
Modular Rollback through Control Logging†

Twin pearls in continuation, and a monadic third

Olin Shivers (shivers@ccs.neu.edu)
and Aaron Turon (turon@ccs.neu.edu)
Northeastern University

Conor McBride (conor.mcbride@strath.ac.uk)
University of Strathclyde

Abstract. We present a technique, based on the use of first-class control operators,
enabling programs to maintain and invoke rollback logs for sequences of reversible
effects. Our technique is modular, in that it provides complete separation between
some library of effectful operations, and a client, “driver” program which invokes and
rolls back sequences of these operations. In particular, the checkpoint mechanism,
which is entirely encapsulated within the effect library, logs not only the library’s
effects, but also the client’s control state. Thus, logging and rollback can be almost
completely transparent to the client code.

This separation of concerns manifests itself nicely when we must implement soft-
ware with sophisticated error handling. We illustrate with two examples that exploit
the architecture to disentangle some core parsing task from its error management.
The parser code is completely separate from the error-correction code, although the
two components are deeply intertwined at run time.

Keywords: checkpoint, delimited control, functional programming, effect logging,
error handling

Prologue

We all make mistakes. What counts is how we handle them.

There’s little less pleasant in programming than watching beautiful code
turn ugly. But our programs live in a messy world, full of erroneous
input. To cope, they must all too often become messes themselves.

The problem is that error handling is not naturally modular. It is
context-dependent, often relying on the details and current state of
input processing. It is poorly structured, because it must make sense
of the poorly-structured input it is given. Extricating it into a separate
prepass means duplicating much of the processing intended for correct
input—and when input is provided and processed interactively, check-
ing and processing must be interleaved. For complicated artifacts like
typecheckers, which are hard enough to get right in the first place, code

† This is a revised and extended version of an earlier conference paper (Shivers
and Turon, 2011).

© 2013 Kluwer Academic Publishers. Printed in the Netherlands.

pearl.tex; 21/08/2013; 8:00; p.1

2 Shivers, Turon, and McBride

to produce friendly error messages can obscure or even dwarf the code
to check types (Lerner et al., 2007).

We tell a story in three acts, the moral of which is: error handling
can be separable, even beautiful. The hero of our tale is call/cc, for to
err is human, but to forgive requires first-class control.

On further reflection (Filinski, 1994), it will become apparent that
our hero’s mission is one of infiltration and liberation: first-class control
can stealthily invade an otherwise-pure function in order to free latent
monads.

Part one takes place in an “eager” Scheme REPL, which parses
complete s-expressions as the user types each closing parenthesis, long
before a carriage return. Yet, despite advancing the state of the parser,
the user can interactively alter erroneous text by “backing up” with the
delete key and re-entering corrected text. So here the error-handling is
done, in part, by the user, but done in a way that’s invisible to the
input-processing code.

Part two retells the tale in Standard ML, using a similar technique
to automatically discover and repair the “true” source of a syntax error,
perhaps far removed from the location where the parser got stuck.
It’s the functional programming equivalent to Burke-Fisher error re-
pair (Burke and Fisher, 1987). Again, the key benefit is the complete
separation between the parsing algorithm and the repair algorithm: you
write a parser in any style you like, and send it through our BurkeFisher

functor to get a new parser that intelligently repairs errors.
The first two parts use first-class control in two crucial ways:

− First, to provide rollback logging. We layer an interface on top of
call/cc, constructed so that the very performance of a reversible
side-effect has an additional effect: it logs the appropriate reversal.
Control effects and other effects smoothly interleave, whether going
forward or backward.

− Second, to provide modularity: we sneak checkpointing through an
unsuspecting parser. Although parsing and error correction func-
tionality is interleaved, the code is not. Parsing is done via standard
recursive descent, with no concern for error correction; likewise,
error correction needs only understand the structure of the input
to the parser.

Part three pulls back the curtain, using Haskell to reveal the monadic
side of the story that was there all along. The key is to think of input
acquisition as monadic, even when there are no effects in sight as in, e.g.,
reading lexemes from a functional stream. Once the monadic interface
is made explicit (as a free monad), we can choose to interpret it in var-
ious ways. The “vanilla” interpretation yields the original parser/lexer

pearl.tex; 21/08/2013; 8:00; p.2

Modular Rollback through Control Logging 3

pairing, with no rollback or error handling. But we can instead choose
an interpretation that checkpoints each use of monadic bind—just as
call/cc had done previously—and allows jumping backwards in time to
correct erroneous input. The downside is that the monadic signature
is explicit, which requires changing the interface between the lexer and
parser, and writing the latter in an explicitly-monadic style. The upside
is that the monadic signature is explicit, which clarifies the code and
makes it easier to swap in additional effect interpretations (e.g., different
repair strategies).

We hope that while savoring the stories below, you will see that the
rollback techniques transcend them.

1. Prompt reading and effect logging in Scheme

In our first example, we show how to recreate, with modern tools, a bit
of “lost art” from classic Lisp input systems: how to intertwine input
parsing with terminal-entry text editing without having to intertwine
the code that carries out these separate tasks. As we do this, we’ll
discover a general technique for constructing “command” systems that
allows us to transparently log effects in a way that permits them to be
rolled back on demand, without having to compromise the simplicity of
client code that issues sequences of these commands.

That’s the big picture; let’s begin by diving into the specifics of
our example. S-expressions, the standard syntactic form for programs
and data in Lisp and Scheme, have an interesting property: they are
frequently self-delimiting. For example, we do not need to look past the
terminating right parenthesis in the string “(+ x y)” to know that we
have reached the end of the form. By way of contrast, this is not true
of numerals: if an s-expression reader sees the string “387”, it must look
ahead one character to know if this string comprises an entire term, or
if it is simply a prefix of a larger term. If the following character is a
left parenthesis, then the string represents the integer three hundred
eighty-seven (which happens to be followed by some list to be read at
a later date); if the following character is another digit, then our string
is simply the first three digits of some longer numeral.

Table I gives the breakdown for standard Scheme s-expressions, show-
ing which kinds are self-terminating, and which aren’t.

The details vary across dialects of Lisp and Scheme, but the general
property remains.

Interactive systems that read commands or other structured input
from a user frequently take their inputs in the form of an s-expression—
the classic example is the Lisp read-eval-print loop. In such a system,

pearl.tex; 21/08/2013; 8:00; p.3

4 Shivers, Turon, and McBride

Table I. Termination of standard Scheme s-expressions

Self-terminating Lists: (), (+ x 3), . . .
Vectors: #(), #(-2 7), . . .
Strings: "fred", "dog", . . .
Booleans: #f, #t
Characters: #\z, #\q, . . .

Not self-terminating Symbols: fred, dog, . . .
Numerals: 387, 0, . . .

the human user enters some command, expression or definition at the
terminal; the operating system passes this text to the Lisp process,
which parses it into an s-expression, and then computes the command,
expression, definition, etc. that it describes.

It turns out that old, 1970’s- and 1980’s-era Lisp systems (e.g.,
Maclisp and Lisp Machine Lisp) took advantage of the self-delimiting
property enjoyed by their s-expression-based interaction languages. When
reading s-expressions, these interactive systems would read characters
from the terminal eagerly—that is, they turned off the operating sys-
tem’s buffering machinery, so that each character was presented to the
reader as soon as the user hit the key on the keyboard. Thus, the
parse would complete the instant the terminating close-parenthesis was
entered, without requiring the user to enter a redundant newline. It’s a
small but pleasant convenience that, in the post-Lisp-Machine age, has
become lost from the text-interaction modality.

What makes providing this capability tricky is the task of error han-
dling. Human typists make mistakes, which they’d like to correct as they
enter their text. This is usually handled by the so-called “line discipline”
code in the operating system’s terminal device driver. This code buffers
terminal input and provides a simple text editor for operating upon this
buffered text: most characters are taken as input from the user, and
echoed back to the terminal device, to make them visible on entry. A
few keys, however, are reserved for this editing task. On a Unix system,
for example:

− The delete key “backs up” one character: the OS removes the last
character from the input buffer and outputs a backspace-space-
backspace sequence to the terminal to erase it from the screen.

− The control-U character typically erases the entire line of text,
erasing the entire buffer’s worth of input.

pearl.tex; 21/08/2013; 8:00; p.4

Modular Rollback through Control Logging 5

− The characters control-C and control-Z direct the OS to send an
asynchronous control signal to the reading process.

− Control-V turns off any special treatment of the following charac-
ter.

− Control-D represents end-of-file.

The operating system does not release the buffered input to a process
attempting to read from the terminal device until the user enters a
newline character: this commits the input sequence.

Now, in order to provide eager reading, we have to turn this OS-
provided machinery off: the user process must now be responsible for
echoing input and implementing the interactive editing that humans
use to back up through mistaken input and make corrections. This is
not so terrible; we can encapsulate the editing code in a small library
and be done with it.

What’s tricky is that the parsing computation is now interleaved
with the text-editing computation. Formerly, these things were split
into distinct phases. First, we enter a string, with no parsing going on
at all; during this phase, we can perform editing on each line as we
enter it. Once we strike the newline key, the final version of that line is
shipped off to the parser phase (i.e., the interpreter), which consumes
the text, produces a parse tree (that is, an s-expression), and proceeds
with the requested task.

