Y : 0.
It suffices to prove that: (W, e, Az. o) € V[E' F [a X] @ [a Y] —o [a (X - Y)]: o]p’. Again following the definition of
V[]-, pick a W 3 W, and r’,v" such that

11. (Wr' o) e V[ Fla X]®@[aY]: o]y
It suffices to prove that (W’,7',;e) € V[X'F [a (X - Y)] : o] p’. It further suffices to prove that

(W' r'e) € V[¥Fa(X-Y):o]

T (d1 + da)
= {(W,r,e) | r[n] DU(d1 +d2)}
= {W,r,0) | r[n] 3 U(d1) - U(da)}

Therefore, it suffices to prove that:
(G531) r’[n} ; U(d1) . U(dg)

From fact (11), we know that ' = 71 - ro and v/ = (v1,v2) such that: (W' r1,v1) € V[X' F [a X]:0]p’ and
(W' rq,v9) € V[E' F [@ Y] : o]p’. Hence, there are v, v5 such that:

12. W' r,v) € V[E' Fa X : o]y
13. W' rg,vh) e V[E' FaY : o]y

Simplifying the right hand side of fact (12), we get (W', r1,v}) € T di = {(W,r,e) | r[n] 2 U(d1)}. Therefore,
ri[n] 3 U(dy). Similarly, using fact (13), ro[n] 3 U(dz). Combining, we get r'[n] = ri[n] - r2[n] 2 U(dy) - U(da),
which is exactly our required subgoal (G5.3.1).

Proof of (G5.4). By definition, promote = Ax. le and promoteT =VX : 0 : X = X - X. [@ X] —o ![a X]. Following
the definition of V[-]-, pick d’ € S[o] and define ¥’ =¥, a: 0 = 0,X : 0 and p' = p,a— T, X — d’. Assume that
p Es X = X - X. Note that this implies:

4. d=d+d

It suffices to prove that (W, e, Ax. lo) € V[X' F [a X] —o l[a X] : o] p’. Again following the definition of V[-]-, pick a
W' 3 Wy and ', v’ such that

15. (W', r' ") e V[E' F [a X] : o]p/
It suffices to prove that:
(G5.4.1) (W',r' 1e) € V[Z' F la X] : o]/
From fact (15), there is a v such that
(W'r' ")y € V[E'FaX:o]y

= Td
= {(W,r,0) | r[n] 2U(d)}

7, so by Lemma 4, we can reduce our subgoal
= 7 - #, so it suffices to prove that (W' 7, e) €
X :0]p. Notethat V[X¥' Fa X :o]p =T d' =
"), which is trivial because #[n] = U(d').

Therefore, r'[n] 3 U(d’). Define # = (e,...,e,U(d’)). Clearly, ' 3
(G5.4.1) to (W', 7, 1e) € V[X' F o X] : o]]p Because of fact (14), 7
V[ F [ X] : o]p’, which is further reduced to (W', 7, e) € V[X' I «
{(W,r,e) | r[n] 3U(d')}. So we only need to prove that 7ln] 3 U(d

Proof of (G5.5). We want to prove that (W, r® op,;) € V[E,a:0 — ok specT,; : o](p, @ — T). By definition,
specT, =VX :0.VY 0, P, B;®[a (t;- X)] = 3Z : 0} :: Q. C; ® [« (t; - X)]. Following the definition of V[-]-,
pick a € S[o] and dy € S[o!] and define p' = p,a—» T, X — a, Y —wdiand ¥ =X, a:0 — 0,X : 0,Y : 0}. Assume
that:

16. p/ IZE/ P,
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It suffices to prove that (Wy,r%,0p;) € V[E' F B; @ [a (t; - X)] = 3Z : 0} = Q;. C; @ [ (¢, - X)] : o] p’. Again follow-
ing the definition of V[-]-, pick a Wy 3 W, r,, v, such that:

17. (Wo,Ta,Ua) S V[[Z’ FB;® [a (ti X)} : Oﬂp/

It suffices to prove that (Wy,r* - 74,0p; va) € E[3Z : 0! = Qi. C; @ [a (¢, - X)][p'. Expanding the definition of £[],
pick jo, 80, 7F0, hf, er such that:

18. jo < Wo.k
19. (s0,7° - 7a,7F0) : Wo
20. {|so - 7° - T4 - TRO|; OD; Va) >, (hyief) £

Call this point (B) in the proof. We will return to it later to complete the proof. Let ng = |[Wy.w|. Since Wy 3 W,
ng > n + 1. Further for i € {0,...,n}. Wy.w[i] = Wy.w[i]. From fact (19), we know that

21. s =S0,0"--- - S0,n, such that (in particular),
(>Wo, s0,n) € Wo.wn].I((so-r® 74 - rr0)[n]) = Wsw[n].I((so - r°-rq - rro)[n]).

