
All-Termination(SCP)

Panagiotis Manolios and Aaron Turon

Northeastern University {pete,turon}@ccs.neu.edu

Abstract. We recently introduced the All-Termination(T ) problem:
given a termination solver T and a function F , find every subset of
the formal parameters to F whose consideration is sufficient to show,
using T , that F terminates. These subsets can be harnessed by a theo-
rem prover to locate and justify induction schemes, and are also useful
for guiding rewriting heuristics and ensuring their termination. In this
paper, we study the All-Termination problem for SCP (polynomial
size-change analysis), a powerful, cubic-time termination analysis. SCP
is the first nonmonotonic termination analysis studied in the context of
All-Termination, making its analysis both challenging and informa-
tive. We develop an algorithm for solving the All-Termination(SCP)
problem, and briefly report on initial experimental results obtained on
the ACL2 regression suite.

1 Introduction

Termination analysis is a crucial tool for program verification. Usually, the ques-
tion is simply whether a given program terminates. But casting termination as a
decision problem means that facts discovered during analysis are discarded once
the program is known to terminate. For example, consider the function:

define insert(i, item, list) =

if i = 0 then cons(item, list)

else cons(car(list), insert(i - 1, item, cdr(list)))

We can prove that insert terminates by showing that any of length(list), i,
or length(list) + i decrease each time insert recurs. From the standpoint
of termination, one decreasing measure is as good as another. From a broader
standpoint, however, distinctions between measures have important implications.
Data about the available measures can be harnessed after termination analysis
to, for example, derive induction schemes and guide rewriting heuristics.

With each recursive function F we can associate a collection of measurable
sets. A measurable set is a subset of the formal parameters of F for which there
exists a measure function; the value of the measure function on the measured
parameters must decrease over each recursive call in F . Since measure values are
well-founded, infinite descent—and hence nontermination of F—is impossible.

In a previous paper, we introduced the All-Termination problem [1]: given
a function F , enumerate all its measurable sets. All-Termination is a gener-
alization of the classic termination decision problem, since a program is termi-
nating iff it has at least one measurable set. Hence the problem is undecidable



in general. However, decades of work on termination have yielded powerful, but
decidable, termination analyses. For any such termination analysis, T , we can
pose the All-Termination(T ) problem: given a function F and a termination
solver, T , find as many measurable sets for F as possible, using T .

The usefulness of measurable sets has been recognized for at least 30 years:
they are a central component of the Boyer-Moore family of theorem provers [2],
which includes ACL2 [3]. To motivate All-Termination analysis, we briefly
illustrate two ways Boyer and Moore use measurable sets. First, note that

All-Termination(insert) =

(
{i}, {list}, {i, list},

{item, i}, {item, list}, {item, i, list}

)
.

Suppose that we ask an automated theorem prover to prove the conjecture

〈∀list, item :: insert(0, item, list) = cons(item, list)〉

A basic technique the theorem prover might apply is simplification, replacing
subexpressions of the theorem with equivalent, but “simpler,” subexpressions.
Intuitively, the subexpression insert(0, item, list) can be simplified by ex-
panding the definition of insert, while the subexpression cons(item, list) can-
not. How do we turn this intuition into a formal heuristic?

In Boyer-Moore provers, all functions must terminate on all arguments. It is
therefore tempting to consider an aggressive heuristic in which any application of
a function is replaced by the function’s body, substituting actual arguments for
the formal parameters. The problem is that this heuristic does not guarantee that
the simplification process itself terminates! For example, applying the heuristic
to the expression insert(i, "foo", list) results in an infinite series of such
“simplifications.” On the other hand, the expression insert(0, item, list) is
successfully simplified, using the heuristic, to cons(item, list).

Boyer and Moore suggest capturing our intuition with a heuristic based on
measurable sets [2, §8.2]. They first distinguish “explicit values,” such as true
or cons("foo", nil), from other expressions, such as variables or function ap-
plications. Suppose a function F (x1, . . . , xn) is defined, and has a measurable
set P of formal parameters. The Boyer-Moore heuristic expands any application
F (e1, . . . , en) of the function where, for each xi ∈ P , the expression ei is an
explicit value. According to this heuristic, insert(0, item, list) can be sim-
plified, because {i} is a measurable set of insert, but insert(i, "foo", list)
cannot be simplified, because {item} is not a measurable set of insert. The
heuristic also allows iterated simplifications, for example discovering that

insert(2, item, list) = cons(car(list),

cons(car(cdr(list)), cons(item, cdr(cdr(list)))))

Each time a function F is recursively expanded, a measurable set of its arguments
have been simplified to explicit values. Because the arguments are measurable,
there is some measure function whose value on those arguments decreases for
each expansion. In effect, the measure function used to show F ’s termination is
lifted to guarantee the termination of simplification involving F . Remarkably,



the particular measure function is not important; the only data needed to guide
simplification is F ’s collection of measurable sets, i.e., All-Termination(F ).