In our new (well, 1970’s) world, the application is carrying out the
parse as text is entered by the user. If we change our minds and wish to
erase some of the text we’ve entered, as we back up through the input
text, we also have to rewind the parse computation. For example, an
s-expression reader is typically a little recursive-descent parser. When
it is reading the elements of a nested list and it encounters a close-
parenthesis character, it returns the accumulated list to its recursive
caller. If we were to subsequently decide to delete that close parenthesis,
we’d have to back the parse computation back down into that formerly
completed call.

What we need is the ability to take “snapshots” of the computation at
various points as we parse. Roughly speaking, every time the parser calls
out to the “read character” routine, that routine should first checkpoint
the parse computation and save the checkpoint away on a list. If the
user tries to delete some previously entered characters, the input routine
can pull the appropriate checkpoint from its saved history and reset the
parse computation to that previous character-reading state.

pearl.tex; 21/08/2013; 8:00; p.5

6 Shivers, Turon, and McBride

By this point, it should be clear that the right tool for this job is the
Scheme call-with-current-continuation (or, call/cc) procedure: creating
computational checkpoints is its raison d’être.

The rubout port and the reset protocol

In Scheme, we do I/O on ports; our task is to construct a new kind of
“rubout port” for reading from a terminal. We’ll construct our rubout
port using a low-level mechanism in Scheme48 (Kelsey and Rees,) and
scsh (Shivers et al., 2004) that permits programmers to define their own
input ports, which can be passed to the system input procedures like any
other input port. To define one of our custom rubout ports, we provide
the extended-port constructor two things. The first is a fixed suite of
“port methods,” described by a record whose fields are procedures the
input system will use to read a character, “peek” at a character, close
the port, and a few other less-important operations. We also provide a
data value which encapsulates the port state; this value will be passed
to the method procedures when operations are performed on the port.
Here is the definition of the rubout port’s data record:

(define-record rubout-port-data

ttyin ; input tty port

ttyout ; output tty port, for echoing

(prev-tty-info #f) ; tty’s original echo state

(peek-char #f) ; "lookahead" peek cache

(checkpoint #f)) ; most recent checkpoint

This piece of Scheme code defines a procedure
(make-rubout-port-data ttyin ttyout)

which constructs a record from a pair of ports connected to the terminal
device; the other three fields of the record are initialised to false, #f. We
also get field-accessor procedures, such as

(rubout-port-data:ttyin rpd)
(rubout-port-data:ttyout rpd)

and so forth, and some analogous field-assignment procedures with
names like (set-rubout-port-data:peek-char! rpd char).

Note the checkpoint field. Our intention is that every time application
code does a (read-char rp) operation that causes the rubout-port to ac-
tually get a character from the terminal, before returning the character
to the caller, the code will also grab a continuation with call/cc and
stow it away in the port’s checkpoint field. If, during a later attempt to
read, the rubout-port code reads, say, a “delete” character and decides
to undo the previous read, it will be able to do so by fetching this saved
value from the checkpoint field of the rubout-port’s data record and

pearl.tex; 21/08/2013; 8:00; p.6

Modular Rollback through Control Logging 7

invoking it—this will reset the entire computation back to the previous
read point.

The key piece of design we must pin down is the protocol used to
invoke the checkpointed continuation. Specifically, a checkpoint is a
Scheme continuation that must be applied to a single boolean argument:
(checkpoint just-1?). If the just-1? argument is true, we wish to rewind
the computation back just one step—that is, to the immediately prior
read operation. If the argument is false, then we wish to rewind all the
way back to the beginning of the entire read session.

The core effects: reading and echoing

We can now define the pair of low-level procedures that perform our
system’s two primitive side-effects: reading a character from the key-
board, and echoing an input character to the display. Since each of these
procedures carries out an effect, it must log the effect as it performs it—
that is, we must update the port’s checkpoint to add a rollback handler
that will undo the effect if we rewind back through this point in the
computation.

Here is the code for echoing:

(define (echo c pd)

(let* ((oport (rubout-port-data:ttyout pd))

(reset (rubout-port-data:checkpoint pd)))

(write-char c oport) ; 1: Echo the character.

(set-rubout-port-data:checkpoint pd ; 2: Set a checkpoint

(call/cc (λ (ret) ; to undo the echo.

(let ((just-1? (call/cc ret)))

(print-rubout-sequence oport)

(reset just-1?)))))))

;;; Output backspace/space/backspace to the port.

(define (print-rubout-sequence oport)

(write-string "\b \b" oport))

The rubout-port machinery calls echo whenever it needs to echo a
character just read to the terminal. The procedure writes the character
out on line 4, and then logs the effect in the last half of the procedure
by updating the port’s checkpoint. This is the first piece of serious
continuation manipulation we’ve performed, so we will trace through its
execution carefully. The first, outer call/cc creates a return point ret;
applying ret to some value cp will cause cp to be installed as the port’s
new checkpoint. The second, inner call/cc creates the actual checkpoint

pearl.tex; 21/08/2013; 8:00; p.7

8 Shivers, Turon, and McBride

continuation; call/cc passes this continuation to ret, so, just as we
described, this continuation gets installed as the current checkpoint.

Now, consider what happens when this checkpoint is invoked at some
later time, by fetching it from the rubout port’s data record and ap-
plying it to some boolean argument. We’ll reset the computation back
to now : the inner call/cc will return the boolean value, so it will be
bound by the let form to the variable just-1?. Then we’ll proceed into
the body of the let, which contains the rollback action: we write out a
backspace/space/backspace character sequence to the terminal, which
will erase the character we previously echoed back on line 4 of the code,
then we’ll pass the just-1? boolean on to our checkpoint. We do this
because we are in the process of rewinding back to some prior input—
the echo action is an output effect, not an input effect, so we need to
continue rewinding the computation.

Our next procedure (which appears in Figure 1) is the primitive
character-input procedure. When the rubout-port machinery needs to
actually read a character, it applies %read-char to the port’s data record.
This code is, essentially, our “line discipline” driver code, written in
Scheme. The procedure sits in a loop (the named-let function lp), which
does an input operation on the actual terminal, binding the variable c

to the character entered by the user. Then we perform a variety of
actions, depending on the character. Inducing rollback is easy: if the
character is the delete character, we apply the port’s current checkpoint
continuation rubout to true, which will abort what we’re doing, and reset
to the previous read (and also undo any echoing we might have logged
in-between). That previous read will then be able to get a new character
from the user and return it to the parser in place of the original character
it had input back when it first ran. (We’ll see the code that does this—
the code at the target end of our reset-continuation’s non-local jump—in
just a moment.)

If the character is the line-kill character, control-U, then we apply the
checkpoint to false; by the rules of the checkpoint invocation protocol,
this will induce a rewind all the way back to the beginning of the entire
parse session, clearing previously echoed characters from the display as
we rewind.

If the user entered control-C or control-Z, the code sends the current
process the appropriate OS signal, and then loops by tail-calling (lp),
to continue trying to read a character. (The process signals itself in
a context that resets the terminal’s echoing and buffering state to its
original settings, but this is a fine point we can skip.)

These first few cases describe the text-editing functionality of our
“device driver,” where characters input by the user are not intended as
data to be passed on to the process, but are rather interpreted directly

pearl.tex; 21/08/2013; 8:00; p.8

Modular Rollback through Control Logging 9

(define (%read-char port-data)

(let ((rubout (rubout-port-data:checkpoint port-data))

(iport (rubout-port-data:ttyin port-data)))

(let lp ()

;; Assert: (rubout-port-data:peek-data port-data) = #F.

(let ((c (read-char iport))) ; real input!

(cond

((rubout-char? c) (rubout #t)) ; DEL => rubout a char

((linekill-char? c) (rubout #f)) ; ^U => kill the sexp

((interrupt-char? c) ; ^C => interrupt

;; Undo the tty’s raw/no-echo modes before signaling

(with-rubout-port-restored port-data

(signal-process 0 signal/int))

(lp)) ; The process survived the signal => keep reading

((suspend-char? c) ; ^Z => suspend

;; Undo the tty’s raw/no-echo modes before signaling

(with-rubout-port-restored port-data

(signal-process 0 signal/tstp))

(lp))

(else (let ((c (cond ; ^V => turn off special handling

((knockdown-char? c) (read-char iport))

; ^D => EOF

((eof-char? c) *eof-object*)

; Normal char

(else c))))

;; Outstanding! We have read an actual character, C.

;; Before returning it to the parser, set a new

;; checkpoint, so that if we later wish to rub C out,

;; we can come back here, get a new character, & resume.

(call/cc ; Therein lies the rubout.

(λ (ret)

(let ((just-1?

(call/cc (λ (ckpt) ; Set the checkpoint & return C:

(set-rubout-port-data:checkpoint port-data ckpt)

(ret c)))))

;; On rewind, we’ll bind JUST-1? & come here.

(if just-1?

(lp) ; Either re-do the current read,

(rubout #f)))))))))))) ; or keep rewinding.

