
Modular rollback
through control logging

~ A pair of twin functional pearls ~

Olin Shivers & Aaron Turon
Northeastern University

Tuesday, September 27, 2011

Tuesday, September 27, 2011

Tuesday, September 27, 2011

there w
as a p

arser

Tuesday, September 27, 2011

there w
as a p

arser

with poo
r error

message
s.

Tuesday, September 27, 2011

> val f(x) = x + 1;

Tuesday, September 27, 2011

>

SYNTAX ERROR at 1:6

val f(x) = x + 1;

Tuesday, September 27, 2011

val f(x) = x + 1;

Tuesday, September 27, 2011

decl ::= val id = exp ;
 | fun id (ids) = exp ;
 | ...

val f(x) = x + 1;

Tuesday, September 27, 2011

Point of discovery

decl ::= val id = exp ;
 | fun id (ids) = exp ;
 | ...

val f(x) = x + 1;

Tuesday, September 27, 2011

Point of discovery

decl ::= val id = exp ;
 | fun id (ids) = exp ;
 | ...

The real error: val should be fun

val f(x) = x + 1;

Tuesday, September 27, 2011

A Practical Method for LR and LL Syntactic
Error Diagnosis and Recovery
MICHAEL G. BURKE and GERALD A. FISHER
Thomas J. Watson Research Center

This paper presents a powerful, practical, and essentially language-independent syntactic error
diagnosis and recovery method that is applicable within the frameworks of LR and LL parsing. The
method generally issues accurate diagnoses even where multiple errors occur within close proximity,
yet seldom issues spurious error messages. It employs a new technique, parse action deferral, that
allows the most appropriate recovery in cases where this would ordinarily be precluded by late
detection of the error. The method is practical in that it does not impose substantial space or time
overhead on the parsing of correct programs, and in that its time efficiency in processing an error
allows for its incorporation in a production compiler. The method is language independent, but it
does allow for tuning with respect to particular languages and implementations through the setting
of language-specific parameters.
Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user
interfaces; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming
Languages]: Processors-compilers; parsing; translator writing systems and compiler genemtors
General Terms: Algorithms, Languages
Additional Key Words and Phrases: LL parser, LR parser, syntactic error diagnosis, syntactic error
recovery, syntactic error repair

1. INTRODUCTION
This paper presents a powerful, practical, and essentially language-independent
syntactic error recovery method that is applicable within the frameworks of LR
and LL parsing. An error recovery method is powerful insofar as it accurately
diagnoses and reports all syntactic errors without reporting errors that are not
actually present. A successful recovery, then, has two components: (1) an accurate
diagnosis of the error, and (2) a recovery action that modifies the text in such a
way as to make possible the diagnosis of any errors occurring in its right context.
An “accurate” diagnosis is one that results in a recovery action that effects the
“correction” that a knowledgeable human reader would choose. This notion of
accuracy agrees with our intuition but cannot be precisely defined. In some
instances, of course, the nature of the error is ambiguous, but at the very least,
the diagnosis and corresponding recovery should not result in an excessive

Authors’ address: Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0164-0925/87/0400-0164 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987, Pages X4-197.

1987

Tuesday, September 27, 2011

A Practical Method for LR and LL Syntactic
Error Diagnosis and Recovery
MICHAEL G. BURKE and GERALD A. FISHER
Thomas J. Watson Research Center

This paper presents a powerful, practical, and essentially language-independent syntactic error
diagnosis and recovery method that is applicable within the frameworks of LR and LL parsing. The
method generally issues accurate diagnoses even where multiple errors occur within close proximity,
yet seldom issues spurious error messages. It employs a new technique, parse action deferral, that
allows the most appropriate recovery in cases where this would ordinarily be precluded by late
detection of the error. The method is practical in that it does not impose substantial space or time
overhead on the parsing of correct programs, and in that its time efficiency in processing an error
allows for its incorporation in a production compiler. The method is language independent, but it
does allow for tuning with respect to particular languages and implementations through the setting
of language-specific parameters.
Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user
interfaces; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming
Languages]: Processors-compilers; parsing; translator writing systems and compiler genemtors
General Terms: Algorithms, Languages
Additional Key Words and Phrases: LL parser, LR parser, syntactic error diagnosis, syntactic error
recovery, syntactic error repair

1. INTRODUCTION
This paper presents a powerful, practical, and essentially language-independent
syntactic error recovery method that is applicable within the frameworks of LR
and LL parsing. An error recovery method is powerful insofar as it accurately
diagnoses and reports all syntactic errors without reporting errors that are not
actually present. A successful recovery, then, has two components: (1) an accurate
diagnosis of the error, and (2) a recovery action that modifies the text in such a
way as to make possible the diagnosis of any errors occurring in its right context.
An “accurate” diagnosis is one that results in a recovery action that effects the
“correction” that a knowledgeable human reader would choose. This notion of
accuracy agrees with our intuition but cannot be precisely defined. In some
instances, of course, the nature of the error is ambiguous, but at the very least,
the diagnosis and corresponding recovery should not result in an excessive

Authors’ address: Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0164-0925/87/0400-0164 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987, Pages X4-197.