Another application of measurable sets is in the derivation and justification
of induction schemes. Consider the function less on natural numbers [2, §14.2]:

define less(i, j) = if j = 0 then false

else if i = 0 then true

else less(i-1, j-1)

In order to prove 〈∀x, y :: less(x+y, y) = false〉, we would probably use
induction on y, which requires proving, for all x, y, that

less(x+0, 0) = false, and

y > 0, less(x+y-1, y-1) = false =⇒ less(x+y, y) = false

Is it possible to mechanically discover such an induction scheme, given the func-
tion definition and theorem we wish to prove? Boyer and Moore develop a heuris-
tic for doing so, again based on measurable sets. The criterion is in a sense the
opposite of that for simplification: a conjectured theorem about a function F
“suggests” an induction scheme when, for some measurable set of F , all mea-
sured arguments in the theorem are variables. Roughly speaking, the conjectured
theorem serves as an induction hypothesis, and the measured arguments serve as
the variables on which we are inducting. The induction scheme itself is derived
from the bodies of functions appearing in the theorem—a process too compli-
cated to describe here. The key point is that any use of the induction hypothesis
is guided by the recursion present in a function’s body. Because the measurable
set of arguments in the induction hypothesis appear as variables, the hypothesis
can always be instantiated with the appropriate values of those arguments for
a recursive call. The fact that a measure exists for those arguments ensures the
soundness of the induction scheme.

The measurable sets of less are {i}, {j}, and {i, j}. In the conjectured
theorem, any induction involving the first parameter of less is ruled out, be-
cause the argument given is not a variable, but rather the expression x+y. On
the other hand, the second argument is indeed a variable, and because {j} is a
measurable set, we can soundly derive the induction scheme given above.

Related work. The termination problem dates back to Turing, who called it
the “Printing Problem” [7], and there has been steady interest in it ever since.
Here we can only briefly touch upon the work most directly related to ours;
a lengthier discussion of the literature can be found in [1]. The idea of All-
Termination can be traced back to Boyer and Moore’s work [2], which also
provided the impetus for our work. However, the approach they used to find
measurable subsets just iterates over their termination analysis in the naive way:
it has exponential complexity and little in common with the work presented here,
beyond the initial motivation. Besides our initial paper [1], we know of no other
work studying All-Termination.

This paper focuses on size-change termination analysis [5], which was in-
troduced in the setting of an applicative language and has since served as a



framework for several other analyses. This includes work on termination in term-
rewrite systems that combines size-change analysis with the dependency pair
method and recursive path orderings [8]. Tools based on these ideas include
AProVE [9]. Another example is work on calling context graphs and measures,
which is used to prove termination of functional programs [10], and has been
implemented in ACL2s [11] and Isabelle [12].

Contributions and outline. We introduce All-Termination(SCP), where
SCP is polynomial-time size-change analysis [4]. That is, we adapt the SCP
termination analysis to yield a collection of measurable sets.

We start in section 2, by formalizing our model of programs and defining
All-Termination(T ). Section 3 gives the necessary background on size-change
analysis [5]. We previously studied its All-Termination problem [1]. However,
size-change termination is PSpace-hard, and exponential behavior for the stan-
dard algorithms can easily be triggered. This fact led Ben-Amram and Lee to
develop a cubic-time approximation to size-change, called SCP [4]. Surprisingly,
SCP is as powerful as full size-change analysis in practice, even though it is on
average an order of magnitude faster (see Section 5). This fact motivates the
study of All-Termination(SCP). As it turns out, All-Termination(SCP)
is a significantly more complicated problem, and the algorithm we develop has
little in common with our earlier work.

Section 4 is the main contribution of the paper. We carefully develop an
appropriate treatment of SCP , via a formal system, that allows us to develop
an All-Termination algorithm for it. We then show how to transform this
formal system into a collection of boolean constraints. The minimal models of
the resulting constraints are exactly the results of All-Termination(SCP). We
give an algorithm, by reduction to dual-horn minimization [6], for enumerating
these models. The algorithm is output-sensitive, meaning that its runtime is
bounded by the size of its output. This property is desirable because the size of
the output is usually quite small (see Section 5).