Figure 1. The checkpointing character reader

pearl.tex; 21/08/2013; 8:00; p.9

10 Shivers, Turon, and McBride

by the input-port system as requesting various actions. The final case
(the else clause of the cond) is the actual-input case: we’ve read an
ordinary character c (or we’ve encountered the end of file, or we’ve read
the “knockdown” character, control-V, followed by any character at all).
Since we can now be considered to have successfully accomplished an
input side-effect, before we return c to our caller, we must first log the
operation by updating the port’s checkpoint. Just as with echo, this
is done with a nested, double call/cc pattern. The first, outer call/cc

simply captures the context we’ll use to return c and proceed with the
parse by returning from %read-char. The second, inner call/cc creates
the checkpoint continuation, naming it ckpt. We then install ckpt into
the port’s data record, and apply ret to the character c, which will lead
us to produce c as the return value of %read-char. What happens when,
at some later time, the checkpoint continuation is invoked? What we
want to accomplish, if this happens, is to rewind the computation back
to now, then get a new character c′ from the terminal and return that
instead of the character c we just now produced.

That’s exactly what happens. Suppose some future call to %read-char

gets a delete character and so fetches the checkpoint continuation we
just now created from the port’s data record and applies it to true (i.e.,
executes line 7 of the procedure). When the checkpoint continuation is
applied to true, we’ll rewind to “now,” and the second, inner call/cc will
return the true value—so it will be let-bound to the variable just-1?,
and we’ll proceed into the body of the let form, whose if conditional
will jump back to the top of our original loop, lp, continuing our current
read. Any character c′ we get will be returned to our caller, so the net
effect is that, after rewinding the computation to here, we’ll proceed
with c′ instead of our originally-read character. In short, we undid the
input effect and replaced it with a new one.

On the other hand, suppose at some point in the future the user
enters the “line-kill” character, Control-U. Then the checkpoint con-
tinuation will be applied to false (by line 8 of that future invocation
of %read-char). The computation will be reset to “now,” and the inner
call/cc will produce the false value, which will be let-bound to just-1?.
So, instead of looping in our current read, we’ll keep rewinding by
applying our checkpoint to false, in the very last line of the procedure:
(rubout #f).

In other words, we don’t have to keep an explicit stack of checkpoints.
The “stack” is implicit in the environment structure of the various check-
points: each checkpoint continuation has access to the next checkpoint
back in the timeline: it is bound to the variable rubout in the current
checkpoint’s lexical scope. (Similarly, it is bound to the variable reset,
in the checkpoint created by the echo procedure.)

pearl.tex; 21/08/2013; 8:00; p.10

Modular Rollback through Control Logging 11

Peeking and reading

All the heavy lifting in our system is accomplished by the echo and
%read-char primitives. The rubout-port system calls them from its peek-
character and read-character “method” procedures. Note a policy deci-
sion encoded in these procedures: a character is not echoed as soon as
we get it from the keyboard: peeks don’t count. This code doesn’t echo
a character to the display until the parser actually consumes it with a
read-char operation.

(define (rubout-peek-char port-data)

;; A "subsequent" peek: don’t checkpoint

(or (rubout-port-data:peek-char port-data)

;; A "first" peek -- checkpoint it

(let ((c (%read-char port-data)))

;; then set the peek cache:

(set-rubout-port-data:peek-char port-data c)

c))) ; then return the character.

(define (rubout-read-char port-data)

;; If the peek does input, it will be logged:

(let ((c (rubout-peek-char port-data)))

;; If we echo, it will be logged:

(if (not (eof-object? c)) (echo c port-data))

;; Clear the peek cache.

(set-rubout-port-data:peek-char port-data #f)

c))

Note also that these two higher-level procedures do not concern them-
selves with setting checkpoints or logging effects. One of the nice prop-
erties of our design is that the effect-logging code is tightly bound
to the code that commits the effects. Thus, doing a side effect and
logging its rollback handler are welded together. Client code, like the
two procedures above, or the application’s parser, just commit side-
effects at will; it’s impossible for them to break the pairing of effects and
rollbacks. (This nice property is only extended to the side-effects that
we included in our design, of course. Parser clients must be aware that
they cannot perform other side-effects and expect them to be undone
during rollback.)

pearl.tex; 21/08/2013; 8:00; p.11

12 Shivers, Turon, and McBride

Failure is not an option

All that remains is to define with-rubout-session*, the procedure used
to delimit a single parse session; it appears in Figure 2. We can perform
a rubout-enabled parse with something like:

(with-rubout-session* rubout-port

(λ () (read rubout-port)))

The central body of this procedure executes in a dynamic context,
established by the R5RS Scheme dynamic-wind procedure, that saves and
restores the rubout port’s checkpoint if we should throw out and then
back into the session’s dynamic extent by invoking saved continuations.
It also serves another purpose: the dynamic-wind’s exit thunk clears the
checkpoint from the rubout port, which permits the checkpoint to be
garbage collected even if the rubout port itself continues to remain alive.

Note that the rubout-session’s thunk executes in an exception-handler
context that treats parser-syntax errors in a clever way: we refuse to
accept input from the terminal that triggers a syntax-error exception.
If the user should enter a character that causes the parser to raise
this error, the exception handler “rings the bell” (in a visual manner),
then discards the bad character by invoking the rubout port’s current
checkpoint, passing it true for its just-1? parameter. This rewinds the
parse computation back to the read operation where the user entered the
offending character (erasing the character as we rewind, if it had been
echoed); we then resume the parse by reading an alternate character
from the user.

For example, if the user tries to type in an ill-formed dotted-pair
that has two dots, e.g., (a . b . c), the parser will stubbornly refuse
to accept the second dot, ringing the bell every time the user attempts
to enter it to signal that we have departed from the syntactic straight
and narrow. Note that this facility is completely independent of the
grammar we are parsing, or the details of the parser: the parser is just
a piece of code that raises an error exception as soon as it encounters
an illegal character.

The final task the rubout-session procedure must perform before
invoking the client’s parser computation thunk is to set the rubout port’s
initial checkpoint. Again, we see the nested, double call/cc pattern.
Tracing through the restart loop shows that each time we rewind back
to the initial checkpoint, we recreate and reinstall it into the port, then
begin the parse (that is, call thunk) all over again. Thus, invoking the
initial checkpoint has the effect of restarting the whole parse.

pearl.tex; 21/08/2013; 8:00; p.12

Modular Rollback through Control Logging 13

(define (with-rubout-session* rubout-port thunk)

(let ((pd (extensible-input-port-local-data rubout-port))

(suspended-checkpoint #f))

(with-raw-mode-rubout-port pd ; Turn off tty buffering & echoing.

(dynamic-wind

;; Dynamic-wind pre:

;; If we are throwing back into the parse, restore the

;; checkpoint we saved away when we threw out.

(λ () (set-rubout-port-data:checkpoint pd suspended-checkpoint))

;; Dynamic-wind body:

(λ () (with-syntax-error-handler

;; Here’s the error handler. If the parser raises a

;; syntax error, ring the bell, clear the peek-char cache,

;; then trigger a 1-step rewind to rubout the last char,

;; which triggered the error.

(λ (c) (visible-bell (rubout-port-data:ttyout pd))

(set-rubout-port-data:peek-char pd #f)

((rubout-port-data:checkpoint pd) #t))

;; Set the initial checkpoint, which comes back here and

;; restarts the whole parse.

(call/cc (λ (go-start-parse)

(let restart ()

(call/cc (λ (icp)

(set-rubout-port-data:checkpoint pd icp)

(go-start-parse)))

;; Come here when initial checkpoint ICP

;; is invoked:

(restart))))

(thunk))) ; Do the parse.

;; Dynamic-wind post:

;; When we’re done, clear out the port’s checkpoint, so the port

;; won’t keep the checkpoint from being gc’d. But... we might not

;; be done. We might be throwing out and later throwing back in.

;; So save the current checkpoint in case we later throw back in.

(λ () (set! suspended-checkpoint (rubout-port-data:checkpoint pd))

(set-rubout-port-data:checkpoint pd #f))))))

(define (visible-bell oport) ; A simple "visible bell:"

(write-char #\! oport) ; print out a !,

(sleep 1) ; pause one second, then

(print-rubout-sequence oport)); erase it.

Figure 2. Delimiting a rubout-handler session.

pearl.tex; 21/08/2013; 8:00; p.13

14 Shivers, Turon, and McBride

Discussion

The big idea The first thing to note about this rubout-handler system
is that the technique is not at all limited to interactive text entry. The
general idea here is that we have a library of effectful (but reversible)
operations. Some client performs a series of effects by issuing a sequence
of these operations; as the client computes, the application may decide
to rewind the driving computation to some previous operation and do
something different—perhaps (as in our rubout-handler scenario) in
response to error conditions.

The design pattern we propose here is to instrument the effectful op-
eration library to construct a rollback log for the operations it performs.
More specifically, by constructing this rollback log from continuations,
we capture not only the library’s effects, but also the client’s control state
at each operation-invocation point. This is what permits completely
transparent rollback of the client computation: it’s all due to the power
of call/cc to package up a general control state.

Delimiting our checkpoints Let’s motivate our next point by consid-
ering an extension to our rubout-handler system. Many text-input sys-
tems have some kind of “history” mechanism: they save previous lines
of input, which the user can recall by entering some special control
key that cycles through previous entries. Suppose we wished to provide
this kind of functionality—and, of course, keep our rubout-handling
capability. Unfortunately, the saved continuations that make up our
checkpoints capture too much control state: they capture not only the
parse computation, but also the computational state of the client that
called the parser. If we were to reset to one of the checkpoints from a
previous read in, e.g., a Scheme interpreter’s read-eval-print loop, we’d
reset the entire interpreter back to that earlier state!