The Burke-Fisher
Principle:

Explain syntax errors by
finding small, nearby edits
that enable the parser to
make substantial progress

Tuesday, September 27, 2011

Tuesday, September 27, 2011

2. THE METHOD

2.1 Overview
2.1.1 The Parsing Framework. The method assumes a framework in which an

LR or LL parser maintains an input token buffer TOKENS, a state or prediction
stack, and a parse stack. The parse configuration thus has three components: the
configuration of TOKENS, that of the state or prediction stack, and that of the
parse stack. TOKENS is a queue containing part or all of the sequence of
remaining input tokens. The current token, denoted CURTOK, is the front
element of TOKENS. The token immediately preceding CURTOK in the source
program shall be denoted as PREVTOK.

The LR state stack and the LL prediction stack are analogous, and our method

Tuesday, September 27, 2011

2. THE METHOD

2.1 Overview
2.1.1 The Parsing Framework. The method assumes a framework in which an

LR or LL parser maintains an input token buffer TOKENS, a state or prediction
stack, and a parse stack. The parse configuration thus has three components: the
configuration of TOKENS, that of the state or prediction stack, and that of the
parse stack. TOKENS is a queue containing part or all of the sequence of
remaining input tokens. The current token, denoted CURTOK, is the front
element of TOKENS. The token immediately preceding CURTOK in the source
program shall be denoted as PREVTOK.

The LR state stack and the LL prediction stack are analogous, and our method be taken into account.
By backing down the parse stack and considering the possible simple repairs

at each of its elements, one can effect a simple repair at a point in the prefix.
The hope is that the erroneous tokens are still present on the parse stack, but it

Tuesday, September 27, 2011

2. THE METHOD

2.1 Overview
2.1.1 The Parsing Framework. The method assumes a framework in which an

LR or LL parser maintains an input token buffer TOKENS, a state or prediction
stack, and a parse stack. The parse configuration thus has three components: the
configuration of TOKENS, that of the state or prediction stack, and that of the
parse stack. TOKENS is a queue containing part or all of the sequence of
remaining input tokens. The current token, denoted CURTOK, is the front
element of TOKENS. The token immediately preceding CURTOK in the source
program shall be denoted as PREVTOK.

The LR state stack and the LL prediction stack are analogous, and our method be taken into account.
By backing down the parse stack and considering the possible simple repairs

at each of its elements, one can effect a simple repair at a point in the prefix.
The hope is that the erroneous tokens are still present on the parse stack, but it effect not have taken place, and so the desired degree of unparsing is achieved.

Token deferral may also be viewed as double parsing. One parser simply checks
for syntactic correctness and performs no real reduce actions. The second parser
is always k - 1 tokens behind, always has correct input, and performs reduce
actions on the parse stack. In our implementation the deferred tokens and
sequences of reductions are maintained in a deferred tokens queue and a deferred
rules queue, respectively.

We regard the generation of simple repair candidates at points in the left
Tuesday, September 27, 2011

Our mission:
Infiltrate the parser by
impersonating its lexer

Our plan:
BurkeFisher: PARSER PARSER
a functor that wraps a parser,
and spies on its control flow

Modular rollback through
control logging

Control.
Delimited Control.

Our agent:

Tuesday, September 27, 2011

Parser LexerRepairer

parse lex s

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

wrapLex s’

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

wrapLex s’ checkpoint

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

wrapLex s’ checkpoint lex s’

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

wrapLex s’ checkpoint lex s’

raise ParseError

Tuesday, September 27, 2011

Parser LexerRepairer

reset (fn () =>
 parse wrapLex s)

parse lex s

wrapLex s checkpoint lex s

wrapLex s’ checkpoint lex s’

raise ParseError search for repair

Tuesday, September 27, 2011

signature PARSER =
sig
 type token
 val exampleToks: token list

 type stream
 type lexer = stream -> token * stream
 type result
 exception ParseError

 val parse: lexer -> stream -> result
end

Tuesday, September 27, 2011

signature PARSER =
sig
 type token
 val exampleToks: token list

 type stream
 type lexer = stream -> token * stream
 type result
 exception ParseError

 val parse: lexer -> stream -> result
end

We can’t change these types

Tuesday, September 27, 2011

signature PARSER =
sig
 type token
 val exampleToks: token list

 type stream
 type lexer = stream -> token * stream
 type result
 exception ParseError

 val parse: lexer -> stream -> result
end

We can’t change these types

But we can add effects

Tuesday, September 27, 2011

functor BurkeFisher (P: PARSER) =
struct
 open P (* we'll shadow result and parse,
 * but otherwise be just like P *)

 datatype result
 = RESULT of P.result
 | REPAIR of token (* replace this token *)
 * token (* with this token *)
 | UNREPAIRABLE