Section 5 reports initial experimental results on the ACL2 regression suite,
consisting of over 11,000 functions. We have implemented full size-change anal-
ysis and our earlier All-Termination(SCT ) analysis [1], finding that 90% of
multiargument functions have at least one nontrivial measurable set, and 7% of
them have multiple, incomparable sets. We have also implemented SCP anal-
ysis and compared its performance to full size-change. Implementation of the
All-Termination(SCP) algorithm in this paper is under way.

2 All-Termination(T )

We informally think of a program F as a mutually-recursive nest of functions, but
we model programs by their semantic call graphs. Given a universe of function
names F , parameter names P, and values V, we say:

Definition 1 A semantic call graph C is a pair (S,→) with S ⊆ F × (P ⇀ V)
the set of states and → ⊆ S × S the transition relation.



The elements of P ⇀ V are the partial functions from P to V. A semantic call
graph records the sequence of function calls while computing a given function
application. A state (f, {(x, 3), (y, 1)}) in a semantic call graph represents an
invocation of the function f(x, y) with arguments 3 and 1. If a call f(3, 1) results
in a call g(1), there is an edge between the respective states. With every program
F , we associate a semantic call graph CF .

Definition 2 A semantic call graph C is terminating if it contains no infinite
sequence of transitions s1→s2→· · · .

The graph CF is terminating iff every function in F terminates on every possible
input. We can express termination of semantic call graphs in terms of measure
functions, the standard tool for proving termination:

Proposition 1 (S,→) is terminating iff there exists a well-ordered set (W,>)
and a measure µ, i.e., a map µ : S →W such that if s→t then µ(s) > µ(t).

If (f, V ) is a state in a semantic call graph C, the values of the formal arguments
in dom(V ) are the observations available to a measure on C. Thus, we can force
a measure to ignore certain arguments by restricting the domain of V :

Definition 3 Given V : P ⇀ V, f ∈ F and P ⊆ P, we define the restrictions

(V �P )(x) =

{
V (x) x ∈ dom(V ) ∩ P,
undefined otherwise

(f, V )�P = (f, V �P )

Informally, a set of formal parameter names P is measurable if there is a measure
that “uses” only those arguments. We can formalize this idea using restriction.

Definition 4 P ⊆ P is a measurable set for C = (S,→) if there exists a
measure µ : S →W such that µ(s) = µ(t) whenever s�P = t�P .

Note that C is terminating iff it has a measurable set. Termination analyses are
usually formulated so that they imply the termination of a program, but not the
existence of any particular measurable set. To define All-Termination(T ), we
limit the analysis T to prove termination using only the set of parameters P :

Definition 5 A restricted termination analysis TR is a predicate such that,
if TR(F, P ), then P is a measurable set for CF .

It is not possible to say, in general, how to take a termination analysis T and
derive a restricted termination analysis TR, but a reasonable constraint is that
T (F ) ⇐⇒ 〈∃P :: TR(F, P )〉. In Section 4, we will see that even this simple
constraint can be subtle in practice.

Given a restricted termination analysis TR and a program F , we define

All-Termination(TR)(F ) = minimal{P ⊆ P : TR(F, P )}.

The analysis yields only the minimal sets—the termination cores—because the
collection of measurable sets for a function is upward-closed under set inclusion.



3 The size-change framework

Working directly with measure functions is difficult, because measures are global :
they must decrease in value over every recursive call in the function they measure.
The size-change framework of Lee, Jones, and Ben-Amram [5] finesses this issue
by constructing a graph that describes local changes in size, and then analyzing
the global behavior of the graph. We briefly review this framework.

An annotated call graph (ACG) is a directed graph with function names as
nodes, and an edge from f to g for each call to g that occurs in the body of f .
The edges of an ACG are annotated with size-change graphs, which record the
size relationship between the arguments of f and g. More formally, we have

p, q, r ∈ Lab = {>,≥} size-change labels
G,H ∈ SCG = 2P×Lab×P size-change graphs
G,H ∈ ACG = 2F×SCG×F annotated call graphs

We write x r−→ y for (x, r, y) ∈ G and f G−→ g for (f,G, g) ∈ G. We also sometimes
write G ∈ G for f G−→ g if the function names f and g are unimportant.

For simplicity, we postulate a single well-ordering > on all values in V. ACGs
are related to semantic call graphs in an obvious way:

Definition 6 An ACG G is safe for C if, whenever (f, V )→(g, U) ∈ C, there is
an edge f G−→ g ∈ G such that x r−→ y ∈ G implies V (x) r U(y).