This is a problem that is exactly handled by delimited-control oper-
ators such as Felleisen’s prompt (Felleisen, 1988; Sitaram and Felleisen,
1990) or Danvy and Filinski’s shift (Danvy and Filinski, 1990). We need
only delimit the parse computation carried out by the thunk passed to
with-rubout-session* and we’re set. We leave this modification to our
code as a (fun) exercise for the interested reader.

The dark side of Church encodings Scheme provides continuations
encoded as procedures: we perform a non-local control transfer to a
captured continuation by applying it to some argument. This has been
a long-standing source of subtle problems using Scheme’s continuations.
The central issue is that, if we want to call procedure p, with argument
a and continuation k, we cannot do the following: (k (p a)). This goes

pearl.tex; 21/08/2013; 8:00; p.14

Modular Rollback through Control Logging 15

wrong because k’s underlying continuation does not actually become the
current continuation until p returns; the whole time p is executing, the
continuation is an extension of the one extant when we began evaluating
the entire (k (p a)) expression. So if p raises an exception, we will resolve
it using the exception handlers of that continuation, not k’s handlers. If
we were hoping to reclaim the original continuation’s stack by installing
k as the current continuation, this won’t happen while p is executing—
if it happens to be some long-running thread (such as a web server),
then the original continuation’s stack will never become free, leading
to a subtle space leak. These kinds of space leaks aren’t just theoretical
oddities; they actually occur when programmers build thread schedulers
based on continuations (Biagioni et al., 1998).

The real problem here is that when we Church-encode a kind of data,
we can only do one thing with the data: apply it to an argument—that
is the only operation permitted on procedures. In the case of continua-
tions, we need to do two things: perform a function call with the given
continuation for the call, and compose an α→ β function onto the “end”
of a β-accepting continuation, producing an α-accepting continuation.
These two procedures provide the necessary interface:

(with-continuation cont thunk)
(compose-continuation β-cont α->β)

Scheme doesn’t have this kind of continuation mechanism, so we have
to code in awkward ways to work around the limitations of call/cc.

This problem rears its head in our rubout-handler system. Consider
the subtle, double-call/cc code that creates the new checkpoint when we
read a character in %read-char. Couldn’t we eliminate the inner call/cc

and just use a simple procedure, instead of an exotic continuation, with
the following?

(call/cc (λ (ret)

(set-rubout-port-data:checkpoint port-data

(λ (just-1?) (if just-1? (ret (lp)) (rubout #f))))

c))

Unfortunately, no. If some future delete command applies this check-
point to true, we will perform the (lp) retry in that future context ; we
won’t throw back to the previous control state until the lp call returns
to the Scheme-style Church-encoded continuation ret. All the time that
(lp) is running, it is running with the wrong exception-handler context,
the wrong dynamic-wind undo/redo handlers, and so forth. Further-
more, the run-time system can’t reclaim the triggering read’s stack and
other control context until lp returns; we want to reclaim it when lp

starts.

pearl.tex; 21/08/2013; 8:00; p.15

16 Shivers, Turon, and McBride

The double-call/cc pattern establishes the proper context, then cap-
tures it with the inner call/cc, so things work out properly. It would
have been easier and simpler to write this code if we’d had the alternate
continuation functionality described above. Our checkpoint-setting code
would then look like this:

(call/cc (λ (ret)

(let ((ckpt (compose-continuation ret

(λ (just-1?)

(if just-1? (lp) (rubout #f))))))

(set-rubout-port-data:checkpoint port-data ckpt))

c))

(call/cc

(λ (ret)

(set-rubout-port-data:checkpoint port-data

(compose-continuation ret ; compose a char cont

(λ (just-1?) ; & a bool->char fun

(if just-1? (lp) (rubout #f)))))

c))

An observant reader might similarly have wondered why we didn’t
use a simple procedure as the checkpoint for the echo procedure. This is
why. As a matter of style, checkpoints in our rubout-handler system—
that is, things stored in the checkpoint field of a rubout port’s data
record—are always and only continuations—that is, things created by
call/cc.

This issue matters less in the case of echo’s checkpoints. If we’d
written the checkpoint code for echo with the simpler

(set-rubout-port-data:checkpoint pd

(λ (just-1?)

(print-rubout-sequence oport)

(reset just-1?)))

then the only code that would run in the wrong context would be
the (print-rubout-sequence oport) call, which is short and presumably
terminates with no other control effects such as raising an exception.
Still, we preferred to work with the discipline of only using continuations
for checkpoints.

Backwards and forwards An observant reader might also be wonder-
ing: old Lisp systems didn’t have call/cc or general continuations. So
how did these systems provide prompt reading with rubout handling?

pearl.tex; 21/08/2013; 8:00; p.16

Modular Rollback through Control Logging 17

The answer is rather ingenious (Pitman, 1995). These systems couldn’t
back up to prior checkpoints by invoking saved continuations. Instead,
the port machinery would log all the characters read during a session. If
the user requested a single-character delete, the rubout handler would
raise an exception, which would be caught by an exception handler
established at the beginning of the rubout-handling session. The ex-
ception handler would delete the last character from the log, and then
completely restart the entire parse. During the new parse attempt, the
port would be in a special “replay” mode: whenever the parser requested
a character from the port, the port would get the next item from the
log, instead of going to the terminal to read a new character. When
the log was exhausted, the port would revert to doing actual input
from the terminal. So, to delete a character, the rubout handler would
simply reread and reparse everything but the deleted character. Instead
of going one step back, the system would do a complete restart and
then go n− 1 steps forward.

Why call/cc? Our final point is the following. Many programmers
think of call/cc and delimited control operators as being the province
of effete language theorists. To which we really must reply1: “Au con-
traire! ” Continuations are rather tools for hearty, robust systems pro-
grammers: we’ve used them to write a line-discipline driver to replace
the one provided by the Unix kernel, and we only needed about 200
lines of code. . . and our version provides more functionality.

2. The Burke-Fisher functor in SML

Enough s-expressions. Let’s look at some real syntax:

〈exp〉 ::= 〈exp〉 + 〈exp〉
| 〈num〉
| 〈id〉
| · · ·

〈decl〉 ::= val 〈id〉 = 〈exp〉 ;
| fun 〈id〉 (〈id〉) = 〈exp〉 ;

This is just enough grammar to get us into some interesting trouble.
Imagine for a moment being a novice programmer sitting at the REPL.
You type

> val f(x) = x + 1;

1 In a hearty, robust manner, that is.

pearl.tex; 21/08/2013; 8:00; p.17

18 Shivers, Turon, and McBride

expecting to define your first function. But you are instead greeted by

SYNTAX ERROR: at (1:6), got ‘(’, expected ‘=’

Being a novice, you probably haven’t seen the grammar above, which
anyway would be much larger in practice. From the error, you only know
that the first five characters drove the parser into a state from which
‘=’ is the only way out. If you also believe that val declarations are the
sole way of creating bindings—or have forgotten whether it’s fun, fn,
proc or function—you’re in for a long and frustrating REPL session.

A more helpful parser might instead respond with

> val f(x) = x + 1;

SYNTAX ERROR: at (1:1), did you mean ‘fun’?

Startlingly, the location of the syntax error has changed in this inter-
action. The parser is recommending that val be replaced by fun, even
though val is permitted by the grammar. This recommendation seems
more helpful than replacing ‘(’ with ‘=’, but why?

There is a general principle at work, one elucidated in a classic paper
by Burke and Fisher (Burke and Fisher, 1987). The principle, loosely
stated, is that

Syntax errors are usefully explained by finding minimal,
nearby edits that allow the parser to substantially progress.

Looking at our novice REPL session, we see:

− If we replace ‘(’ with ‘=’, the parser will encounter another syntax
error almost immediately: the now-unbalanced closing parenthe-
sis. To recover from that error, we would probably delete several
tokens—the initial replacement leads us straight into a syntactic
quagmire.

− If instead we replace ‘val’ by ‘fun’, which requires backing up from
the location where the error was detected, that single-token change
results in a grammatically-correct input.

In short, the ‘fun’ replacement is better because it explains more of the
programmer’s original input.

Burke and Fisher outline two requirements for “practicality”:

1. Error handling should not substantially increase the space or time
needed to parse correct input.

2. Error analysis and recovery should take constant time.

pearl.tex; 21/08/2013; 8:00; p.18

Modular Rollback through Control Logging 19

The technique outlined in their paper relies on the details of explicit-
stack LL and LR parsing, and works by maintaining two parser states.
The first parser state represents the “real” parser, and is used to detect
syntax errors. The second parser state lags some fixed k tokens behind.
When the real parser encounters an error, it can be repeatedly reverted
to the state of the lagging parser as different modifications to the input
are tried. The winning modification is, roughly, the smallest one yielding
the greatest amount of progress beyond the original error.2

While ingenious, Burke-Fisher error repair is also a vivid exam-
ple of too-tight coupling between error handling and core logic: the
error-handling code relies on complete knowledge of the representation
and algorithm of the underlying parser. At the very least, it requires
there to be an explicit representation of the parser’s state, which would
seem to rule out the technique for recursive-descent parsers. But as
any functional programmer knows, the stack is a representation of a
computation’s state, and is only a call/cc away from being an explicit
one.

