Reagents:

expressing and composing
fine-grained concurrency

Aaron Turon
Northeastern University

Conention (log-scale)

0.2%

0.25%

0.33%

0.5%

1%

2%
100%

CAS: cost versus contention

4
Threads

Throughput

Sequential

java.util.concurrent

Synchronization Data structures

Reentrant locks Queues

Semaphores Nonblocking

R/WV locks Blocking (array & list)
Reentrant R/WV locks Synchronous
Condition variables Priority, nonblocking
Countdown latches Priority, blocking
Cyclic barriers Deques

Phasers Sets

Exchangers Maps (hash & skiplist)

TreiberStack

head =
AtomicRef Nil
push(a
backoff = Backoff

cur = head.get
head.cas(cur, a :: cur
backoff.once

Head

l

Bleo—])

Head

l

Bleo—])

(7|f)

Head

/

GBlo— Cl9— 0])

(7|f)

Head

/

GBlo— Cl9— 0])

(7|f) CAS fail

Head

GBlo— Cl9— 0])

Head

/

TS ol GRS CIES o d €1 D

tryPop =
backoff = Backoff

cur = head.get
cur
N1l => None
a::tail =>
head.cas(cur, tail
Some(a

backoff.once

The Problem:

Concurrency libraries are
, but hard to
build and extenda

The Proposal:

Scalable concurrent algorithms
can be built and extended using
and

Design

Lambda: the ultimate abstraction

()

Lambda: the ultimate abstraction

A<:>B BC

Lambda: the ultimate abstraction

(e

Lambda abstraction: __A_®i>

Lambda abstraction: __A_®i>
Reagent abstraction: —LIEI—B>

| p— | |
0N i
~ _ Q
<C |
| I i ,
- I
o _
i e
-
O
<L |
|

Message passing

Message passing

Message passing Shared state

O

\/

Message passing Shared state

Message passing Shared state

:

\/

AB

Message passing Shared state

Message passing Shared state

Disjunction

AN ~{r}=

Message passing

\/

Disjunction

Shared state

O

B, C

Message passing Shared state

Disjunction Conjunction

2-way join

A,B

Abortable 2-way join

A,B

TreiberStack

head = Ref N1l
push = upd(head) (cons
tryPop = upd(head
X :: Xs) => (xs, Some(x

Nil => (Nil, None

TreiberStack

head = Ref N1l
push = upd(head) (cons
tryPop = upd(head
X :: Xs) => (xs, Some(x
Nil => (N1il, None

pop = upd(head
X 11 XS) => (xs, X

TreiberStack

head = Ref N1l
upd(head) (cons

upd(head) (trySplit
upd(head) (split

push
tryPop
pop

TreiberStack
head = Ref Nil

push = upd(head) (cons
tryPop = upd(head) (trySplit
pop = upd(head) (split
EliminationStack
stack = TreiberStack
send, recv) = Chan
push = stack.push + swap(send)

pop stack.pop + swap(recv)

stackl.pop >> stack2.push

Implementation

Phase | Phase 2
*

Phase | Phase 2
*

Accumulate CASes

Phase | Phase 2
*

Accumulate CASes

_t

Accumulate CASes

Permanent failure

ILI-—-I

Accumulate CASes

Permanent failure

Transient failure

Accumulate CASes

Permanent failure

Permanent failure

Transient failure

Permanent failure

Transient failure

Transient failure

Permanent failure
ransient failure
N

Transient failure

Permanent failure
ransient failure
N

Transient failure

P&P=P P&T =T
T&T=T T&P=T

s this just STM!?

s this just STM!?
No:

- Single CAS collapses to single phase
- Multiple CASes to single location forbidden
So the “redo log” is write-only for phase 1

Therefore:
- Treiber stack is really a Treiber stack
- Pay for kCAS only for compositions

s this just STM!?

Isolation Interaction
Shared state Message passing

s this just STM!?

Isolation Interaction
Shared state Message passing
Using lock-free bags,

based on earlier work
with Russo [OOPSLA’| |]

Throughput (iters/s)

Treiber stack

5 10
Threads

Reagent-based e

Hand-build

Lock-based

STM-based - o

Throughput (iters/s)

Stack transfer

A
i

0
rk

)
rk

—
h

&
|

Threads

Reagent-based e

Lock-based

STM-based

java.util.concurrent

Synchronization Data structures

Reentrant locks Queues

Semaphores Nonblocking

R/WV locks Blocking (array & list)
Reentrant R/WV locks Synchronous
Condition variables Priority, nonblocking
Countdown latches Priority, blocking
Cyclic barriers Deques

Phasers Sets

Exchangers Maps (hash & skiplist)

Synchronization

Reentrant locks
Semaphores

R/W locks

Countdown latches
Cyclic barriers

Exchangers

ser A

Data structures

Queues
Nonblocking
Blocking
Synchronous

Sets

The take-away:

Reagents enable scalable
concurrent algorithms
to be built and extended using
and

https://github.com/aturon/ChemistrySet

https://github.com/aturon/ChemistrySet
https://github.com/aturon/ChemistrySet