Thus, G is safe for C just when it accurately describes every possible change in
argument size in C. For example, the ACGs for both insert and less (Section 1)
have a single node (labeled insert and less respectively) and a single self-edge
for that node. The size-change graphs labeling the self-edges are:

insert
G1−−→ insert:

i
> // i

item
≥ // item

list
> // list

less
G2−−→ less:

i
> // i

j
> // j

Constructing an ACG for a program is a challenging problem that the size-
change framework does not address (but see [10]). We will simply assume the
existence of a function analyze such that analyze(F ) is safe for CF . The safety
condition means that any infinite path through CF would entail the existence of
an infinite “multipath” through analyze(F ).

Definition 7 A multipath π through an ACG G is a (potentially infinite) se-
quence of edges from G, connected at nodes: π = f0

G1−−→ f1
G2−−→ f2

G3−−→ · · · .

We write Gω for the set of nonempty multipaths over G and G+ for the set
of finite, nonempty ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a
multipath when the function names are irrelevant.



The reason π = 〈Gi〉 is a multipath and not just a path is that the elements
Gi of the sequence are themselves graph structures. In particular, a multipath
may contain many threads through its size-change graphs.

Definition 8 A thread in a multipath π = 〈Gi〉 is a sequence of size-change
edges 〈xi−1

ri−→ xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

A thread abstractly tracks a given value as it flows through the arguments of suc-
cessive function calls. A value being tracked by a thread can never increase, but
it must decrease any time it passes through a >-labeled size-change edge. Infinite
recursions in CF are ruled out by analyzing the infinite multipaths of analyze(F ).
If every such multipath contains an infinite thread marked infinitely-often with
>, then any infinite path in CF would involve an actual value decreasing in-
finitely. By well-foundedness this situation is impossible, so CF must terminate.

Definition 9

(1) A thread 〈xi−1
ri−→ xi〉 has infinite descent if ri = > for infinitely-many i.

(2) A multipath π has infinite descent if it has a thread with infinite descent.
(3) G is size-change terminating if every infinite multipath π ∈ Gω has a

suffix with infinite descent.

It should be clear that the example ACGs above are size-change terminating.
Deciding whether a given G is size-change terminating is a PSpace-complete

problem [5], and unfortunately exponential-time behavior is easy to trigger.
However, Ben-Amram and Lee developed a cubic-time algorithm approximating
size-change termination, known as SCP [4]. In practice, SCP is almost always as
powerful as the PSpace algorithm (see Section 5). SCP is based on the following
notion of loop anchors.

Definition 10 G ∈ G is an anchor (for G) if every π ∈ Gω in which G appears
infinitely often has a suffix with infinite descent.

To illustrate the idea, we consider Ackermann’s function:

ack(m,n) = if m = 0 then n+1

else if n = 0 then ack(m-1, 1)

else ack(m-1, ack(m, n-1))

G1: m
> // m

n n
G2: m

≥ // m
n

> // n

The function is abstracted as an ACG Gack with one node, labeled ack, and two
self-edges, labeled with the size-change graphs G1 and G2. Notice that there are
three recursive calls in the body of ack. The call in the second line and the outer
call in the third line are both safely abstracted by the single size-change graph
G1; the remaining call is abstracted by G2. Thus, any infinite recursion of ack
would correspond to an infinite multipath π ∈ Gω

ack, and we can show that any
such π has a suffix with infinite descent:

– Suppose G1 appears infinitely often in π. We can track the size of m through
π. Every time π goes through G2 the value of m does not increase, and
infinitely often π goes through G1, where the value of m must decrease.
Thus π has infinite descent, and thus G1 is an anchor for Gack.



– Otherwise, G1 appears only finitely-many times in π, which means that π has
an infinite suffix π′ in which G1 never appears. Note that π′ ∈ (Gack\{G1})ω.
Tracking the size of n through π′ is easy: since π′ just goes through G2

infinitely, the value of n decreases infinitely. Thus π′ has infinite descent,
and thus G2 is an anchor for Gack \ {G1}.

The ack example gives the general flavor of SCP , which rules out infinite loops
by locating and removing anchors for those loops. Let SCC(G) denote the set of
nontrivial, strongly-connected components of G, and note that each element of
SCC(G) is another annotated call graph. SCP is defined as follows.