Thus, using similar techniques to the eager REPL, we can liberate
Burke-Fisher error repair from its assumptions about parsing, achieving
clean separation between processing valid input and handling erroneous
input.

Plot summary

The basic trick is to slide in error correction between a parser and its
source of input, a lexer—about which we assume essentially nothing. As
with the eager REPL, we do this by feeding the parser an instrumented,
checkpointing lexer. To keep things interesting, we switch to SML, and
use the module system to be very clear about the separation of concerns.
In the end, we write a single functor, BurkeFisher, that can add error
repair to any module of signature PARSER.

We use two extensions to the language: delimited control and higher-
order functors, both of which can be had in SML/NJ (Kuan, 2011;
Herman, 2007). Why? Read on.

Setting the scene: the signature of a parser

We start with the LEXER signature shown in Figure 3, which provides a
type tok of tokens and tok_stream of token streams. We assume nothing
about the internal structure of token streams, but can observe the next
token and remaining stream, if any, using lex.

2 To work in constant time, a test of a repair should only venture some fixed
number of tokens beyond the original error.

pearl.tex; 21/08/2013; 8:00; p.19

20 Shivers, Turon, and McBride

signature LEXER =

sig

type tok

type tok_stream

val lex : tok_stream -> (tok * tok_stream) option

end

signature PARSER =

sig

type tok

type result

functor ForLexer(L : LEXER where type tok = tok):

sig

exception ParseError of L.tok_stream list

val parse : L.tok_stream -> result

end

end

Figure 3. The LEXER and PARSER signatures

A PARSER is parameterized by its LEXER. Here is our first use of SML/NJ’s
higher-order module system: a module implementing PARSER must in-
clude a functor, ForLexer, which can be applied to lexers with a com-
patible notion of tokens. ForLexer in turn provides a parse function
specialized to the token stream of the given lexer. Of course, all this
could be replaced by an appropriate use of polymorphism, but then, so
can SML’s module system (Rossberg et al., 2010). Explicit structuring
via signatures, modules and functors allows us to clearly articulate and
name the separate concepts with which we wish to work.

Because result is defined outside the ForLexer functor, the result
type of a parser cannot depend on its lexer. On the other hand, the
ParseError it raises on detecting a syntax error is parameterized by
the token stream—in fact, it takes a list of token streams. This is
the one concession a parser must make to error repair: it must signal
the detection of an error by throwing an exception holding the stream
just after the error was detected. If the parser performs backtracking
choice, but every choice fails, it should throw the exception with a list
containing each failure point.

A simple parser

The module DeclRecognizer in Figure 4 implements a recognizer for the
〈decl〉 grammar, providing an example realization of the PARSER signa-

pearl.tex; 21/08/2013; 8:00; p.20

Modular Rollback through Control Logging 21

structure DeclRecognizer =

struct

datatype tok = VAL | FUN | LPAREN | RPAREN | ID | EQ | NUM

| PLUS | SEMI

type result = unit

functor ForLexer (L : LEXER where type tok = tok) =

struct

exception ParseError of L.tok_stream list

fun want t = fn s =>

case L.lex s

of NONE => raise ParseError [s]

| SOME (t’, s’) =>

if t=t’ then s’

else raise ParseError [s’]

(* stream /after/ the error *)

infix >>

fun p >> q = fn s => q (p s)

infix <|>

fun p <|> q = fn s =>

p s handle ParseError ss =>

q s handle ParseError ss’ =>

raise ParseError (ss @ ss’)

val wantExp = (* ... *)

val wantDecl =

(want FUN >> want ID >> want LPAREN >> want ID >>

want RPAREN >> want EQ >> wantExp >> want SEMI)

<|> (want VAL >> want ID >> want EQ >> wantExp >>

want SEMI)

fun parse s = wantDecl s; ()

end

end

Figure 4. A combinator-style recognizer for 〈decl〉

pearl.tex; 21/08/2013; 8:00; p.21

22 Shivers, Turon, and McBride

ture. Being a recognizer, there are only two possible outcomes of parse:
a unit value if successful, and an exception if not. The implementation
of DeclParser uses a few parser combinators (Hutton and Meijer, 1998),
which provide interaction with both the lexer and, ultimately, error
repair.

The combinator want simply checks that the given token is the next
one on the stream, returning an advanced stream if so and raising an
exception if not. Usually we compose recognizers sequentially with >>,
letting errors propagate. To handle nonterminals like 〈decl〉, which have
multiple productions, we instead use <|>, which provides backtrack-
ing choice. With choice we see concretely the concession the parser
must make to error repair: it must bundle together the possible error
locations.

Checkpointing a lexer

Parsers are conveniently parameterized over lexers, leaving the perfect
loophole through which to checkpoint parser state. Unlike the eager
REPL, we will employ delimited continuations (Felleisen, 1988; Danvy
and Filinski, 1990) for checkpointing. A delimited continuation captures
the evaluation context only up to the most recent delimiter. Delimita-
tion will allow us to tentatively run the rest of a parse with various
repairs, searching for the best one, without going on to execute the rest
of the program.

We use an implementation of delimited control, due to David Herman
in an ICFP pearl (Herman, 2007), that is parameterized by a single
answer type:

signature CONTROL =

sig

type ans

val shift : ((’a -> ans) -> ans) -> ’a

val reset : (unit -> ans) -> ans

end

Delimiters are inserted using reset, which expects an answer-producing
thunk. On the other hand, shift aborts to the nearest delimiter, but
reifies the evaluation context up to the delimiter as a reusable function.
For example,

> (reset (fn () => shift (fn k => 1) + 1)) * 2;

2

> (reset (fn () => shift (fn k => k (k 1)) + 1)) * 2;

6

pearl.tex; 21/08/2013; 8:00; p.22

Modular Rollback through Control Logging 23

In the first case, the captured context [] + 1 is simply discarded; the
reset is replaced by the answer 1, which is then doubled. In the second
case, the captured context [] + 1 is applied, as a function, twice; the
reset is replaced by the answer 3, which is then doubled.

For our purposes, a single delimiter surrounding an entire parse will
suffice. The checkpoints captured by the lexer will correspond to the
remaining execution of the parser, starting from its request for a token
at some point in the stream, and continuing to the point where it returns
the result of the parse. The type ans for a parser P will therefore be
P.result.

The checkpointing instrumentation is performed by a functor that
takes LEXERs to (instrumented) LEXERs. The instrumented lexer provides
the same type of tokens as the original one, so it will be compatible
with the same parsers. The type of token streams, however, differs. In
particular, an instrumented lexer can operate in one of two modes,
checkpointing or passthrough, and the current mode is part of the
stream representation. Checkpointing is used during the initial parse,
until a syntax error is found. The last k checkpoints are maintained in
the stream state, using a window, so that instrumentation imposes only
a constant-bounded space overhead:

signature WINDOW =

sig

type ’a window

val empty : ’a window

(* keeps only last k pushes *)

val push : ’a window -> ’a -> ’a window

val list : ’a window -> ’a list

end

Figure 5 shows the instrumentation. In passthrough mode, instru-
mentation has no effect. In checkpointing mode, the lexer uses shift to
abort while capturing the continuation up to the end of parsing. The
resulting delimited continuation k is immediately invoked—effectively
undoing the abort—yielding the same token t that the underlying lexer
would have. However, a checkpoint is pushed that, when invoked, re-
runs the parser from the point of the shift, providing an alternative
token t’ and switching to passthrough mode.

In addition, an instrumented lexer provides wrap to inject an under-
lying lexer, unwrap to project the underlying lexer, and checkpoints to
extract the last k checkpoints.

pearl.tex; 21/08/2013; 8:00; p.23

24 Shivers, Turon, and McBride

functor WrappedLexer (C : CONTROL) (L : LEXER) =

struct

type tok = L.tok

type checkpoint = L.tok -> C.ans

datatype wrapper

= CHECKPOINT of checkpoint Window.window

| PASSTHRU

type tok_stream = L.tok_stream * wrapper

fun lex (s, PASSTHRU) =

(case L.lex s

of NONE => NONE

| SOME (t, s’) => SOME (t, (s’, PASSTHRU)))

| lex (s, CHECKPOINT w) =

(case L.lex s

of NONE => NONE

| SOME (t, s’) => SOME (C.shift (fn k =>

(* first time through, yield t *)

k (t, (s’, CHECKPOINT (Window.push w (fn t’ =>

(* on checkpoint invocation, yield t’ *)

k (t’, (s’, PASSTHRU)))))))))

fun wrap s = (s, CHECKPOINT Window.empty)

fun unwrap (s, _) = s

fun checkpoints (_, CHECKPOINT w) = Window.list w

| checkpoints (_, PASSTHRU) = []

end

Figure 5. The checkpointing lexer

Putting it together: the Burke-Fisher functor

Nearly all the ingredients are now in place. However, to search for
repairs, we’ll need to know something about the available tokens:
signature TOK =

sig

type tok

val toks : tok list

val toString : tok -> string

end

The list toks provides an instance of each token that should be used for
replacement or insertion during error repair.

pearl.tex; 21/08/2013; 8:00; p.24

Modular Rollback through Control Logging 25

With that, we can specify the shape of functional Burke-Fisher error
repair using SML/NJ’s funsig form:

funsig BURKE_FISHER

(T : TOK)

(P : PARSER where type tok = T.tok) =

PARSER where type tok = T.tok

Figure 6 gives an implementation—the BurkeFisher functor. To keep
the presentation short, the functor is not quite true to the original
algorithm:

− It only performs a single repair.