The definition of I on the (n + 1)th island now forces either [¢ : ff] € sg,, or [¢: tt] € s¢,,. Hence, either [¢ : ff] € sg
or [ : tt] € sg. Further, because (bWoy,s00) € Wo.w[0].I((so 7% 74 - 7r0)[0]) = Ws.w[0].I((so - 7r° - 74 - Tr0)[0]),
(so 7% 7q-1rpo)[0] cannot equal L, so either [¢ : tt] € [sg-r® -1y - rro| or [€ : ff] € |sg 7% 7y - rro|. If the former,
then using the definition of op;, we know that (|sg - r® - r, - Tro|;0p; va) diverges (by taking the ‘then’ branch in
the definition of op;). But from fact (20) we know that this configuration does not diverge, so it follows that
[¢:ff] €|sg-1° 74 - TRo| and accordingly, [¢ : ff] € sq.,. Let:

22. 50 =80, [0 ff] and sG =500+ S0.n—1"50, " 50,041 " - S0,nq-
Using the definition of I on the (n + 1)th island, we also get
23. (so-7° 14 1rr0)[n] = U(g) for some g € S[o].
Using fact (20) and our analysis above we also deduce that there are j; and jj such that:
24. (|so -7 - 14 * TRO[;0D; Va) gy (|80 7% Ta TR0l - [€: ] E[((v])) val) < (hyier) #+ where

E[] = lety=][]in
let .=/ :=,4 ffin
Y
25. jo = j1+ Jo
Analyzing fact (24) further, we deduce that there are js and js such that:
26. jo = j2 + Js
27 (Isg - 7* - ra ol - [0 1 tt]; (V(0])) va) —jy (haser) #
28. (hy: Eler]) s, (hpies) %>

Our next objective is to show that (y(v$)) v, is semantically well-typed and then apply the definition of £[-]- to

fact (27). From fact (17), we know that there are rZ r® v2 v2 such that:

29. 1y =78 .r2
30. v, = <vf,vg‘>
31. (Wo,rZ2,0B) e V[Y' I B; : o]p

32. Wo,rs,ve) € V[E' F [a (t; - X)] = o]p’
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Let m = Z[t;]p. Fact (32) forces that v& = e and implies that there is a v2’ such that:

(Wo,r%,0%") € V[¥ Fa(t;-X):o]p
= T (m+a)
= {(W.r,0) | r[n] 2U(m)-Ula)}

Therefore, r¢[n] 3 U(m) - U(a). Further from fact (23), U(g) = (ro - - r4 - 7ro)[n] 3 r%[n + 1], so by the definition
of the monoid at the (n + 1)th island, there is some a’ such that:

33. r¥n]=U(m+a+d).
34. Choose f such that U(f) = (sf - r° - 12 - rpo)[n]. Then, g=m +a+a' + f. Define ¢ =a+a + f.

From facts (21), (22) and (23), we know that (>Wo, sq, - [¢ : ff]) € Wi.w[n].I(U(g)). Hence, using the definition of 1
on the (n + 1)th island, we deduce that there is v such that

EWo, s0.,,v) € (V[EFA:0—=0]p)g
= (V[EFA:0—=0]p) (¢ +m)

Pick a fresh variable X'. Then, by Lemmas 12 and 11, we get (>Wo, 54 ,,,v) € V[E', X' :o b A (t; - X') 1 o] (p/, X" = ¢).
This immediately implies:

35. (>Wo,80,,,0) € V[E, X" 1o [A(t;i- X')] s o](p', X' = ¢')
Choose:

36. Wy =71 Wy. Note that because of fact (24), j; > 1.
By Lemma 2 applied to facts (35) and (36), we derive that:

37. (Wi, 80,,,0) €V[E, X o [A(ti- X')] : o] (p', X' = ¢')
By Lemmas 2 and 11 applied to fact (31), we deduce:

38. (W, 2 vBY e V[Y, X" : o0 b B, : o] (p/, X'+ ¢')

Noting that v, = (vZ,v5) = (vB, @), we deduce from facts (37) and (38) that:

39. (Wi, 80, 18,va) € V[Y, X" 10 b Bi@[A (ti - X')] : o] (p/, X' = ¢)

Using the second premise of the given inference rule, we derive that (W,r®, v(v?)) € V[E F [A/a]specT; : o]p. Ex-
panding the definition of specT;, noting that o ¢ B;, C;, we get