Algorithm 1 (Ben-Amram, Lee [4])

SCP(G) : for H ∈ SCC(G) do

A := FindAnchors(H)

if A = ∅ or SCP(H \ A) = False then return False

return True

Note that a size-change graph G might fail to be an anchor in one iteration, but
become an anchor in a later iteration, after other size-change graphs have been
removed from G. The key element of the algorithm, of course, is the implemen-
tation of FindAnchors.

Theorem 1 (Ben-Amram, Lee [4]) If FindAnchors(G) returns a set of an-
chors of G, then SCP soundly approximates size-change termination. If it returns
all the anchors of G, then SCP decides size-change termination.

Ben-Amram and Lee found two conditions on a size-change graph G ∈ G, either
of which is sufficient to show G to be an anchor for G, but neither of which is
necessary. The basis for these two conditions is the notion of a thread preserver.
Letting src(G) = {x : 〈∃r, y :: x r−→ y ∈ G〉}, we define:

Definition 11 A set P ⊆ P is a thread preserver for G if for any G ∈ P and
x ∈ src(G) ∩ P there is some edge x r−→ y ∈ G with y ∈ P . We write TP(G) for
the set of thread preservers for G.

The usefulness of thread preservers is illustrated by the following:

Proposition 2 If P ∈ TP(G) and 〈Gi〉 ∈ Gω is a multipath with src(G0)∩P 6=
∅, then there is a thread in 〈Gi〉 staying within P .

This proposition is particularly relevant when applied to infinite multipaths,
since we can then apply it to find infinite suffixes of the multipath in which some
value never increases. We cannot use thread preservers alone to find an infinite
decrease, however, since a thread resulting from a thread preserver might be
labeled with only ≥ edges. The purpose of the two anchor conditions below is to
ensure that an infinite decrease occurs. Before we can define them, we need one
additional definition, giving the restriction of an ACG to a set of parameters.



Definition 12 Given G, G, and P , we define the restrictions

G�P = {x r−→ y ∈ G : x, y ∈ P} G �P = {f G�P−−→ g : f
G−→ g ∈ G}

The first approach to proving that G is an anchor is to ensure that threads
passing through G under a thread preserver P must always go through a strict
edge (one labeled by >) within G. This can be accomplished as follows.

Definition 13

(1) A size-change graph G has strict fan-in if whenever two edges x
p−→ z and

y
q−→ z with x 6= y are in G, then p = q = >.

(2) An ACG G has strict fan-in if each G ∈ G has strict fan-in.
(3) A size-change graph G ∈ G is a type-1 anchor for G with respect to P ∈

TP(G) if G �P has strict fan-in and there is some strict edge in G.

The second approach is to rule out edges x ≥−→ y ∈ G such that there is a
thread taking y back to x without passing through a strict edge. These edges
x
≥−→ y represent the first step of a possible infinite thread that loops through x

without ever decreasing. We write y ≥−→ x ∈ π if there is a thread in π from y to
x passing only through ≥-labeled edges.

Definition 14

(1) The no-descent set is ND(G) =
{
x
≥−→ y ∈ G ∈ G : 〈∃π ∈ G+ :: y ≥−→ x ∈ π

〉
}.

(2) Let G BG = (G \G) ∪ {G \ND(G)}, which removes G’s problematic edges.
(3) A size-change graph G ∈ G is a type-2 anchor for G if there exists a

P ∈ TP(G BG) with P ∩ src(G) 6= ∅.

It is also useful to consider anchors for the transposition of an ACG.

Definition 15 We define transpositions

Gt = {y r−→ x : x
r−→ y ∈ G} Gt = {g Gt

−−→ f : f
G−→ g ∈ G}

Proposition 3 G is an anchor for G iff Gt is an anchor for Gt.

Despite the fact that in general anchors for G and Gt are in one-to-one corre-
spondence, it is possible for Gt to be, e.g., a type-1 anchor for Gt even though
G is not a type-1 anchor for G. Hence, we look for anchors in both G and Gt.

Ben-Amram and Lee show that deciding whether G ∈ G is a type-1 anchor is
an NP-complete problem. The reason for this high complexity is that finding a
thread preserver P ∈ TP(G) that has strict fan-in is NP-hard. However, thread
preservers are closed under union; hence, there is a maximum thread preserver.

Definition 16 The maximum thread preserver for G is MTP(G) =
⋃

TP(G).



Checking whether G ∈ G is a type-1 anchor with respect to MTP(G) can be done
in linear time, and checking whether G ∈ G is a type-2 anchor with respect to
MTP(G) can be done in quadratic time. These observations lead to the following
anchor-finding procedure, which takes overall quadratic time.