− It requires the repair to make the entire input valid, rather than
choosing a repair that makes maximal (but bounded) progress.
This means, in particular, that repair is not constant-time.

− It only attempts repairs of Hamming distance 1, that is, single-
token replacements.

These limitations can be easily addressed by modifying the functor,
without any change to the underlying parser.

When applied to a parser P, BurkeFisher produces a parser with result
type P.result * string option. The string component is a description of
the single repair (if any) performed.

Internally, the functor uses Herman’s GreatEscape functor (Herman,
2007), which provides delimited control by using SML/NJ’s call/cc
facility. Crucially, this implementation of delimited control interacts
properly with exceptions: delimited continuations captured by shift

also capture exception handlers up to the delimiter—no more, no less.
Thus, as Herman writes,

reset

(fn _ =>

(shift (fn k => (k 0)

handle Fail _ => 1))

+ (raise Fail "uncaught"))

handle Fail _ => 2

returns 1 rather than 2. Since we use exceptions to communicate parse
failures, and thus exception handlers to institute repair, we rely on this
behavior.

Once BurkeFisher is applied to a particular parser and lexer, it in-
stantiates the parser with an instrumented version of the lexer, yielding

pearl.tex; 21/08/2013; 8:00; p.25

26 Shivers, Turon, and McBride

a module UP (for “underlying parser”). To parse an underlying stream
us, it wraps the stream and feeds it to the underlying parser—within a
reset, which sets the delimiter for the checkpointing lexer. The result of
the parse is paired with NONE, meaning no repair was necessary, which is
returned if all goes well. But outside this pair (in particular, outside the
reset), there is an exception handler that kicks off the repair process.
Placing the handler outside the reset guarantees it won’t be captured
in the checkpoints.

At last—when the underlying parser throws a syntax error, the
BurkeFisher functor catches it and its list of wrapped streams wss. Each
wrapped stream represents a possible syntax error within a choice.
Concatenating the checkpoints from each stream, the repairing parse

uses tryCPs to attempt a repair at each checkpoint in turn. If successful,
tryCPs returns a pair of the result from the underlying parser and the
replacement token it used to get that successful parse. Otherwise tryCPs

returns NONE, and parse re-raises the parse error using the underlying
lexer streams.

Supposing we’ve written modules Tok and SimpleLexer (which rep-
resents streams as lists of tokens), we can sit down at the REPL and
see

> structure RP = BurkeFisher(Tok)(DeclRecognizer);

> structure RPP = RP.ForLexer(SimpleLexer);

> RPP.parse [VAL,ID,LPAREN,ID,RPAREN,EQ, NUM,PLUS,NUM,SEMI];

((), SOME "Did you mean ’fun’?")

A caveat: choice points are commit points

There’s a subtlety regarding choice: if we factor out “ = 〈exp〉 ; ”, which
is common to both forms of 〈decl〉, the repair no longer works.

The problem is this: once a choice has been successfully parsed, only
the checkpoints of the taken branch are retained. The effective result
is that repair checkpoints do not always have access to all possible
branches.

We used exceptions carrying a list of streams to join together the
checkpoints of an unsuccessful choice. To deal with successful choices,
we need to maintain all checkpoints even when backtracking—we need
the backtracking control structure to play nicely with the checkpoint-
ing control structure. An easy and fairly pleasing way to do this is
to parameterize the underlying parser by an implementation of back-

pearl.tex; 21/08/2013; 8:00; p.26

Modular Rollback through Control Logging 27

functor BurkeFisher (T : TOK)

(P : PARSER where type tok = T.tok) =

struct

type tok = T.tok

type repair = string

type result = P.result * string option

(* Herman’s delimited control from call/cc *)

structure C = GreatEscape(type ans = P.result)

functor ForLexer (L : LEXER where type tok = tok) =

struct

exception ParseError of L.tok_stream list

structure WL = WrappedLexer (C) (L)

structure UP = P.ForLexer (WL)

fun tryReps k [] = NONE

| tryReps k (t::ts) = SOME (k t, t)

handle UP.ParseError _ => tryReps k ts

fun tryCPs [] = NONE

| tryCPs (k::ks) = case tryReps k T.toks

of NONE => tryCPs ks

| SOME rt => SOME rt

fun parse us =

(C.reset (fn () => UP.parse (WL.wrap us)), NONE)

handle UP.ParseError wss =>

case tryCPs (List.concat (map WL.checkpoints wss))

of NONE =>

raise ParseError (map WL.unwrap wss)

| SOME (r, t) =>

(r, SOME (concat ["Did you mean ",

T.toString t, "?\n"]))

end

end

Figure 6. The Burke-Fisher functor

pearl.tex; 21/08/2013; 8:00; p.27

28 Shivers, Turon, and McBride

tracking choice—which BurkeFisher can then provide—which also allows
ParseError exceptions to carry just a single stream:

fun choose p q = fn (us, w) =>

p s handle ParseError (us’, w’) =>

q (us, w’)

Discussion

The big idea As with the eager REPL, the key benefit of control op-
erators is the ability to hook into—even manipulate—the computation
of a parser, without any understanding of how that computation is
structured.

There are also two significant differences from the eager REPL. First,
we assume that parsing and lexing are free from observable side effects,
so we do not use effect logging (and, in fact, avoid state—see below).
Thus, we are only logging control state. Second, by having a modicum
of knowledge about the structure of input to the parser (via the Tok

signature), we are able to intelligently explore the space of input repairs,
while keeping the computational structure of the parser abstract.

Look Ma, no refs! Contra the eager Scheme REPL, we haven’t used
mutable state in implementing Burke-Fisher repair. We were able to
avoid it because the PARSER signature requires parsers to use their lexers
functionally—in particular, to thread the token stream through the
parsing processes. The downside to this approach is that checkpointing
is sensitive to the way the parser threads the token stream, which as
we noted can cause problems when the parser itself backtracks.

But, of course, an imperative interface is also workable, and it has
the benefit that every use of the lexer is checkpointed, regardless of how
the token stream is threaded. What’s more, the token streams can be
dropped from the ParseError exception, further shrinking the interface
between the parser and the repair functor.

To type-checking, and beyond Having generalized Burke-Fisher repair
to arbitrary parsers, it’s natural to wonder if we can go even farther.
By encapsulating the notion of input streams and local repairs in a
separate module taken as an extra parameter, the BurkeFisher functor
could be pared down to handling just the checkpointing and error-
catching process. We suspect, for example, that Lerner et al.’s Seminal
tool (Lerner et al., 2007), which attempts to explain type errors by
searching for repairs, could be restructured to use Burke-Fisher-style
local search—becoming just one more instantiation of the functor.

pearl.tex; 21/08/2013; 8:00; p.28

Modular Rollback through Control Logging 29

The real deal The BurkeFisher functor came out of work done building
new lexing and parsing infrastructure for SML/NJ; it is in use in pro-
duction code, and available with recent versions of the compiler.3 The
implementation includes the full suite of Burke-Fisher repairs, allows for
multiple repairs, and judges goodness of repairs using a sophisticated
metric.

Historical note

As an undergraduate at the University of Chicago, Turon had a gig
under John Reppy building infrastructure for SML/NJ—in particular,
new lexing and parsing tools that were meant to be robust, but some-
what out of the mainstream. The parser, ml-antlr, was built in the
style of the famous Antlr parser (Parr and Quong, 1995) for Java,
and generated readable, recursive-descent code. Once it was up and
running, Reppy tasked Turon with improving its terrible error messages.
Fatefully, he handed Turon a copy of Burke and Fisher’s paper, which
led to a question: but what if you don’t have an explicit parser stack to
keep a duplicate of? Turon had by that time heard of call/cc—he was
Reppy’s student, after all—and the rest was inevitable.

3. Once more, with free monads

The free monad, (:*) f, of a functor, f, presented in Haskell thus

data f :* x = Ret x | Do (f (f :* x))

instance Functor f => Monad ((:*) f) where

return = Ret

Ret x >>= g = g x

Do ffx >>= g = Do (fmap (>>= g) ffx)

is a standard construction characterizing what it is to be a computation
whose notion of ‘effect’ is given by f, without saying what it is to run
such a computation. We gain modularity just by separating the business
of constructing a program to an interface, given by f, from the business
of interpreting the f-data in that program as some sort of command.

The underlying data in f :* x are simply trees whose leaves rep-
resent ‘returning an x’ and whose internal nodes represent ‘doing one
f-operation then carrying on’. That is, each node is an f-shaped struc-
ture with subtrees for children, explaining how to proceed in each
circumstance possible arising from the action.

3 See http://smlnj.org/

pearl.tex; 21/08/2013; 8:00; p.29

30 Shivers, Turon, and McBride

The ‘return’ of the monad just delivers a value in a leaf, with no pre-
ceding f-operations. The ‘bind’ copies the f-actions of an existing tree,
but grafts a further tree in place of each leaf, computed from the value
found at that leaf, thus delivering a continuation of the computation
with more f-actions.