(W,rs,y(v3) eV[EEVX :0.VY i0, : P Bi®[A(t;- X)] —3Z : 0] = Q;. C; @ [A (t), - X)] : o]p

a-renaming X to X’ noting that by the side condition on specT,, X & P;, Q;, B;, C;, t;, !

i, we get:

(W,r* v(v}) e V[EEVX 1 0. VY i0) 2 P Bi@[A(t;- X')]| —~3Z:0) 2 Q;. C; @ [A (£, - X')] : o]p
Using Lemma 2, observing that W, = /' Wy 3 Wy I W, 3 >W J W, we obtain:
(We,r*, v(05) e V[EEVYX :0.VY 10, = P Bi®@[A(t;- X')] - 3Z:0) = Q;. C; @ [A (L, - X")] : o]p

We now instantiate the definition of V[-]- at the type V- :: -. - choosing the substitution p’, X’ + ¢’ (recall that p’
contains Y — d;). From fact (16) and Lemma 11, we obtain that p', X' — ¢’ s/ x/.c P;. Hence, we get:

40. (W, rs,v(vi) e V[E, X' : o b Bi@[A(t; - X')] —3Z:0) = Qi. C; @ [A(t, - X")] : o] (p/, X' = ¢)
From facts (39) and (40), following the definition of V[-]- at —o, we get:

41, (We,rs -l sg ., (v(05)) va) € E[Z 0} = Qi. C; @ [A (8, - XN](p/, X' — o)

Now we wish to instantiate the definition of £[-]- in fact (41) using the reduction in fact (27). We choose:
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42. W =Wy,

J =2
r:rs-rf-s’mn
§=5800"---"S0,n—1" [f : tt} ©S0,n+1 * S0,n9

re = (L(g'sa+a")) - reo - (rg\{n}).

where (r&\{n}) is the same as r2 except in the (n + 1)th island, where the value is € (or U(e)). Call this point (C)
in the proof, as we will return to it later. To apply the definition of £[-]-, we must show that:

Proof: Wi.k = (59 Wy).k = Wo.k — j1. Therefore, Wi.k — jo = Wo.k — (j1 + j2). From facts (25) and (26),
Jo > j1 + jo. Therefore, W1.k — jo > Wy.k — jo > 0 (by fact (18)).

(G5.5.2) Following fact (27): [s{-7° - 7q - rFo| - [£: tt] = |r- s rp|.

Proof: Immediate because on all islands except the (n + 1)th, r, s, rp is a repartitioning of sj, - r® - r4 - rro.
(G5.5.3) (s,r,1p) : W.

Proof: Applying Lemma 9 to facts (19) and (36), we get:

43 (8077’5 . T‘a,’I’FQ) : W1

It suffices to prove three facts:

(G5.5.3.1) For every j < ng. rp[j] € Wi.w[j].E.

Proof: For j # n, re[j] = r2[j] - rrolj] 2 7ro[j]. Since Wi.w[j].E is extension closed, the subgoal is
immediate from fact (43). For j = n, the subgoal is trivial because Wi.wn|.E = G.

(G5.5.3.2) For j # n, (bWi,s0;) € Wiwlj].I((s-7-r8)[j])-

Proof: By definition of r,s,rg, for j # n, (s-7-7p)[j] = (So-7° 74 7r0)[j]. Therefore, the result is
immediate from fact (43).

(G5.5.3.3) (bWh, [0 :tt]) € Wiw[n]I((s-7-7p)[n])
Proof: From facts (42) and (34), we get (s-r-rp)[n] = L(¢,a+d) - U(f) = L(g,a+d + f) =
L(g’,g"). Therefore by definition of the (n+ 1)th island, Wi.w[n].I((s-r-rp)[n]) = Wi.wn|.I(L(¢',¢")) =
{(W,r-[€:tt])}. The subgoal is then obviously true.

We now return to point (C) of our proof. Because of (G5.5.1)—(G5.5.3), we can instantiate the definition of £[-]- at
point (C) of the proof to obtain W, so, 72, rrg such that:

44. Wy d;, Wh
45. (sg,re,7R2) : Wa
46. hy = |sg - 1o - TR2|
A7 rpy J(L(g'sa+a’)) - reo - (rg\{n})
48. (Wa,re,e1) € VY, X' :ob3Z 0] 2 Qi. C; Q[A (8] - X)) : o] (p/, X' — ¢').
From fact (48) we know that there is a dy € S[o”] such that
49. o'\ X' = ¢, Z — dy Es x10.2:00 Qi
Let ¥ =%',X":0,Z:0" and p”" = p', X' — ¢', Z — da. Then fact (49) also implies:
50. p" f=sr Qs
Continuing with fact (48), we further derive v§', ¢, rs' such that:
51. e; = (v§,e)
52. rg =15 14!