FindAnchors(G) =
{G ∈ G : G type-1 or type-2 anchor for G wrt MTP(G)}
∪ {G ∈ G : Gt type-1 or type-2 anchor for Gt wrt MTP(Gt)}

Because the algorithm uses MTP(G), it does not find all possible type-1 anchors.
As we will see shortly, this has interesting implications for All-Termination.

4 All-Termination(SCP)

In order to state the All-Termination(SCP) problem, we first need to define
a restricted termination analysis corresponding to SCP . Recall that a restricted
termination analysis takes a program F and a set of parameters P , and tries to
determine if P is a measurable set for CF . For size-change analysis, there is a fairly
obvious approach: define the predicate T (F, P ) iff SCP(analyze(F )�P ). We do
not prove it here (see [1]), but T is a valid termination analysis. An interesting
further observation is that T is nonmonotonic: if P ⊆ Q and T (F, P ), it does not
follow that T (F,Q). This is in part because of the restriction that type-1 anchors
use only the maximum thread preserver: it is possible for MTP(G �P ) to have
strict fan-in while MTP(G �Q) does not. But nonmonotonicity is a symptom of
a deeper problem:

Theorem 2 Deciding 〈∃P :: T (F, P )〉 is NP-hard.

As a result, T fails to satisfy our basic criterion: we want SCP(analyze(F )) to
hold iff 〈∃P :: T (F, P )〉 does, but SCP is a polynomial-time decision procedure.
We will therefore have to be more careful and creative to find an appropriate
restricted termination analysis.

As it turns out, the root of the problem for type-1 anchors is the strict fan-in
check, and for type-2 anchors is the no-descent set. In both cases, SCP uses
checks that are nonmonotonic, for efficiency sake. We can finesse the problem
by performing these checks without regard to the restricted set of parameters,
just as SCP does, and only after the checks succeed, consider a restricted set of
parameters. Luckily, both checks happen to be reverse-monotonic. For example,
if P ⊆ Q and G �Q has strict fan-in, so does G �P . Thus, once we have found
that G �MTP(G) has strict fan-in, we are free to consider any smaller thread-
preserver, without rechecking the condition.

To clarify these issues, we have constructed a small formal system correspond-
ing to our proposal for a restricted termination analysis. The analysis works by
first executing SCP normally, but recording both the anchors and SCCs in a
structure we call an anchor tree:

τ ::= 〈G1A1τ1, . . . , GnAnτn〉 anchor tree
A ::= {G1, . . . , Gn} anchor set



〈∀i :: P ` τi〉 〈∀i :: 〈∀G ∈ Ai :: Gi `P G〉〉
P ` 〈G1A1τ1, . . . , GnAnτn〉

(Tree)
Gt `P Gt

G `P G
(Tr)

P ⊆ Q P ∈ TP(G)

G �MTP(G) strict fan-in 〈∃x >→ y ∈ G�P 〉
G `Q G

(T1)

P ⊆ Q P ∈ TP(G BG)

P ∩ src(G) 6= ∅
G `Q G

(T2)

Fig. 1. Formal system for SCPR.

Anchor tree constraints Φ 〈GiAiτi〉 =
V

i

“
Φ(τi) ∧

V
G∈Ai

Φ(Gi, G)
”

Generic anchor constraints Φ(G, G) =
W

i∈{1,2}
`
Ψi(G, G) ∨ Ψi(Gt, Gt)

´
Thread preserver constraints ΘH

i (G) =
V

G∈G Θ
H
i (G)

ΘH
i (G) =

V
x∈src(G)

“
xH

i ⇒
“W

x
r→y∈G

yH
i

””
Type-specific anchor constraints

Ψ1(G, G) =

8><>:Ψ
′
1(G, G) if G �MTP(G) has strict fan-in

false otherwise

Ψ ′1(G, G) = ΘG
1 (G) ∧

W
x

>→y∈G

`
xG

1 ∧ yG
1

´
∧

V
x∈G(xG

1 ⇒ x)

Ψ2(G, G) = ΘG
2 (G BG) ∧

W
x∈src(G) x

G
2 ∧

V
x∈G(xG

2 ⇒ x)

Fig. 2. Propositional constraints for SCPR.