A Functor from an interface

We can imagine specifying an interface of commands for interacting
with some sort of external system. For example, a Teletypemight offer us
the ability to get and put characters. We might imagine expressing these
abilities as commands, getC returning a Char, and putC parametrized by
a Char, returning a trivial value of unit type. Such a declaration might
conceivably resemble the following:

interface Teletype where

getC :: Char

putC Char :: ()

Imagination notwithstanding, we can systematically unpack such a dec-
laration to construct a Haskell Functor, Teletype, whose free monad
admits getC and putC operations. The Teletype functor explains how to
obtain a value after exactly one Teletype-operation: a Teletype x value
comprises a choice of an operation from the interface and its parameters,
together with a function to x from its result. The associated fmap acts
by postcomposition on the latter.

getC :: Teletype :* Char

putC :: Char -> Teletype :* ()

data Teletype x = GetC (Char -> x)

| PutC Char (() -> x)

instance Functor Teletype where

fmap g (GetC k) = GetC (g . k)

fmap g (PutC c k) = PutC c (g . k)

getC = do1 (GetC)

putC c = do1 (PutC c)

Figure 7. Haskell code for interface Teletype

Wouter Swierstra gives a general account of constructing free mon-
ads from an interface, including machinery for combining interfaces

pearl.tex; 21/08/2013; 8:00; p.30

Modular Rollback through Control Logging 31

and checking interface inclusion using type class machinery (Swierstra,
2008), but our purposes require only the basic idea.

The getC and putC operations are then given by one-node trees in
the Teletype free monad, Doing one command, then Returning, after the
following pattern:

do1 :: (forall x. (t -> x) -> f x) -> f :* t

do1 h = Do (h Ret)

Monadic computations performing getC and putC operations to ob-
tain a value of type x thus correspond to command-response trees in
Teletype :* x. The free monad captures what it is to be a process which
communicates via the Teletype interface without giving any particular
semantics to its commands. We can supply such a semantics by inter-
preting those command-response trees in terms of other operations, for
example, the actual getChar and putChar of Haskell’s IO monad.

ioTeletype :: Teletype :* x -> IO x

ioTeletype (Ret x) = return x

ioTeletype (Do (GetC k)) = do

c <- getChar

ioTeletype (k c)

ioTeletype (Do (PutC c k)) = do

putChar c

ioTeletype (k ())

An interface for reading input

In much the same way, we can characterize operations that support
reading text with a one character lookahead. The ReadLine interface

allows a process to peek at the next character, to read it and move
on once its meaning is clear, or to abort once its meaninglessness is
inevitable.

interface ReadLine where

peekC :: Char

readC :: ()

abort :: a

The polymorphic abort operation can be used at any type, requiring
an ‘existential type’ in the construction of the corresponding ReadLine

Functor, which otherwise works just as before:

pearl.tex; 21/08/2013; 8:00; p.31

32 Shivers, Turon, and McBride

peekC :: ReadLine :* Char

readC :: ReadLine :* ()

abort :: ReadLine :* a

data ReadLine x = PeekC (Char -> x)

| ReadC (() -> x)

| forall a. Abort (a -> x)

instance Functor ReadLine where

fmap g (PeekC k) = PeekC (g . k)

fmap g (ReadC k) = ReadC (g . k)

fmap g (Abort k) = Abort (g . k)

peekC = do1 (PeekC)

readC = do1 (ReadC)

abort = do1 (Abort)

Just as in our earlier Scheme version, we can implement a parser for
s-expressions, working to the ReadLine interface without the need for a
particular implementation of its operations in mind; see Figure 8.

Handling ReadLine in batch mode

We are now free to implement ReadLine in a variety of ways. To parse
s-expressions from a String, we can interpret peekC and readC directly for
non-empty input. If we run out of input too early or the parser aborts,
we must indicate failure, hence we target a Maybe type.

readLineString :: ReadLine :* x -> String -> Maybe x

readLineString (Ret x) _ = Just x

readLineString (Do (PeekC k)) s@(c : _) = readLineString (k c) s

readLineString (Do (ReadC k)) (_ : s) = readLineString (k ()) s

readLineString _ _ = Nothing

Handling ReadLine on a Teletype

However, we should also like to deliver the same sort of rollback for
online parsing on a teletype with backspace as we achieved with con-
tinuations above. Accordingly, let us interpret the ReadLine interface in
terms of the Teletype interface.

teletypeReadLine :: ReadLine :* x -> Teletype :* x

teletypeReadLine p = logRun p (Began p, Nothing)

pearl.tex; 21/08/2013; 8:00; p.32

Modular Rollback through Control Logging 33

data SExp = A String | SExp :.: SExp deriving (Show, Eq)

sexp :: ReadLine :* SExp

sexp = peekC >>= \ c -> case c of

’.’ -> abort

’)’ -> abort

’(’ -> readC >> open

’ ’ -> readC >> sexp

_ -> return A <*> atom

open :: ReadLine :* SExp

open = peekC >>= \ c -> case c of

’.’ -> abort

’)’ -> readC >> return (A "")

’ ’ -> readC >> open

_ -> return (:.:) <*> sexp <*> cdr

cdr :: ReadLine :* SExp

cdr = peekC >>= \ c -> case c of

’ ’ -> readC >> cdr

’.’ -> readC >> return const <*> sexp <*> close

_ -> open

close :: ReadLine :* ()

close = peekC >>= \ c -> case c of

’ ’ -> readC >> close

’)’ -> readC >> return ()

_ -> abort

atom :: ReadLine :* String

atom = peekC >>= \ c -> if elem c " ()."

then return ""

else readC >> return (c :) <*> atom

Figure 8. An s-expression parser, written to the ReadLine interface.

In order to facilitate rollback as we interpret process p, we maintain
a Log initialized with a copy of p. Command-response trees naturally
give rise to a generic notion of log—the zipper (Huet, 1997)—recording
the current position within the tree in a way which permits not only
progress but also retreat to explore alternative paths.

pearl.tex; 21/08/2013; 8:00; p.33

34 Shivers, Turon, and McBride

logRun :: ReadLine :* x ->

(Log x, Maybe Char) -> Teletype :* x

logRun (Ret x) _ = Ret x

logRun (Do (PeekC k)) (log, Just c) = logRun (k c) (log, Just c)

logRun (Do (PeekC k)) (log, Nothing) = getC >>= \ c -> case c of

’\b’ -> unroll log

_ -> logRun (k c) (PeekC1 log k, Just c)

logRun (Do (ReadC k)) (log, Just c) = do

putC c

logRun (k ()) (ReadCed log, Nothing)

logRun (Do (Abort _)) (log, _) = unroll log

Figure 9. Interpreting a ReadLine process

For our purposes, we shall need only a fragment of the zipper, logging
just the first peekC and the readC of each character. That is, we record
only operations whose undoing requires noticeable action.

data Log x = PeekC1 (Log x) (Char -> ReadLine :* x)

| ReadCed (Log x)

| Began (ReadLine :* x)

To interpret a ReadLine process, we maintain this Log, along with a buffer
to hold a character which has been peekCed at but not yet readCed. The
peekC command receives the character in the buffer if there is one, with
no change to the log. However, if the buffer is empty, we must fetch
a fresh character from the teletype. If the character is ‘ordinary’, we
feed it to the peekC’s continuation, but we also log that continuation
in case the user backspaces over it and types something else. It would
not make sense to invoke the continuation for a buffered peekC at a
different character: we must ensure that backspace unrolls all the way
to the peekC which brought the last character into the buffer. The abort

signal, indicating that the last character typed has made a successful
read impossible, also triggers unrolling. The readC operation empties the
buffer, echoing the character it contained. In effect, we log the state of
the ReadLine process each time the underlying Teletype process performs
an operation that we might need to undo.

In case of a backspace keystroke or an abort, we unroll the log just
until we find an opportunity to feed in an alternative character. As soon
as we find a ‘first peek’, we restart with the same continuation following
a fresh peek. A physical backspace happens whenever we unroll an readC,
rubbing out the character it had echoed by overwriting with a space.
A backspace at the very start will unroll the initial log: we respond by
restarting the process.

pearl.tex; 21/08/2013; 8:00; p.34

Modular Rollback through Control Logging 35

unroll :: Log x -> Teletype :* x

unroll (PeekC1 log k) = logRun (peekC >>= k) (log, Nothing)

unroll (ReadCed log) = do

putC ’\b’ >> putC ’ ’ >> putC ’\b’

unroll log

unroll (Began p) = teletypeReadLine p

Discussion

Once again, the business of managing rollback is entirely separated from
the implementation of the parser. This time, the notion of a ‘rubout
port’ is delivered by a kind of ‘device driver’ sitting between the ReadLine

and Teletype interfaces, logging the progress of the ReadLine process at
the points when significant Teletype operations occur.

As we can handle ReadLine in terms of Teletype and Teletype in terms
of IO, it is straightforward to wire our parser up to the ‘real world’. The
operation

(ioTeletype . teletypeReadLine) sexp :: IO SExp

reads a self-delimited s-expression from the console, with backspace
acting as it should.

Free monads capture the essence of programming to an interface
of operations, but the naïve definition is not especially performant,
as tree-grafting is notoriously inefficient (much like appending) when
left-nested. One remedy is to restore a continuation-based treatment
systematically by means of the codensity transformation (Voigtländer,
2008). In some sense, the use of a free monad for the ReadLine interface

makes explicit and gives licence to just exactly the continuation chi-
canery required by a ‘rubout client’ implemented in direct style.