53. (Wa,r§,0v§) € V[E" F C : o]p”
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54. (Wa,rst, @) € V[E" F[A (- X)) : o]p”
Let m’ = Z[t/]p. From fact (54), we obtain a v} such that (Wa,rs', vh) € V[X" F A (¢ - X') : o]p”. Therefore,
55. (Wa, st vh) € (V[E" - [A] : o]p”) (m' + ¢')

From fact (47), either (sg - 72 - rp2)[n] is L(¢’,-) or it is L. By fact (45), (>Wa, s2.,) € Wa.w[n].I((s2 - r2 - rr2)[n]), so
following the definition of the (n 4 1)th island’s I, we get:

56. (s2-r2-rra2)[n] = L(g',9")

57. sy = [0 tt] - 85, for some s5,
From facts (57) and (46), we also get:

58. hy = h} - [£: tt] for some A}
From facts (28), (51) and (58) we get using the operational semantics that:

59. (hi; Eleq]) <, (] - [€ : ff]; (vS, @)) . (Therefore, hy in fact (28) equals b - [ : ff].)
From fact (47), there is a rg, such that:

60. rr2 = (L(g",a+a’)) - rro - (rg\{n}) - ri

We now return to point (B) in our proof and construct W', s,/ 7 to satisfy the definition of £[-]- and close the
proof. Let ny = |Wa.w|. We select:

61. rp = rro - (rg\{n}) - 7y
=7 - (U(m' +a+d))

s' =sp-... 8, where
3;:{8/22 A 1“7&”

sy, [0 ffl-rg ifi=n
W/:l>j3W2

To complete the proof, it suffices to prove each of the following:

We prove each of these below.

Proof of (Gb5.5.4). Using facts (36), (44) and (61), we derive that W’ 3; ;... Wo. From facts (25) and (26), we
know that jo = j1 + j2 + j3, which closes the subgoal.

Proof of (G5.5.5). Using Lemma 9 on fact (45) and noting that W’ = 3 W1, we obtain:
62. (s2,79,1R2) : W’
It suffices to prove the following:

(G5.5.5.1) For each j < ng, rp[j] € W .wlj].E

Proof: Using facts (60) and (61), for j # n, rp[j] = rr2[j]. Therefore for j # n, it is enough to prove that
rre[j] € W' .w[j].E, which follows from fact (62). For j = n, the subgoal holds trivially because W'.w[n].E =
Wswn].E =G.
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(G5.5.5.2) For each j < na, (bW',s}) € W.w[jl.I((s" - r" - rR)[f]).
Proof: We consider three cases.

Case. j = 0. Then from fact (61), s{, = s2,0. So, we must show that (W', s30) € W .w[0].I((s" - " - 7)[0]).
From fact (62), we know that (W', s20) € W/ .w[0].I((s2 - 72 - 7r2)[0]). But on island 0, I(z) is independent of
x, so we are done.

Case. j = n. From facts (56), (52) and (60), we derive that (sg - 75 - 74" - 7R - Tho)[1] - L(¢'sa +a') = L(g', ¢').
Therefore, there is a g” such that:
63. (s2-75 18 TR0 - Tho)[n] = U(g") and ¢’ = a+a’ +g"

Now observe that

(s -ri)n] = (se-7r§ 18 rpo-rhy)[n] - U(m +a+a’) (Fact (61))
= U(g” Um' +a+a) (Fact (63))
= U@@'+m +a+d)
= U(m' +¢) (Fact (63))
We need to prove that (bW, s]) € W .wn].I((s" -1 - rp)n]) = W .wn].I(U(m'+¢')). Because W' 1 Wy, this
happens iff W', s}) € Wown].L(U(m'+g")) = {(W,r - [£: ff]) | Fv. W, r,v) € V[EFA:0 — o]p) (m' +4')}.
From fact (61), s, = s, - [¢ : ff] - r§. Therefore, it is enough to prove that there is a v such that

(W' sy, -15,v) € (V[E+H A:o —o]p) (m +g¢'). By Lemma 4 and 2, it suffices to prove that (>W’,sh,, -
3 v) € (V[EF A:o —o]p) (m' +g'). This follows from fact (55) and Lemma 11 (choosing v = v}).

Case. j € {0,n}. In this case (s' - 7' - r§)[j] = (s2 - 72 - 7r2)[§]- So the result follows from fact (62).
Proof of (G5.5.6). Follows immediately from facts (46), (52), (58) and (61).

Proof of (G5.5.7). Immediate from fact (61).