The Burke-Fisher Functor

We’ll ignore position information for simplicity

Tuesday, September 27, 2011

fun parse lex strm = let
 val chkPts = ref []
 fun push chkPt = chkPts := (chkPt :: !chkPts)

 fun wrapLex strm = let
 val lexResult = lex strm
 in shift (fn k => push (lexResult, k);
 k lexResult)
 end

 in RESULT (reset (fn () =>
 P.parse wrapLex strm))
 handle ParseError => repair (!chkPts)

The Burke-Fisher Functor

type checkPt = lexResult *
 (lexResult -> P.result)

Tuesday, September 27, 2011

fun parse lex strm = let
 val chkPts = ref []
 fun push chkPt = chkPts := (chkPt :: !chkPts)

 fun wrapLex strm = let
 val lexResult = lex strm
 in shift (fn k => push (lexResult, k);
 k lexResult)
 end

 in RESULT (reset (fn () =>
 P.parse wrapLex strm))
 handle ParseError => repair (!chkPts)

The Burke-Fisher Functor

type checkPt = lexResult *
 (lexResult -> P.result)

Tuesday, September 27, 2011

fun parse lex strm = let
 val chkPts = ref []
 fun push chkPt = chkPts := (chkPt :: !chkPts)

 fun wrapLex strm = let
 val lexResult = lex strm
 in shift (fn k => push (lexResult, k);
 k lexResult)
 end

 in RESULT (reset (fn () =>
 P.parse wrapLex strm))
 handle ParseError => repair (!chkPts)

The Burke-Fisher Functor

type checkPt = lexResult *
 (lexResult -> P.result)

Tuesday, September 27, 2011

fun repair [] = UNREPAIRABLE
 | repair (chkPt::chkPts) =
 case mapFind (retry chkPt) exampleToks
 of NONE => repair chkPts
 | SOME replacement => REPAIR replacement

The Burke-Fisher Functor

repair: checkPt list -> result

mapFind: (α -> β option) -> α list -> β option

Tuesday, September 27, 2011

fun retry ((oldTok, strm), k) newTok =
 k (newTok, strm); (* execute for effect *)
 SOME (oldTok, newTok)
handle ParseError => NONE

The Burke-Fisher Functor

retry: checkPt -> token -> replacement option

type replacement = token * token

Tuesday, September 27, 2011

Tuesday, September 27, 2011

Syntax error:
val f(x) = 1+x;
^^^
Did you mean 'fun'?

Tuesday, September 27, 2011

Yes, but:

Tuesday, September 27, 2011

Yes, but:

• What about deletions, insertions?

Tuesday, September 27, 2011

Yes, but:

• What about deletions, insertions?

• What about metrics and heuristics?

Tuesday, September 27, 2011

Yes, but:

• What about deletions, insertions?

• What about metrics and heuristics?

• What about space usage?

Tuesday, September 27, 2011

Yes, but:

• What about deletions, insertions?

• What about metrics and heuristics?

• What about space usage?

• What about side effects?

Tuesday, September 27, 2011

The twin pearl:
“prompt reading” in Scheme

Some “lost art” from ‘70s-era LISP systems:

REPL handles TTY line driver

Parsing concurrent with input

Syntax errors are impossible

Last closing paren fires off the s-expression

Tuesday, September 27, 2011

The twin pearl:
“prompt reading” in Scheme

The challenge: the backspace key

Need to roll back parser control state,
and TTY state

Tuesday, September 27, 2011

The twin pearl:
“prompt reading” in Scheme

The challenge: the backspace key

Need to roll back parser control state,
and TTY state

The solution:

Weld performace of effects to logging of
their reversal

Requires exposing effectful operations

Tuesday, September 27, 2011

Rollback can be functorized, using infiltration:

• Clear separation of concerns: can change
input and rollback strategy independently

• Clean interface between the concerns

• Sketched dealing with side-effects

This is a general technique!

What have we done?

Tuesday, September 27, 2011

• BurkeFisher(YourTypechecker)

• cf SEMINAL

• Web development?

• Understand all of this through Filinski’s lens

• Come to the Continuation Workshop!

What more can we do?

Tuesday, September 27, 2011

• BurkeFisher(YourTypechecker)

• cf SEMINAL

• Web development?

• Understand all of this through Filinski’s lens

• Come to the Continuation Workshop!

What more can we do?

Thank you

Tuesday, September 27, 2011

