
Reagents:
expressing and composing
fine-grained concurrency

Aaron Turon
Northeastern University

CAS: cost versus contention

Threads
2 4 6 8

C
on

en
tio

n
(lo

g-
sc

al
e)

100%

0.33%

0.25%

0.2%

Throughput
Sequential

1.0

0.81

0.62

0.42

0.23

0.04

0.5%

1%

2%

java.util.concurrent
Synchronization Data structures
Reentrant locks
Semaphores
R/W locks
Reentrant R/W locks
Condition variables
Countdown latches
Cyclic barriers
Phasers
Exchangers

Queues
 Nonblocking
 Blocking (array & list)
 Synchronous
 Priority, nonblocking
 Priority, blocking
Deques
Sets
Maps (hash & skiplist)

class TreiberStack[A] {
 private val head =
 new AtomicRef[List[A]](Nil)

 def push(a: A) {
 val backoff = new Backoff
 while (true) {
 val cur = head.get()
 if (head.cas(cur, a :: cur)) return
 backoff.once()
 }
 }

...

3 2

Head

3 2

Head

7

3 2

Head

7

5

3 2

Head

7

5

CAS fail

3 2

Head

7

5

3 2

Head

7 5

 def tryPop(): Option[A] = {
 val backoff = new Backoff
 while (true) {
 val cur = head.get()
 cur match {
 case Nil => return None
 case a::tail =>
 if (head.cas(cur, tail))
 return Some(a)
 }
 backoff.once()
 }
 }

Concurrency libraries are
indispensable, but hard to

build and extend

The Problem:

Scalable concurrent algorithms
can be built and extended using

abstraction and composition

The Proposal:

Design

Lambda: the ultimate abstraction

f
A B

Lambda: the ultimate abstraction

f
A B

g
B C

Lambda: the ultimate abstraction

f
A

g
B C

fA BLambda abstraction:

fA BLambda abstraction:

Reagent abstraction: A BR

c: Chan[A,B]

c

swapA B

c: Chan[A,B]

c

swapA B

c

swap BA

c: Chan[A,B]

c

swapA B

swap

Message passing

swap

r: Ref[A]
f: (A,B)→(A,C)

upd
f

rA A

B C

Message passing

swap
upd
f

Message passing Shared state

swap
upd
f

A BR

A BS

Message passing Shared state

swap
upd
f

R

S
+

A B

Message passing Shared state

swap
upd
f

R

S
+

Message passing Shared state

Disjunction

swap
upd
f

R

S
+

A BR

A CS

Message passing Shared state

Disjunction

swap
upd
f

R

S
+

R

S
*

A (B,C)

Message passing Shared state

Disjunction

swap
upd
f

R

S
+

R

S
*

Message passing Shared state

Disjunction Conjunction

d

swap*

c

swap

A B

(A,B)

d

swap*

2-way join

c

swap

A B

(A,B)

d

swap*

2-way join

c

swap

A B

(A,B)

+()
e

swap

Exn

d

swap*

c

swap

A B

(A,B)

+()
e

swap

Exn

Abortable 2-way join

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head) {
 case (x :: xs) => (xs, Some(x))
 case Nil => (Nil, None)
 }
}

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head) {
 case (x :: xs) => (xs, Some(x))
 case Nil => (Nil, None)
 }
 val pop = upd(head) {
 case (x :: xs) => (xs, x)
 }
}

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head)(trySplit)
 val pop = upd(head)(split)
}

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head)(trySplit)
 val pop = upd(head)(split)
}

class EliminationStack [A] {
 private val stack = new TreiberStack[A]
 private val (send, recv) = new Chan[A]
 val push = stack.push + swap(send)
 val pop = stack.pop + swap(recv)
}

stack1.pop >> stack2.push

Implementation

Phase 1 Phase 2

Phase 1 Phase 2

Accumulate CASes

Phase 1 Phase 2

Accumulate CASes Attempt k-CAS

Accumulate CASes Attempt k-CAS

Accumulate CASes Attempt k-CAS

Permanent failure

Accumulate CASes Attempt k-CAS

Permanent failure

Transient failure

Permanent failure

Permanent failure

Transient failure

Permanent failure

Transient failure

Transient failure

Permanent failure

Transient failure

? failure

Transient failure

Permanent failure

Transient failure

? failure

Transient failure

P & P = P
T & T = T

P & T = T
T & P = T

Is this just STM?

Is this just STM?
No:

- Single CAS collapses to single phase
- Multiple CASes to single location forbidden

So the “redo log” is write-only for phase 1

Therefore: pay-as-you-go
- Treiber stack is really a Treiber stack
- Pay for kCAS only for compositions

Is this just STM?

Isolation
Shared state

Interaction
Message passing

Is this just STM?

Isolation
Shared state

Interaction
Message passing

Using lock-free bags,
based on earlier work

with Russo [OOPSLA’11]

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Treiber stack
T

h
ro

u
gh

p
u

t
(it

er
s/
μs

)

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Threads

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Stack transfer
T

h
ro

u
gh

p
u

t
(it

er
s/
μs

)

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Threads

java.util.concurrent
Synchronization Data structures
Reentrant locks
Semaphores
R/W locks
Reentrant R/W locks
Condition variables
Countdown latches
Cyclic barriers
Phasers
Exchangers

Queues
 Nonblocking
 Blocking (array & list)
 Synchronous
 Priority, nonblocking
 Priority, blocking
Deques
Sets
Maps (hash & skiplist)

Synchronization Data structures
Reentrant locks
Semaphores
R/W locks
Reentrant R/W locks
Condition variables
Countdown latches
Cyclic barriers
Phasers
Exchangers

Queues
 Nonblocking
 Blocking
 Synchronous
 Priority, nonblocking
 Priority, blocking
Deques
Sets
Maps (hash & skiplist)

The take-away:
Reagents enable scalable
concurrent algorithms

to be built and extended using
abstraction and composition

https://github.com/aturon/ChemistrySet

https://github.com/aturon/ChemistrySet
https://github.com/aturon/ChemistrySet