Proof of (G5.5.8). Let ¥ =%/, Z : ¢" and p"" = p/, Z ++ dy. Observing that from fact (61), v’ = r$ - (U(m' +
a+ a')), it suffices to prove the following:

(G5581) p/” ':2/// Qz
Proof: This follows from fact (50) and Lemma 11.

(G5.5.8.2) (W',r§ v§) € V[E" + C; : o] p"
Proof: Follows from fact (53) using Lemmas 2 and 11.
(G5.5.8.3) (W', (U(m' +a+da')),e) e V[E"F[A(t;- X)]: o]p"”
Proof: It suffices to prove that

(W' (U(m' +a+ad)),e) € V[E"FA(- X):o]p"”
= (V[E"EA:0—=o0]p") (m +a)
= T (m'+a)
= {(W.r,e) | r[n] UM +a)}

Therefore, it suffices to show that U(m’' +a+d') 3 U(m' + a), i.e., Um' +a) - U(a’) 3 U(m' + a), which is
trivial.

O
Theorem 1 (Fundamental Theorem). The following hold:
1. If S ILT; AR e A, then S;ILT; Al-e: A,
2. If S:ILT; A vt A, then S;ILT; A IFY v s A
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Proof. By simultaneous induction on the given typing derivations. Due to Lemma 5, (2) is stronger than (1) for
values, so in cases where the term in the conclusion must be a value, we prove only (2). We introduce some notation.
For an arbitrarily chosen world W, let p € Env(X) such that p Ex IIL,y e U[E H T ok] p Wand d € L[EF A ok] p W.

¥ FII ok Y FT ok Y F Aok r:AeA
ST ARz A
Here = is a value, so we prove only (2). We need to show that (W,n(v) - n(d),d(v(z))) € V[EF A: o]p.
Let (z — (r,v)) € 6. Since § € L[XF Aok] p W, we know that (W,r,v) € V[EF A:o]p. By Lemma 4,
(W, m(y) - w(6),v) € V[ F A : o]p. The proof closes when we observe that §(v(x)) = v.

Case.

¥ FII ok Y FT ok ¥ F Aok z:Ael
I ARz A
Here z is a value, so we prove only (2). We need to show that (W,w(vy) - w(d),0(y(x))) € V[EF A:o]p.
Let (x — (r,v)) € v. Since v € U[EFT ok] p W, we know that (W,r,v) € V[E+F A:o]p. By Lemma 4,
(W, m(y) - w(6),v) € V[ F A : o]p. The proof closes when we observe that §(v(z)) = v.

Case.

¥ I ok YT ok Y F A ok 3+ ok
SITAR(): 1
Here () is a value, so we prove only (2). Since v(6(())) = (), if suffices to show that (W,n(v) - n(d),()) €
V[E F 1:0o]p. This follows from the definition of V[-]-.

Case.

S ILT A1 Fert A S, ILT; Asbes: B
S ILT; A, Ao b {eg,e2) : AR B

Proof of (1): Define E; = {([],e2). From ih.(1) on the first premise, we know that 3;ILT;A; IF e @ A, so
by Lemma 6, it suffices to prove that X;ILT; A, x: A I (z,e0) : A® B. Define E; = (z,[]). Then, our
subgoal can be written as X;IL;T; A,z : A |- Esles] : A® B. From ih.(1) on the second premise, we know
that ;T T; Ag IF e : B. So, by Lemma 6, it suffices to show that X;ILT;z: A,y : B IF Esfy] : A® B, ie.,
S5 IT2: Ajy: B IF (x,y) : A® B. To prove this, assume that § € L[XFa: A,y: Bok] p W. It suffices to
prove that (W, (9), (6(z),d(y))) € V[E+ A® B : o]p. By definition, § € L[X +z: A,y : B ok] p W, implies that
§d = (x+— (ri,v),y = (r2,x2)), where (W,r1,21) € V[EF A:o]p and (W,r3,22) € V[EF B:o]p. The last two
facts immediately imply (W,rq - 79, (z1,22)) € V[EF A® B : o]p, i.e., (W, m(4),(0(x),d(y))) € V[EF A® B :0o]p,
as required.

Case.

Proof of (2): If (e1,es) is a value, then both e; and e; are values. Pick a W, p € Env(X), such that p [y
I, y € U[EFTok] p W and for i = 1,2, §; € L[EF A; ok] p W. We want to show that (W, n(y) - 7(d1) -
7(62), 31 (52(1({en, 2))))) € VIS A B : ofp.