An anchor tree which is just a single node without children, written 〈〉, represents
an execution on an ACG G without any nontrivial SCCs, i.e., without any loops.
On the other hand, if an anchor tree node does have children, the edges to its
children are labeled with an SCC and a set of anchors. Thus, for example, the
tree 〈G1{G1, G2} 〈G′1{G3} 〈〉〉 , G2{G4} 〈〉〉 represents an execution where G1 and
G2 were the initial SCCs, where G1 and G2 were found as anchors for G1 and
G4 was an anchor for G2, and where a recursion was required on the G1 SCC to
find the anchor G3.

We let ISCP designate an instrumented version of SCP that returns an
anchor tree when it succeeds, and the symbol ⊥ when it fails.

An anchor tree is a kind of certificate for polynomial size-change. Once we
have an anchor tree in hand, we can analyze it to determine whether it works as
a certificate even when certain formal parameters of the program are not allowed
to be used. In Figure 1, we give a formal system that makes this determination.
The system consists of two judgments:

G `P G G is an anchor for G considering only formal parameters P
P ` τ τ is a valid certificate considering only formal parameters P

Both types of anchors require the existence of a thread preserver with certain
properties. Intuitively, the formal parameters of the thread preserver may be



required to justify the anchor, since the thread preserver circumscribes the
infinitely-descending threads whose existence an anchor proves. Thus if P is
the thread preserver used to show that G is an anchor, and G `Q G, we expect
that P ⊆ Q. What is surprising is that this is the only constraint needed on Q,
at least for that anchor. The Tree rule requires that, in proving P ` τ , every
anchor and subtree be justifiable within P .

We return to the ACG for the insert function, given at the beginning of
Section 3, to illustrate the formal system. First, we observe that ISCP(Ginsert) =
〈Ginsert{G1} 〈〉〉. It is not hard to see that MTP(Ginsert) = {i, list, item},
and that Ginsert � {i, list, item} = Ginsert has strict fan-in. In addition, {i}
and {list} are thread-preservers for Ginsert. We can apply rule T1 to make
use of these thread preservers, deriving Ginsert `{i} G1 and Ginsert `{list} G1

respectively. Thus G1 is an anchor in two different ways. Notably, the respective
parameters sets are the minimal measurable sets for insert.

We can now define: SCPR(F, P ) ⇐⇒ P ` ISCP(analyze(F )).

Theorem 3 If SCPR(F, P ) then P is a measurable set for F . In addition,
〈∃P :: SCPR(F, P )〉 iff SCP(analyze(F )).

With an appropriate restricted termination analysis in hand, we now ask: is
there an efficient algorithm for All-Termination(SCPR)?

It is first important to get clear on what efficiency means in this setting.
Because All-Termination(SCPR) is an enumeration problem, and in partic-
ular because its output is (in general) exponential in the size of its input, no
polynomial-time algorithm can be given for it. However, in practice the output of
the algorithm is very small (see Section 5). We therefore seek an output-sensitive
algorithm, whose running time depends on the size of its output.

The formal system for SCPR can be reformulated as a propositional con-
straint system, which we give in Figure 2; the constraints for an anchor tree τ
are generated by Φ(τ). The idea is that models of the constraint system, which
will be sets of atomic propositions, correspond to sets P such that P ` τ . Atomic
propositions for the constraint system come in two flavors. First, there are propo-
sitions like x which represent individual formal parameters in a program. Second,
there are propositions like xG

i , which also represent formal parameters, but lo-
calized to a particular size-change graph G and anchor type i. The connection
between the constraint and formal systems is given by the following theorem.

Theorem 4 For all P ⊆ P, τ , we have P ` τ iff 〈∃A :: A |= Φ(τ) ∧ P = A∩P〉.

The constraint system works because, for any τ , there are essentially1 finitely-
many possible derivations of P ` τ . In fact, if we ignore the choices of thread-
preservers in a derivation, the number of possible derivations is linear in the
size of the tree: there are four possible ways to derive G ` G for each anchor
G of the tree. The constraint system enumerates the possible derivations, and
for each derivation gives the needed constraints on the choice of P to make that
1 “Essentially” because the Tr rule can be applied in an arbitrarily-high stack. How-

ever, the rule is involutive: applying it twice is the same as never applying it.



derivation hold. The main subtlety is that the constraints for each anchor rule
are given in terms of super- and sub-scripted propositions. We need to do this
because, for example, the requirements for being a thread-preserver will change
as we walk down the anchor tree. In the formal system, the rules T1 and T2
both allow the local choice of thread preserver P to be smaller than the global
set of parameters Q. In the constraint system, we thus have separate (localized)
copies of the formal parameters so that the local constraints for one rule do
not interfere with another. To globally collect the formal parameters used in a
derivation, we include constraints like xG

i ⇒ x.
We now make a key observation:

Proposition 4 For all τ , Φ(τ) can be written as a dual-horn formula.