Indeed, in a calculus of algebraic effects and handlers (Plotkin and
Pretnar, 2009), as used in Bauer and Pretnar’s Eff language (Bauer
and Pretnar, 2012), one might hope to program in direct style to an
explicit interface of operations, with a denotational semantics in the
corresponding free monad. The explicit punctuation of monadic style
programming in Haskell imposes a notational cost for the privilege of
policing effect permissions, perhaps higher than one might desire or
require.

Historical note

Shivers presented the account of modular rollback via call/cc at the
2011 meeting of IFIP Working Group 2.8 in Texas: McBride, in the
audience, was fascinated. A little later, it transpired that the pair were

pearl.tex; 21/08/2013; 8:00; p.35

36 Shivers, Turon, and McBride

marooned in Austin airport, waiting for the same delayed flight to
Boston. McBride was working on Kleisli arrows of outrageous fortune,
studying the notion of a ‘free monad’ for value-indexed types. It seemed
natural to wonder if there was also a free monad account of modular
rollback, and as the plane finally made it off the runway, McBride and
Shivers fired up ghc and developed the code in this section, which Turon
then presented at the 2011 Continuation Workshop.

4. Epilogue

We have now seen one idea presented in the idiom of three different lan-
guages: Scheme, Standard ML, and Haskell. A natural question remains,
namely, what is the relationship between these presentations?

As it happens, a deeper version of that question has already been
answered. Andrzej Filinski explained how the “direct style” of effectful
programming in a language like ML is related to the “monadic style”
of effectful programming in Haskell in general (Filinski, 1994). The
central result is a representation theorem saying that delimited control
is a kind of “universal effect”: in a language with delimited control, “any
expressible monadic structure can be added as a purely definitional
extension, without requiring a reinterpretation of the whole language.”
The key to this remarkable result is using delimited control to dynam-
ically turn a direct-style program into monadic style. The definition
of each effectful operator includes a use of shift to capture the rest
of the not-yet-monadic computation, which can then be used as the
continuation argument k to an explicit monadic bind:

(* monadic reflection in ML *)

performEffect e = shift (fn k => bind e k)

Thus, to perform an effect, you simply insert a bind between you and
your continuation. The continuation will be transformed into monadic
style by need, if and when the bind makes use of it.

The technique of sneaking a checkpointing lexer into an unsuspecting
parser is actually an instance of sneaking a monad into some direct-
style code—that is, an application of Filinski’s ideas. Our Haskell pre-
sentation makes clear what this monad really is, first by identifying
its interface (as a free monad) and then by (re)interpreting programs
written against that interface using checkpointing. Our Scheme and
SML presentations, by contrast, fused the process of transformation to
monadic style with the process of interpreting the monad in a particular
way, i.e., with checkpoints.

pearl.tex; 21/08/2013; 8:00; p.36

Modular Rollback through Control Logging 37

What is the lesson here? Monadic representation is not just about
making monadic programming more pleasant. It can also be used to
boost modularity, writing a module in a pure-seeming way, and then
externally introducing effects that systematically reinterpret its code
in a particular monad. Here we have used the technique to introduce
user interaction and error repair to an already-written parser, with a
clean separation of concerns. But surely other opportunities for monadic
reinterpretation are lurking.

The ICFP/CW 2011 presentations

Parts of this work were presented at the ICFP 2011 conference and
the co-located Continuation Workshop. Here we briefly summarize the
angle of those presentations; the former can be viewed at

http://dl.acm.org/citation.cfm?id=2034783

The ICFP presentation focused on the BurkeFisher functor, which has a
compelling, easy to grasp motivation. The theme of the talk was parser
infiltration, with Control (Delimited Control) acting as our agent 007.
Somewhat surprisingly, we were able to walk through essentially the
entire body of code by making a few simplifications: we did not handle
backtracking, token windows, or give any of the parser’s code. Surely
this is an indication of the power call/cc to radically—but concisely—
alter the control structure of a program.

The CW presentation, in contrast, gave the free-monadic perspective
(and, transitively, the rubout-handler example). That talk was more tu-
torial in nature, and it began with an explanation of free monads as well
as Filinski’s monadic representation. We demonstrated how a judicious
use of shift and reset wrapping an input stream could transform a
direct-style parser into one producing a computation in a free monad,
which we could then reinterpret with checkpointing. Slides for the CW
talk are available at

http://www.ccs.neu.edu/home/turon/cw2011-slides.pdf

Acknowledgements

This article reports on work supported by the Defense Advanced Re-
search Projects Agency under Air Force Research Laboratory (AFRL/Rome)
Contract No. FA8650-10-C-7090 and Cooperative Agreement No. FA8750-
10-2-0233. The views expressed are those of the authors and do not

pearl.tex; 21/08/2013; 8:00; p.37

38 Shivers, Turon, and McBride

reflect the official policy or position of the Department of Defense or
the U.S. Government.

Turon is currently supported by a Microsoft fellowship, and was
supported by NSF award CNS-0454136 while writing the ML-Antlr
parser at the University of Chicago.

John Reppy provided much guidance. Matthias Felleisen provided
encouragement and insightful comments to Shivers while he was work-
ing out the rubout-handler system; Mark Feeley provided Shivers an
early opportunity to air the design at a Scheme workshop. The quo-
tation on line 31 of Figure 1 is due to a prince in Denmark. Kent
Pitman and DanWeinreb were fonts of wisdom concerning sophisticated
details of classic Lisp technology. Thanks go to Vincent St-Amour, Sam
Tobin-Hochstadt, and Jesse Tov for feedback on a draft of the paper.

Shivers would like to dedicate this set of twin pearls to another such
set: Olin and Avery.

References

Bauer, A. and M. Pretnar: 2012, ‘Programming with algebraic effects and handlers’.
The arXiv (CoRR) abs/1203.1539.

Biagioni, E., K. Cline, P. Lee, C. Okasaki, and C. Stone: 1998, ‘Safe-for-space threads
in Standard ML’. Higher Order and Symbolic Computation (HOSC) 11, 209–225.

Burke, M. G. and G. A. Fisher: 1987, ‘A practical method for LR and LL syntactic
error diagnosis and recovery’. ACM Transactions on Programming Languages
and Systems (TOPLAS) 9(2), 164–197.

Danvy, O. and A. Filinski: 1990, ‘Abstracting control’. In: Proceedings of the 1990
ACM Conference on LISP and Functional Programming (LFP’90). pp. 151–160.

Felleisen, M.: 1988, ‘The theory and practice of first-class prompts’. In: Proceed-
ings of the Fifteenth ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’88). pp. 180–190.

Filinski, A.: 1994, ‘Representing monads’. In: Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’94). pp. 446–457.

Herman, D.: 2007, ‘Functional pearl: The great escape, or how to jump the bor-
der without getting caught’. In: Proceedings of the Twelfth ACM SIGPLAN
International Conference on Functional Programming (ICFP’07).

Huet, G. P.: 1997, ‘The zipper’. Journal of Functional Programming (JFP) 7(5),
549–554.

Hutton, G. and E. Meijer: 1998, ‘Monadic parsing in Haskell’. Journal of Functional
Programming 8(4), 437–444.

Kelsey, R. and J. Rees, ‘The Scheme48 system’. http://s48.org.
Kuan, G.: 2011, ‘A True Higher-order Module System’. Ph.D. thesis, University of

Chicago.
Lerner, B. S., M. Flower, D. Grossman, and C. Chambers: 2007, ‘Searching for

type-error messages’. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07).

pearl.tex; 21/08/2013; 8:00; p.38

Modular Rollback through Control Logging 39

Parr, T. J. and R. W. Quong: 1995, ‘ANTLR: A predicated-LL(k) parser generator’.
Software: Practice and Experience 25(7), 789–810.

Pitman, K. M.: 1995, ‘Ambitious evaluation: a new reading of an old issue’. Lisp
Pointers VIII(2).

Plotkin, G. D. and M. Pretnar: 2009, ‘Handlers of algebraic effects’. In: G.
Castagna (ed.): ESOP, Vol. 5502 of Lecture Notes in Computer Science. pp.
80–94, Springer.

Rossberg, A., C. Russo, and D. Dreyer: 2010, ‘F-ing modules’. In: Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI’10).

Shivers, O., B. Carlstrom, M. Gasbichler, and M. Sperber: 2004, ‘The scsh manual,
release 0.6.6’. http://scsh.net.

Shivers, O. and A. Turon: 2011, ‘Modular rollback through control logging: a pair
of twin functional pearls’. In: Proceedings of the Sixteenth ACM SIGPLAN
International Conference on Functional Programming (ICFP’11).

Sitaram, D. and M. Felleisen: 1990, ‘Control delimiters and their hierarchies’. Lisp
and Symbolic Computation 3, 67–99.

Swierstra, W.: 2008, ‘Data types à la carte’. Journal of Functional Programming
(JFP) 18(4), 423–436.

Voigtländer, J.: 2008, ‘Asymptotic improvement of computations over free monads’.
In: P. Audebaud and C. Paulin-Mohring (eds.): MPC, Vol. 5133 of Lecture Notes
in Computer Science. pp. 388–403, Springer.

pearl.tex; 21/08/2013; 8:00; p.39

pearl.tex; 21/08/2013; 8:00; p.40