By i.h.(2) on the first premise, we derive that (W, n(y) - 7(d1),01(y(e1))) € V[EF A:o]p and similarly from
the second premise we obtain (W, w(7) - w(d2),02(7(e2))) € V[EF B:o]p. By definition of V[-]-, we now get
(W, m(v) - m(61) - w(7) - 7(b2), (01 (7(e1)), 62(v(e2)))) € V[EFH A® B :o]p. Observing that 7(v) - m(7) = w(y), we
immediately derive (W, () - w(d1) - m(d2), 61(d2(y({e1,e2))))) € V[EF A® B : o]p, as needed.

WILT; Ay Fe: A® B I, Ag, 2 Ajy: Bleé : C
S IGT; A, Ag et {(x,y) =eine : C

Here, statement (2) is vacuous because the term in the conclusion is not a value. To prove (1), we want to show
that ;T T; Ay, Ay IF let (z,y) = eine’ : C. Define the evaluation context E = (let (z,y) = [] in €’). Then, we
want to show that ;I T; Ay, Ay IF Ele] : C. By i.h.(1) on the first premise we know that 3;ILT; Ay Fe: A® B.
So, by Lemma 6, it is enough to show that X;II;T; Ag, 2 : A® B IF E[z] : C or, equivalently, ¥; I, T; Ay, 2z : A® Bl
let (z,y) = zine' : C. To prove this, pick W, p € Env(X), p s I, vy € U[EFT ok] p W and (4,2 — (r,v)) €
L[t Ag,z: A® B ok] p W. We need to show that (W, w(y) - w(d2) - r, let {x,y) = v in da(y(€'))) € E[C]p.

From (6,2 — (r,v)) € LIXF Ag,z: AQ Bok] p W, we get (W,r,v) € V[EF A® B:o]p. Expanding the
definition of the latter, we know that there are rqi,r9,v1,v2 such that v = (vy,v2), r = ry - 1o, (W,ry,v1) €
V[EF A:o]pand (W,rq,ve) € V[EF B :o]p. By i.h.(1) on the second premise, it follows that (W, () - 7(d2) - r1 -
ra, [v2/yl[v1/2](32(7(')))) € E[Clp. Since for every h, (h;let (z,y) = v in 62(v(€)) = (h; [v2/yl[v1/2](32(7()))),
Lemma 10 implies that (W, 7(y) - 7(d2) - r, let {x,y) = v in d2(y(€’))) € E[C]p, as required.

Case.

5. X oI P ARv: A i ¢ FVII),FV(T'),FV(A)

Case.
ase ST ARv:VX o P A
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Since the term in the conclusion is a value, we prove only (2). We want to show that (W, w(v) - 7(d),d(y(v))) €
V[EF (VX :0:: P. A) : o]p. Following the definition of V[X F (VX : o :: P. A) : o]p, assume that there is term ¢ €
S[o] such that p[X — t] s P. We need to show that (W, 7(y)-7(0),0(y(v))) € V[E,X : 0 F A: o]p[X > t]. Define
p' = p|X — t]. It suffices to show that (W, w(y) - 7(5),d(v(v))) € V[E,X : 0 A:o]p.

From Lemma 11, we obtain that v € U[E, X :o b T ok] p/ W, § € L[E, X :0FAok] o/ W and p' s x.0
II, P. Hence, we can instantiate the i.h.(2) on the premise with p’, v and ¢ to obtain (W, w(y) - 7(4),0(y(v))) €
V[E,X : ok A:o]p, as required.

WILT;Abe:VX o P A Y>t:o S I0F [t/ X P
5ILT;AbRe: [t/ XA

Proof of (1): We want to show that X;ILT; A I- e : [t/X]A. Define E = []. By i.h.(1) on the first premise, we
know that Z; ILT; Al e : VX : o 2 P. A, so by Lemma 6, it suffices to show that 3;II; T2 : (VX : 0 :: P. A) IF Elz] :
[t/X]A or, equivalently, 3;ILT 2z : (VX : 02 P. A) Ik 2 : [t/ X]A. Following the definition, choose W, p € Env(X),
pEs I,y e U[EFT ok] p W and (z — (r,v)) € L[EFz: (VX :0:: P. A)ok] p W. It suffices to prove that
(W, n(y) - r,v) € E[[t/X]A]p. By Lemma 4, we reduce this to proving (W,r,v) € E[[t/X]A]p, and by Lemma 5, to
(W,r,v) € V[ F [t/ X]A : o]p.