Syntactically, a dual-horn formula is a formula in conjunctive normal form, where
each clause contains at most one negated variable. In other words, a dual-horn
formula is a collection of constraints a⇒ (b1 ∨ · · · ∨ bn). Using the constraint
system, we can thus reduce All-Termination(SCPR) to the problem of enu-
merating minimal solutions to dual-horn formulas. This is a useful observation,
because there is an output-sensitive algorithm for the problem [6]. Unfortunately,
the algorithm takes time exponential in the size of its output, and, under stan-
dard complexity assumptions, this is the best that can be done. However, as we
discuss next, the size of the output in practice is bounded by an extremely small
constant: 3. In this case, the reduction to dual-horn minimization means that we
can solve All-Termination(SCPR) just as quickly we can solve SCP : in time
cubic in the size of the input.

5 Experimental results

ACL2 is an industrial-strength theorem proving system with a large regression
suite with over 11,000 function definitions, each of which must be proved ter-
minating in order to be admitted into its logic. The regression suite arises from
research contributions from around the world, with examples ranging from bit-
vector libraries used by AMD, to set theory libraries, graph algorithms, dag
rewriting, and model checkers. In short, the regression suite provides a large,
realistic sample of ACL2 programs.

We implemented an All-Termination algorithm for full size-change anal-
ysis, using calling context graphs (CCGs) to implement the analyze function [1,
10, 11]. We collected data on recursive, multiargument functions in the suite,
of which there were 1,728. More than 90% had at least one termination core
that did not include all the function arguments, and about 7% of the functions
had more than one termination core. However, no function had more than three
cores. These results show that measurable sets provide the theorem prover with
nontrivial information in a vast majority of cases.

We also implemented (with Daron Vroon) the SCP analysis itself [10]. On
the regression suite, SCP is on average an order of magnitude faster than full
size-change, and it was able to prove terminating every function that full size-
change did. On examples where SCP was significantly faster, we found that



the exponential behavior of full size-change analysis was triggered by the use of
CCGs, which tend to produce ACGs with a large number of derived function
parameters. These derived function parameters are crucial to the success of CCG
analysis, as they enable us to find complicated relationships that are required
to prove termination and that cannot be inferred directly from the function pa-
rameters [10]. There are many ways we can imagine enhancing CCG analysis
(e.g., by reaching into parameters to extract information relevant to termina-
tion). While space limitations do not permit a fuller description, we are certain
that many of these enhancements to CCG analysis will have scalability problems
due to the exponential behavior of full size change. Thus, SCP is clearly a more
scalable and equally powerful (in practice), choice for All-Termination.

6 Conclusion

We carefully studied the All-Termination problem as applied to polynomial-
time size-change analysis. By reformulating SCP in an appropriate way, we were
able to build a boolean constraint system whose solutions are measurable sets.
This allows us to extract as many termination cores as possible from an execution
of SCP . In theory, the extraction step only increases the complexity of SCP when
there are many termination cores; in practice, our experimental results show that
functions with many cores are quite rare. Our primary focus for future work is
analyzing the All-Termination(T ) problem for other termination analyses.

References

1. Manolios, P., Turon, A.: All-Termination(T). In: TACAS. LNCS (March 2009)
2. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press (1979)
3. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-

proach. Kluwer Academic Publishers (July 2000)
4. Ben-Amram, A.M., Lee, C.S.: Program termination analysis in polynomial time.

TOPLAS 29(1) (2007) 5
5. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program

termination. In: POPL, ACM Press (2001) 81–92
6. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Annals of Mathe-

matics and Artificial Intelligence 18 (1996) 3–27
7. Turing, A.: On computable numbers, with an application to the entscheidungsprob-

lem. In: Proceedings of the London Mathematical Society. (1936)
8. Thiemann, R., Giesl, J.: Size-change termination for term rewriting. Technical

Report AIB-2003-02, RWTH Aachen (January 2003)
9. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination

proofs with AProVE. In: RTA. Volume 3091 of LNCS., Springer (2004) 210–220
10. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:

CAV. Volume 4144 of LNCS., Springer (2006) 401–414
11. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: The ACL2 Sedan.

ENTCS 174(2) (2007) 3–18
12. Krauss, A.: Certified size-change termination. In Pfenning, F., ed.: CADE. Volume

4603 of LNCS., Springer (2007) 460–475