Further, from the second premise we know that Z[X >t : o]p is defined. Let this value be d. From the
third premise and Lemma 14 we know that p =5 [t/X]P, so by Lemma 12, we get p, X — d x x.» P. From
(x = (r,v) € L[EFx: (VX :0:: P. A) ok] p W, we know that (W,r,v) € V[EF (VX :0:: P. A) : o]p. Expand-
ing the definition of V[X+ (VX :0 = P. A):o]p at X = d, we get (W,r,v) € V[E,X:0F A:0](p,X — d). By
Lemma 12, (W,r,v) € V[X F [t/X]A : o] p, which is what we wanted to prove.

Case.

Proof of (2): Assume that e is a value. We want to prove that (W, w(vy) - 7(0),0(v(e))) € V[E F [t/ X]A : o] p. From
1.h.(2) on the first premise, we know that (W, w(y)-7(5),d(y(e))) e V[EF (VX : 0 s P. A) : o]p. Let d =Z[E > ¢ : op
(which is defined by the second premise). From the third premise and Lemma 14, we know that p, X — d =5 x.c P.
Expanding the definition of V[E F (VX : 0 :: P. A) :o]p at X = d, we get (W,r,v) € V[E, X :0F A:0](p, X — d).
By Lemma 12, (W, r,v) € V[E F [t/ X]A : o]p, which is what we wanted to prove.

I, ARe: A
S ILT; A new(e): 3¢: Loc:: T. Iptrf ®@cap £ A
Here, the term in the conclusion is never a value, so it suffices to prove (1). We want to show that (W, m(v) -
m(0),new(e)) € E[I: Loc:: T. Iptr £ ® cap £ A]p. Defining E = new([]) and using Lemma 6 with the i.h.(1) on
the premise, we reduce this to proving that for any (W,r,v) € V[XF A:o]p, we have (W, w(7) - r,new(v)) €
E[3: Loc:: T. Iptr { ® cap ¢ A]p. Following the definition of £[-]p, pick j, s, rg, h, e’ such that:

Case.

1. j< Wk

2. (s,m(y)-r,rp): W

3. (ls (7)ol new(v) <y (i) 4
The operational semantics force:

4. j=1

5. ¢ = (l¢, o) for some ¢

6. h=|s-m(y) -r-re|W[l:v]

We choose W/ =pW, s =s, ' =r [0 :v], rp =7(y) - rr. It suffices to prove each of the following:
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We prove each of these.
Proof of (G1): Immediate from Lemma 7.

Proof of (G2): Expanding the definitions of W', ', v’ and rf, we need to show that (s,r - [¢: v],7(v) - rr) : >W. By
Lemma 9 applied to fact 2, we get (s, 7(7y) - r,rp) : >W. By Lemma 3, (s,r,w(7) - rp) : >W. We complete the proof
by noting that 7 - [¢ : v] and r differ only in their components on the first island (the heap), whose invariant does not
depend on the local resource r at all.

Proof of (G3): Immediate from fact 6 and the definitions of ¢, " and rf.
Proof of (G4): Trivial because 7 =1’ - rp.

Proof of (G5): We instantiate the definition of V[X + 3¢: Loc:: T. Iptr £ ® cap £ A : o]p by choosing the witness for

the existential (called = in the definition) to be ¢. It now suffices to show that (W', 7', ¢') € V[E F Iptrz @ cap x A : o] (p,x — ¥)
or, equivalently, (bW, r- [0 :v], (I{,e)) € V[EF Iptr z @ cap z A : o]|(p, x +— {). Because ¢ = Z[{]p, by Lemma 12, this

is equivalent to proving (bW, [0 : v], (!¢, e)) € V[E F Iptr £ ® cap £ A : o]p. Using the definition of V[ + A ® B : o] p,

it suffices to prove that: (G6) (bW,e,1¢) € V[E F Iptr £: o]p, and (G7) (bW,r - [€ : v],8) € V[E Fcap £ A:o]p. To

prove (G6), it suffices to show that (W, e,£) € V[X F ptr £: o]p, which reduces to ¢ = Z[¢]p, which is true by
definition of Z[-]-. To prove (G7), we must prove that { = Z[¢]p and that (W, r,v) € V[E F A : o]p. The former

has already been proved and the latter follows from Lemma 2 applied to our assumption (W,r,v) € V[ F A:o]p

and (G1).

S ILT; AR e ptrt SILT;A ' Fe tcapt A
I T, AA Fget, e A®capt 1
Here the term in the conclusion cannot be a value, so we only have to prove (1). We want to show that
S ILT;AA IF get, e : A®capt 1. Using Lemma 6 twice with i.h.(1) on the two premises, we reduce this to
proving ¥; IG5z i ptrt,y:capt A |- get, x : A®capt 1. Expanding the definition, pick p € Env(X) such that
plEs I aworld W, vy e U[EFT ok] p W, (W,r1,v1) € V[EF ptrt:o]p and (W,re,v2) € V[EFcapt A:o]p. It
suffices to prove that (W, () - ry - ro, get,, v1) € E[A® cap t 1]p. By Lemma 5, this goal is reduced to:

Case.

(G1) (W,ry-ro,get,, v1) € E[A®capt 1]p
Let £ = Z[t]p. Because (W, r1,v1) € V[X I ptr ¢t : o] p, we know that
1. vy =4
From (W, r,v2) € V[X F capt A : o]p we know that
2. vg =
3oro=1[0:v] -7y
4. (W,s,0) € V[EF A: o]p
To prove (G1), we expand the definition of E[A ® cap t 1]p and pick j, s, rr, h such that:
5.5 < Wik
6. (s,r1-ro,7p): W
7. (|s 11 1o rE|iget,, vi) < (k')

Now we note that from fact 3, [s-71-72-rp| = |s 7172 rp| W [€ : v]. Therefore, the operational semantics and
fact 7 force:

8. j=1
9. h=|s-ry -7y -rp|W[l: ()]
10. ¢/ = (v, )

We now choose W/ =pW, s =s, 17" =11 7% - [0 : ()], 7z = rr. To prove (G1), it suffices to prove that:
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We prove each of these subgoals below:
Proof of (G2): Because j = 1 and W’ =W, we need to prove W J; W. This follows immediately from Lemma 7.

Proof of (G3): Expanding the definitions of &', r’, ri, and W, it suffices to prove that (s,71 -7 - [( : v],rp) : bW. By
Lemma 9 applied to fact 6, we get (s,71 - 72, 7F) : W. Observe that ry - ro = 71 - 7y - [ : v] differs from ry - 75 - [£ : ()]
only on the first component, whose invariant is independent of the corresponding monoidal value. Therefore, the
previously derived fact (s,r; - ro,7r) : W also implies (s,71 7% - [ : v],rr) : W, as needed.

Proof of (G4): Immediate from fact 9 and the choice of &', " and 7.
Proof of (G5): Trivial because rp = .

Proof of (G6): From fact 10, we know that ¢’ = (v,e). So, we need to prove that (bW,ry -2 - [ : ()], (v,@)) €
V[EF A®captl:o]p. By Lemma 4, we reduce this to proving (bW,7%5 - [ : ()], (v,e)) € V[EF A®capt1:o]p.
Expanding the definition of V[X F A ® B : o]p, it suffices to prove that: (G6a) (bW, 75,v) € V[E F A : o]p and (G6b)
W[ ()],e) € V[EFcaptl:o]p. (G6a) follows from fact 4 and Lemma 2. To prove (G6b), it suffices to show
that £ = Z[t]p and (bW)e,()) € V[E+F 1:0]p. The first of these is our definition of £. The second follows from
definition of the relation V[-]- at the type 1.

YFA:0—o0 S ILT; AR e [At] ;I + monoid, (e, (+)) 5 ILT; - v, : [A/afspecT,

Case. Y15, T; A+ share(e, ;) : Ja: 0 — o. [a t] ® IspecT; ® !splitT ® !joinT ® !promoteT
where
specT, = VX:0.VY:0,:P.B;®a(t;- X)] —o
3Z 0! = Q. C; ® [a () - X)]
where X, a ¢ FV(P,;),FV(Q,),FV(B;),FV(C;),FV(¢),FV(t))
splitT = VX, Y:0. [a(X Y)] —|aX]®[aY]
joinT = VX Y:o. [aX|®[aY]—|a (X Y)]
promoteT = VX:o0:X =X X.[aX]—!aX]
VX:0e- X=XA
monoidy(6,(+)) = VX, V:0. X - Y=Y XA

VXY, Z:0.(X-Y) Z=X-(Y-2)

Because share(e,7;) is not a value, we only need to prove (1), which follows immediately from Lemma 16.

Case. All other cases are standard. O
Theorem 2 (Adequacy). If ;- IFe: A and (D;e) <>, (h;e’) &, then €' is a value.

Proof. Since (0;e) <, (h;e’) o+, there is some j such that (0;e) —; (h;e’) <. Pick any n > j and choose
W = (n, (HIsland,,)). From ;- I e: A, we know that e € E[A]-. Instantiating its definition with the W we chose
previously and s = r = rp = (€), we immediately derive that for some W' ', (W' r' e') € V[-+ A: o]-. From the
definition V[-]-, we immediately get that e’ is a value. O
Corollary 3 (Soundness of the Type System). If ;- Fe: A and (D;e) <. (h;e') 4, then €' is a value.

Proof. Immediate from Theorems 1 and 2. O
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